+ All Categories
Home > Documents > INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

Date post: 12-Feb-2022
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
34
INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO TITAN’S ATMOSPHERE K. DIDRICHE, C. LAUZIN, T. FÖLDES, AND M. HERMAN Laboratoire de Chimie Quantique et Photophysique Université Libre de Bruxelles Belgium
Transcript
Page 1: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

INFRARED SPECTROSCOPY OF ACETYLENE

COMPLEXES RELEVANT TO TITAN’S ATMOSPHERE

K. DIDRICHE, C. LAUZIN, T. FÖLDES, AND M. HERMAN

Laboratoire de Chimie

Quantique et Photophysique

Université Libre de Bruxelles

Belgium

Page 2: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

WHY ARE WE INTERESTED IN MOLECULAR COMPLEXES?

absorption of solar radiation

chemical reactions

depletion of monomer

first step of aerosol formation

-Take them into account in the

solar energy budget

-Their signatures could observed

be in atmospheric or interstellar spectra

A+B →AB

A. A. Vigasin and Z. Slanina (1998)

Molecular complexes in Earth, Planetary, Cometary and Interstellar Atmospheres

Take them into account in models

Page 3: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

HOW TO STUDY MOLECULAR COMPLEXES?

Experimental spectra

ab initio surface

adjusted potential surface

internal physical properties

of the complexes

Page 4: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

Fulchignoniet al, J. Nature, 438 (2005) 785

COMPLEXES IN TITAN ATMOSPHERE?

dense atmosphere low temperature

complexes formation

Page 5: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

CH4 :1.6%N2 : 95%Noble gases:

20Ne: < 4.x10-5 (large uncertainty)

40Ar: 3.3 x10-7

Kr: < 10-8

Xe: < 10-8

Coustenis et al, Icarus, 189 (2007) 35

Coustenis et al, Icarus, 189 (2007) 35

Niemann et al, J. Geophys. Res., 115 (2010) E12006

Niemann et al, Nature, 438

(2005) 779

TITAN ATMOSPHERE COMPOSITION

H2 : 0.1 %

Niemann et al, J. Geophys. Res., 115 (2010) E12006

C2H2 : 4.10-6

Page 6: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

How to create these entities in the lab?

Page 7: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

FANTASIO+

• CONTINUOUS SUPERSONIC JET

• FTIR SPECTROMETER

• MASS SPECTROMETER

• CW CRDS SET-UP

(1.5 µm)

Fourier trANsform, Tunable diode and

quadrupole mAss spectrometers

interfaced to a Supersonic expansIOn

Didriche et al., Mol. Phys., 2010, 108, 2155

n1+n3 C2H2:2CH

Page 8: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

pressure ratio ≈ 105

GAS supersonic expansion:

- continuous jet

- 2 turbomolecular pumps:

Leybold MAG W3200 CT

capacité: 3200 l/s

- primary pump:

Alcatel ADS 860 HII group

- slit or circular nozzle

- P0 1 atm P 10-2 torr

SUPERSONIC JET

Page 9: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

SUPERSONIC JET

P0 , T0

P<P0 , T<T0

3 K

Cp T0= ½ mv² + Cp T

Thermodynamical point of view

Cold and fast

)(2

²

2

3

)(2

²4)( kT

mv

ekT

mvvf

Static gasSupersonic jet

Page 10: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

gas condensed phasedcomplexes dusts/aerosols

A: reservoir conditions

C: supersatured region

Page 11: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

How to detect these entities?

Page 12: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

P0 , T0

P<P0 , T<T0

Cavity ringdown

spectroscopy (CRDS)

Page 13: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

CRDS SET-UP

DFB

laser out

laser ON laser OFF

threshold value

Page 14: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

DFB

laser out

laser ON laser OFF

threshold value

CRDS SET-UP

Page 15: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

slit 1 cmwhole cavity (54 cm)

S/N=2 amin= 3.2 x 10-8 /cmamin= 6 x 10-10 /cm

R =99.9985%

130 µs

72000 passes = 40 km !

720 m absorption path length

- CW

- 40 DFB diodes (1.5 µm)

- 6170-6670 cm-1

- laser bandwidth: 1 MHz

laser technique independent of the source intensity

highly sensitive

Resolution: 10-4 cm-1

cavity factslaser facts

Page 16: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

Complexes relevant to Titan

Page 17: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

Trotational=9 K

C2H2-Ar Lauzin et al, J. Phys. Chem. A, 113 (2009) 2359

C2H2-Ar

Page 18: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

Trotational=9 K

Lauzin et al, J. Phys. Chem. A, 113 (2009) 2359C2H2-Ar

Page 19: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

Molar fraction of the C2H2-Ar ?

adjustment of the potential surface:

L. Coudert (Paris)

B(C2H2-Ar) = - 432 cm3 mol-1 (90K)Cappelletti et al, J. Phys. Chem. A, 109 (2005) 8471

