+ All Categories
Home > Technology > Infrastructureless Wireless networks

Infrastructureless Wireless networks

Date post: 21-Jun-2015
Category:
Upload: gwendal-simon
View: 6,619 times
Download: 0 times
Share this document with a friend
Description:
An overview of the basic algorithmic knowledge about ad-hoc and sensor networks for engineers.
Popular Tags:
93
Infrastructure-less Wireless Networks Gwendal Simon Department of Computer Science Institut Telecom 2009
Transcript
Page 1: Infrastructureless Wireless networks

Infrastructure-lessWireless NetworksGwendal SimonDepartment of Computer ScienceInstitut Telecom2009

Page 2: Infrastructureless Wireless networks

Literature

Books include:“Algorithms for sensor and ad hoc networks”,D. Wagner and R. Wattenhofer“Wireless sensor networks: an informationprocessing approach”, F. Zhao and L. Guibas

and journal/conferences include:ACM SigMobile (MobiHoc, SenSys, etc.)IEEE MASS and WCNCElsevier Ad-Hoc Network, Wireless Networks

2 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 3: Infrastructureless Wireless networks

Motivations

Current wireless net. require an infrastructure:cellular network: interconnected base stationswifi Internet: an access point and Internet

Same flaws than centralized architectures:costscalabilityprivacydependability

3 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 4: Infrastructureless Wireless networks

Motivations

Current wireless net. require an infrastructure:cellular network: interconnected base stationswifi Internet: an access point and Internet

Same flaws than centralized architectures:costscalabilityprivacydependability

3 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 5: Infrastructureless Wireless networks

Motivations

Sometimes, there is no infrastructuretransient meetingdisaster areasmilitary interventionsalter-communication

Sometimes not every station hear every other stationlimited wireless transmission rangelarge-scale area

4 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 6: Infrastructureless Wireless networks

Motivations

Sometimes, there is no infrastructuretransient meetingdisaster areasmilitary interventionsalter-communication

Sometimes not every station hear every other stationlimited wireless transmission rangelarge-scale area

4 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 7: Infrastructureless Wireless networks

Multi-hop Wireless Networks

Nodes: portable wireless devicestransmission ranges do not cover the areadensity ensures network connectivity

Links: wireless characteristicstransmission model: local broadcastingenergy consumption: transmission is costly

Behavior: devices emit, receive and forward data

5 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 8: Infrastructureless Wireless networks

A Taxonomy ofApplications

6 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 9: Infrastructureless Wireless networks

Ad-Hoc vs. Sensor Networks

Ad-Hoc Networks Sensor Networksnodes powerful wifi devices tiny zigbee nodes

algorithms all-to-all routing echo to sinkmobility human or car motions failures

performance criteria quality of service energy consumption

7 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 10: Infrastructureless Wireless networks

Ad-Hoc Applications

Delay-Tolerant Network (social media application)assumption: no connectivity, but high mobilityobjective: ensuring eventual message delivery

Mesh Networks (rural wireless coverage)assumption: some nodes have Internet accessobjective: maintaining path to these nodes

Vehicular Ad-Hoc Networksassumption: a particular mobility modelobjective: mostly services related to car safety

8 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 11: Infrastructureless Wireless networks

Ad-Hoc Applications

Delay-Tolerant Network (social media application)assumption: no connectivity, but high mobilityobjective: ensuring eventual message delivery

Mesh Networks (rural wireless coverage)assumption: some nodes have Internet accessobjective: maintaining path to these nodes

Vehicular Ad-Hoc Networksassumption: a particular mobility modelobjective: mostly services related to car safety

8 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 12: Infrastructureless Wireless networks

Ad-Hoc Applications

Delay-Tolerant Network (social media application)assumption: no connectivity, but high mobilityobjective: ensuring eventual message delivery

Mesh Networks (rural wireless coverage)assumption: some nodes have Internet accessobjective: maintaining path to these nodes

Vehicular Ad-Hoc Networksassumption: a particular mobility modelobjective: mostly services related to car safety

8 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 13: Infrastructureless Wireless networks

Sensor Network Applications

Sink-Based Networks (monitoring of natural areas)assumption: one sink retrieves all sensed dataobjective: increasing life-time

Mobile Object Tracking (area surveillance)assumption: sensors know their locationobjective: determining hostile position

Multi-Sink Networks (intervention teams)assumptions: mobile sinks and fixed sensorobjectives: increasing sink coverage

9 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 14: Infrastructureless Wireless networks

Sensor Network Applications

Sink-Based Networks (monitoring of natural areas)assumption: one sink retrieves all sensed dataobjective: increasing life-time

Mobile Object Tracking (area surveillance)assumption: sensors know their locationobjective: determining hostile position

Multi-Sink Networks (intervention teams)assumptions: mobile sinks and fixed sensorobjectives: increasing sink coverage

9 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 15: Infrastructureless Wireless networks

Sensor Network Applications

Sink-Based Networks (monitoring of natural areas)assumption: one sink retrieves all sensed dataobjective: increasing life-time

Mobile Object Tracking (area surveillance)assumption: sensors know their locationobjective: determining hostile position

Multi-Sink Networks (intervention teams)assumptions: mobile sinks and fixed sensorobjectives: increasing sink coverage

9 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 16: Infrastructureless Wireless networks

Short Introductionto Popular Models

10 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 17: Infrastructureless Wireless networks

Network as a Graph

Unit-Disk Graph:

→ node position

→ circular transmission

→ boolean connections00

01

02

03

04

05

06

07

08

09

10

1112

00

01

02

03

04

05

06

07

08

09

10

1112

00

01

02

03

04

05

06

07

08

09

10

1112

11 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 18: Infrastructureless Wireless networks

Network as a Graph

Unit-Disk Graph:

→ node position

→ circular transmission

→ boolean connections

00

01

02

03

04

05

06

07

08

09

10

1112

00

01

02

03

04

05

06

07

08

09

10

1112

00

01

02

03

04

05

06

07

08

09

10

1112

11 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 19: Infrastructureless Wireless networks

Network as a Graph

Unit-Disk Graph:

→ node position

→ circular transmission

→ boolean connections

00

01

02

03

04

05

06

07

08

09

10

1112

00

01

02

03

04

05

06

07

08

09

10

1112

00

01

02

03

04

05

06

07

08

09

10

1112

11 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 20: Infrastructureless Wireless networks

Interferences

Signal-to-noise-plus-interference (SINR) ratioPu

d(u,v)α

N +∑

w∈V \{u}Pw

d(w ,v)α≥ β

Pu: power level of sender ud(u, v): distance between u and vα: path-loss exponentN : noiseβ: minimum ratio

12 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 21: Infrastructureless Wireless networks

A Tour of the MostStudied Issues

13 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 22: Infrastructureless Wireless networks

Broadcasting I: Stormy Effect

Broadcast:a simple basic problem :

a source emits a messageall nodes within the network eventually receive themessage

a simple and efficient solution:upon first reception of message, forward it.

Limits of flooding in wireless networks:redundant messagesinterferences

14 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 23: Infrastructureless Wireless networks

Broadcasting II: Proposals

Probabilistic flooding:idea: forward the message with some probability pdrawbacks: no guarantee of deliveringrefinements: adjust p to node density

Constrained flooding:idea: only some nodes forward the messageimplementation: build the MinimumConnected Dominating Setdrawbacks: maintaining cost in dynamic systems

15 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 24: Infrastructureless Wireless networks

Broadcasting II: Proposals

Probabilistic flooding:idea: forward the message with some probability pdrawbacks: no guarantee of deliveringrefinements: adjust p to node density

Constrained flooding:idea: only some nodes forward the messageimplementation: build the MinimumConnected Dominating Setdrawbacks: maintaining cost in dynamic systems