X (C2H2) = 4.10-6

X (Ar) = 3.10-5

T = 90K, P =1.5 atmX (C2H2-Ar) =10-11

Calo et al, J. Chem. Phys. , 61 (1974) 3931

Slanina et al, JQSRT. , 47 (1992) 91

C2H2-Ar

Page 20: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

ba

a(1

0-6

cm-1

)

wavenumber (cm-1)

rQ3(J)rQ2(J)rQ1(J)rQ0(J)pQ1(J)

pQ2(J)

pQ3(J)

pQ4(J)

un

it 1 unit 2

b-type simulation (20K)

PGOPHER (C. Western,

University Of Bristol)

Ground State* B state

origin (cm-1) 0 6547.58

A (MHz) 35282 36000

B (MHz) 1913.29 1900

C (MHz) 1798.61 1810

DJK (MHZ) 2.334 2.334

*Fraser et al., J. Chem. Phys., 1988, 89, 6028

http://pgopher.chm.bris.ac.uk

C2H2 (6%)/Ar

P0 = 1.2 atm /slit

C2H2-C2H2Didriche et al., Mol. Phys., 2010, 108, 2155

Page 21: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

ba

un

it 1 unit 2Ground State* A state

origin (cm-1) 0 6538.32

A (MHz) 35282 35250

B (MHz) 1913.29 1904

C (MHz) 1798.61 1795

DJK (MHZ) 2.334 2.334

*Fraser et al., J. Chem. Phys., 1988, 89, 6028

adjustment of the potential surface:

C. Leforestier (Montpellier)

wavenumber (cm-1)

PGOPHER (C. Western,

University Of Bristol)http://pgopher.chm.bris.ac.uk

a-type simulation

+ b-type simulation

C2H2 (6%)/Ar

P0 = 1.2 atm

C2H2-C2H2

Didriche et al., Mol. Phys., 2010, 108, 2155

Page 22: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

C2H2-C2H2

larger complexes

Page 23: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

Molar fraction of the C2H2-C2H2?

B(C2H2) = < -1200 cm3 mol-1 (154K)

X (C2H2) = 4. 10-6

T = 90K, P =1.5 atm

X (C2H2-C2H2) 10-11

Calo et al, J. Chem. Phys. , 61 (1974) 3931

Slanina et al, JQSRT. , 47 (1992) 91

R. L. Rowley et al., DIPPR® Data Compilation of Pure Chemical Properties,

Design Institute for Physical Properties, AIChE, New York, NY (2010).

C2H2-C2H2

larger complexes

Page 24: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

Molar fraction of the C2H2-N2 ?

B(C2H2-Ar) = - 432 cm3 mol-1 (90K)

X (C2H2) = 4. 10-6

X (N2) = 0.95

T = 90K, P =1.5 atm

X (C2H2-N2) ≈10-7

Calo et al, J. Chem. Phys. , 61 (1974) 3931

Slanina et al, JQSRT. , 47 (1992) 91

C2H2-N2

B(C2H2-N2) = - 100 cm3 mol-1 (90K)

B(C2H2-N2)?

E(C2H2-Ar) = - 1 kJ mol-1

E(C2H2-N2) = - 0.25 kJ mol-1 (= 20 cm-1)

Lauzin et al, J. Phys. Chem. A, 113 (2009) 2359

Legon et al., Chem. Phys. lett, 184 (1991) 175

Comparable to the amount of C2H4 !

Page 25: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

wavenumber (cm-1)

FIRST

DETECTION

Lauzin et al, PCCP., 13 (2011) 751

C2H2-Kr

Other C2H2-X ?

Experimental

simulation

Determination of MW transition:

3.334(4) MHz

Page 26: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

wavenumber (cm-1)

C2H2-Ar

C2H2-Ne

C2H2-Kr

Other C2H2-X ?

The bond strength is increasing with the mass of the noble gas

Page 27: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

CONCLUSIONS

• C2H2 complexes could maybe exist in Titan’s

atmosphere, some in relatively large amount (C2H2-N2)

• Absorption of light even in the near infrared

• Could play a role in the haze formation and trapping

of the noble gases

Page 28: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

PERSPECTIVES

injection of liquid samples

prebiotic/organic

molecules

H2O, CH3CN..

increase the amount

of complexes

Pulsed nozzle

Page 29: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

ACKNOWLEDGEMENTS

X. de Ghellinck

Athéna Rizopoulos

Patrick Van Poucke

Baris Kizil

Colin Western (University Of Bristol)

Fundings:

Peter Macko

-FNRS

-ULB

-Action de Recherches Concertées de

la Communauté française de Belgique

Page 30: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO
Page 31: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO
Page 32: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

Bemish et al

J.Chem.Phys,109 (1998) 8970

C2H2-Ne ?

ACETYLENE-NOBLE GAS COMPLEXES

Page 33: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

Bemish et al

J.Chem.Phys,109 (1998) 8970

C2H2-Ne ?

ACETYLENE-NOBLE GAS COMPLEXES

Page 34: INFRARED SPECTROSCOPY OF ACETYLENE COMPLEXES RELEVANT TO

Bemish et al

J.Chem.Phys,109 (1998) 8970

C2H2-Ne ?

ACETYLENE-NOBLE GAS COMPLEXES


Recommended