15 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 25: Infrastructureless Wireless networks

Mobility Models I

Few theoretical proof, few real implementations⇒ generate realistic node motions for simulations

The simplest model: Random Waypoint1. each node picks a random position uniformly2. it travels toward this destination with a speed v3. once it reaches it, it stops during few seconds4. back to 1

16 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 26: Infrastructureless Wireless networks

Mobility Models I

Few theoretical proof, few real implementations⇒ generate realistic node motions for simulations

The simplest model: Random Waypoint1. each node picks a random position uniformly2. it travels toward this destination with a speed v3. once it reaches it, it stops during few seconds4. back to 1

16 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 27: Infrastructureless Wireless networks

Mobility Models II: Improvements

Basic Structural Flaws:non-uniform distribution of node location:

higher node distribution in the centeraverage speed decay:

low speed nodes spend more time to travel

Realistic Mobility Models:group movementarea popularityurban modelscommunity-based

the most realistic one : using real traces!

17 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 28: Infrastructureless Wireless networks

Mobility Models II: Improvements

Basic Structural Flaws:non-uniform distribution of node location:

higher node distribution in the centeraverage speed decay:

low speed nodes spend more time to travel

Realistic Mobility Models:group movementarea popularityurban modelscommunity-basedthe most realistic one : using real traces!

17 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 29: Infrastructureless Wireless networks

Localized Data Gathering

Basic idea: query data from sensors within an areatwo rounds:

query diffusionretrieve data from sensors

main objectives:minimize energy consumptionminimize the delay

A problem related with broadcasting except:only sensors from the queried area are reached:complex queries are possible (average, max, etc.)

18 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 30: Infrastructureless Wireless networks

Time Synchronization I

Different time on nodes:different oscillator frequency ⇒ frequency errorabsolute difference between clocks ⇒ phase error

The need of a common clocklocalization protocolssome MAC protocolsdata fusion in sensor network

19 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 31: Infrastructureless Wireless networks

Time Synchronization II

Broadcasting standard time via GPS system:√precision, simple implementation

× expensive devices× limited usage (outdoor environment)

Achieve a common time distributively:√(almost) no special devices required√more tolerant to the environment

× special protocols× message overhead, multi-hop delays

20 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 32: Infrastructureless Wireless networks

A Focus onRouting Protocols

21 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 33: Infrastructureless Wireless networks

Routing Protocols

Objective:select a path between a source and a destination

Main design challenges:unstable network topologylow-cost devices (energy, computing. . . )

Main routing mechanisms:neighbor discoveringroute setuproute maintenance

22 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 34: Infrastructureless Wireless networks

Proactive routing vs. On demand routing

Proactive ReactiveSetup all-to-all on demand

Maintenance regularly during utilizationAdvantages no setup delay no unused routes

Disadvantages fixed overhead long setup delayMain examples OLSR AODV

23 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 35: Infrastructureless Wireless networks

AODV Route Discovery

D

S B

EA

FG

H

BroadcastingRREQ Mes-sage.Setting upreverse path.

ReplyingRREP tosource.Forward pathsetup.

24 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 36: Infrastructureless Wireless networks

AODV Route Discovery

D

S B

EA

FG

H

BroadcastingRREQ Mes-sage.

Setting upreverse path.

ReplyingRREP tosource.Forward pathsetup.

24 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 37: Infrastructureless Wireless networks

AODV Route Discovery

D

S B

EA

FG

H

BroadcastingRREQ Mes-sage.

Setting upreverse path.

ReplyingRREP tosource.Forward pathsetup.

24 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 38: Infrastructureless Wireless networks

AODV Route Discovery

D

S B

EA

FG

H

BroadcastingRREQ Mes-sage.

Setting upreverse path.

ReplyingRREP tosource.Forward pathsetup.

24 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 39: Infrastructureless Wireless networks

AODV Route Discovery

D

S B

EA

FG

H

BroadcastingRREQ Mes-sage.

Setting upreverse path.

ReplyingRREP tosource.Forward pathsetup.

24 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 40: Infrastructureless Wireless networks

AODV Route Discovery

D

S B

EA

FG

H

BroadcastingRREQ Mes-sage.

Setting upreverse path.

ReplyingRREP tosource.Forward pathsetup.

24 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 41: Infrastructureless Wireless networks

AODV Route Discovery

D

S B

EA

FG

H

BroadcastingRREQ Mes-sage.

Setting upreverse path.

ReplyingRREP tosource.Forward pathsetup.

24 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 42: Infrastructureless Wireless networks

AODV Route Discovery

D

S B

EA

FG

H

BroadcastingRREQ Mes-sage.Setting upreverse path.

ReplyingRREP tosource.

Forward pathsetup.

24 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 43: Infrastructureless Wireless networks

AODV Route Discovery

D

S B

EA

FG

H

BroadcastingRREQ Mes-sage.Setting upreverse path.

ReplyingRREP tosource.

Forward pathsetup.

24 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 44: Infrastructureless Wireless networks

AODV Route Maintenance

D

S B

EA

FG

H

Link breaksbetween Band D.

SendingRERR mes-sage.

Restartingroute discov-ery.New routediscovered.

25 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 45: Infrastructureless Wireless networks

AODV Route Maintenance

D

S B

EA

FG

H

Link breaksbetween Band D.

SendingRERR mes-sage.

Restartingroute discov-ery.New routediscovered.

25 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 46: Infrastructureless Wireless networks

AODV Route Maintenance

D

S B

EA

FG

H

Link breaksbetween Band D.

SendingRERR mes-sage.

Restartingroute discov-ery.

New routediscovered.

25 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 47: Infrastructureless Wireless networks

AODV Route Maintenance

D

S B

EA

FG

H

Link breaksbetween Band D.

SendingRERR mes-sage.

Restartingroute discov-ery.

New routediscovered.

25 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 48: Infrastructureless Wireless networks

Some Tricks

Intelligent flooding (detect close destination)idea: init TTL at 1, then 2, then 3. . .idea: flood slowly and send message to stop it

Route caching (use past flooding)idea: during flood, answer for a distant nodedrawback : contradict reactive routing philosophy

Local maintenance (almost unchanged route)idea: instead of NAK s, look for d by yourselfdrawback : sometimes it does not work

26 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 49: Infrastructureless Wireless networks

Some Tricks

Intelligent flooding (detect close destination)idea: init TTL at 1, then 2, then 3. . .idea: flood slowly and send message to stop it

Route caching (use past flooding)idea: during flood, answer for a distant nodedrawback : contradict reactive routing philosophy

Local maintenance (almost unchanged route)idea: instead of NAK s, look for d by yourselfdrawback : sometimes it does not work

26 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 50: Infrastructureless Wireless networks

Some Tricks

Intelligent flooding (detect close destination)idea: init TTL at 1, then 2, then 3. . .idea: flood slowly and send message to stop it

Route caching (use past flooding)idea: during flood, answer for a distant nodedrawback : contradict reactive routing philosophy

Local maintenance (almost unchanged route)idea: instead of NAK s, look for d by yourselfdrawback : sometimes it does not work

26 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 51: Infrastructureless Wireless networks

A Proactive Routing Protocol: OLSR

Objective: make use of Multi-Point Relay (MPR)acting as super-peerseasing topology discoveryhandling most of the traffic

OLSR message types:HELLO: discover 1-hop and 2-hop neighborstopology discovery through MPR

27 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 52: Infrastructureless Wireless networks

Neighbor sensing

D

S B

E A

F GH

BroadcastingHELLO Message.

Nb:{S},2hopNb:{}

Nb:{S},2hopNb:{}

Nb:{S},2hopNb:{}

Nb:{E},2hopNb:{}

Nb:{E},2hopNb:{S}

Nb:{S,E},2hopNb:{}

Nb:{E,F},2hop Nb:{}

Nb:{S,E,F},2hop Nb:{}

Nb:{F},2hop Nb:{S}

Nb:{E,F,B},2hopNb:{G,A}

Nb:{S,A,B},2hopNb:{F,G,D}

Nb:{S,B,G},2hopNb:{E,A,H}

Nb:{S,E,F,A,G},2hopNb:{D,H}

Nb:{F,B,H},2hopNb:{S,E,A,D}

Nb:{E,B,D},2hopNb:{S,F,G,H}

Nb:{A,H},2hopNb:{B,E,G}

Nb:{G,D},2hopNb:{B,F,A}

28 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 53: Infrastructureless Wireless networks

Neighbor sensing

D

S B

E A

F GH

BroadcastingHELLO Message.

Nb:{S},2hopNb:{}

Nb:{S},2hopNb:{}

Nb:{S},2hopNb:{}

Nb:{E},2hopNb:{}

Nb:{E},2hopNb:{S}

Nb:{S,E},2hopNb:{}

Nb:{E,F},2hop Nb:{}

Nb:{S,E,F},2hop Nb:{}

Nb:{F},2hop Nb:{S}

Nb:{E,F,B},2hopNb:{G,A}

Nb:{S,A,B},2hopNb:{F,G,D}

Nb:{S,B,G},2hopNb:{E,A,H}

Nb:{S,E,F,A,G},2hopNb:{D,H}

Nb:{F,B,H},2hopNb:{S,E,A,D}

Nb:{E,B,D},2hopNb:{S,F,G,H}

Nb:{A,H},2hopNb:{B,E,G}

Nb:{G,D},2hopNb:{B,F,A}

28 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 54: Infrastructureless Wireless networks

Neighbor sensing

D

S B

E A

F GH

BroadcastingHELLO Message.

Nb:{S},2hopNb:{}

Nb:{S},2hopNb:{}

Nb:{S},2hopNb:{}

Nb:{E},2hopNb:{}

Nb:{E},2hopNb:{S}

Nb:{S,E},2hopNb:{}

Nb:{E,F},2hop Nb:{}

Nb:{S,E,F},2hop Nb:{}

Nb:{F},2hop Nb:{S}

Nb:{E,F,B},2hopNb:{G,A}

Nb:{S,A,B},2hopNb:{F,G,D}

Nb:{S,B,G},2hopNb:{E,A,H}

Nb:{S,E,F,A,G},2hopNb:{D,H}

Nb:{F,B,H},2hopNb:{S,E,A,D}

Nb:{E,B,D},2hopNb:{S,F,G,H}

Nb:{A,H},2hopNb:{B,E,G}

Nb:{G,D},2hopNb:{B,F,A}

28 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 55: Infrastructureless Wireless networks

Neighbor sensing

D

S B

E A

F GH

BroadcastingHELLO Message.

Nb:{S},2hopNb:{}

Nb:{S},2hopNb:{}

Nb:{S},2hopNb:{}

Nb:{E},2hopNb:{}

Nb:{E},2hopNb:{S}

Nb:{S,E},2hopNb:{}

Nb:{E,F},2hop Nb:{}

Nb:{S,E,F},2hop Nb:{}

Nb:{F},2hop Nb:{S}

Nb:{E,F,B},2hopNb:{G,A}

Nb:{S,A,B},2hopNb:{F,G,D}

Nb:{S,B,G},2hopNb:{E,A,H}

Nb:{S,E,F,A,G},2hopNb:{D,H}

Nb:{F,B,H},2hopNb:{S,E,A,D}

Nb:{E,B,D},2hopNb:{S,F,G,H}

Nb:{A,H},2hopNb:{B,E,G}

Nb:{G,D},2hopNb:{B,F,A}

28 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 56: Infrastructureless Wireless networks

Neighbor sensing

D

S B

E A

F GH

BroadcastingHELLO Message.

Nb:{S},2hopNb:{}

Nb:{S},2hopNb:{}

Nb:{S},2hopNb:{}

Nb:{E},2hopNb:{}

Nb:{E},2hopNb:{S}

Nb:{S,E},2hopNb:{}

Nb:{E,F},2hop Nb:{}

Nb:{S,E,F},2hop Nb:{}

Nb:{F},2hop Nb:{S}

Nb:{E,F,B},2hopNb:{G,A}

Nb:{S,A,B},2hopNb:{F,G,D}

Nb:{S,B,G},2hopNb:{E,A,H}

Nb:{S,E,F,A,G},2hopNb:{D,H}

Nb:{F,B,H},2hopNb:{S,E,A,D}

Nb:{E,B,D},2hopNb:{S,F,G,H}

Nb:{A,H},2hopNb:{B,E,G}

Nb:{G,D},2hopNb:{B,F,A}

28 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 57: Infrastructureless Wireless networks

MPR selection

D

S B

E A

F GH

Nb:{E,F,B},2hopNb:{G,A}

Nb:{S,A,B},2hopNb:{F,G,D}

Nb:{S,B,G},2hopNb:{E,A,H}

Nb:{S,E,F,A,G},2hopNb:{D,H}

B

HELLO messageindicating B asMPR of S and Bnote S as its MPRselector.

MPR Selector:{}

MPR Selector:{}

MPR Selector:{}

MPR Selector:{S,G,E,F,A}

MPR Selector:{B,F,H}

MPR Selector:{B,E,D}

MPR Selector:{A,H}

MPR Selector:{G,D}

29 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 58: Infrastructureless Wireless networks

MPR selection

D

S B

E A

F GH

Nb:{E,F,B},2hopNb:{G,A}

Nb:{S,A,B},2hopNb:{F,G,D}

Nb:{S,B,G},2hopNb:{E,A,H}

Nb:{S,E,F,A,G},2hopNb:{D,H}

B

HELLO messageindicating B asMPR of S and Bnote S as its MPRselector.

MPR Selector:{}

MPR Selector:{}

MPR Selector:{}

MPR Selector:{S,G,E,F,A}

MPR Selector:{B,F,H}

MPR Selector:{B,E,D}

MPR Selector:{A,H}

MPR Selector:{G,D}

29 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 59: Infrastructureless Wireless networks

MPR selection

D

S B

E A

F GH

Nb:{E,F,B},2hopNb:{G,A}

Nb:{S,A,B},2hopNb:{F,G,D}

Nb:{S,B,G},2hopNb:{E,A,H}

Nb:{S,E,F,A,G},2hopNb:{D,H}

B

HELLO messageindicating B asMPR of S and Bnote S as its MPRselector.

MPR Selector:{}

MPR Selector:{}

MPR Selector:{}

MPR Selector:{S,G,E,F,A}

MPR Selector:{B,F,H}

MPR Selector:{B,E,D}

MPR Selector:{A,H}

MPR Selector:{G,D}

29 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 60: Infrastructureless Wireless networks

Topology Table

Each node maintains a Topology Tablecontaining all possible destinationsnotifying a MPR to reach them

Structure of Topology Table (on S for example):Dest Addr Last Hop Seq Holding Time

G B 1 10A B 4 20D A 6 10H G 5 15. . . . . . . . . . . .

30 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 61: Infrastructureless Wireless networks

Building the Topology Table

D

S B

E A

F GHMPR Selector:

{B,F,H}

BTopology Table

Des Lhop Seq HtimeF G 2 30H G 2 30

MPR Selector:{S,G,E,F,A}

MPR Selector:{G,D}S

Topology TableDes Lhop Seq HtimeF G 2 30H G 2 30B G 2 30

MPR Selector:{B,E,D}

MPR Selector:{A,H}

Broadcasting contin-ues. . .

D

B

A

GH

MPR Selector:{}

MPR Selector:{}

MPR Selector:{}

MPR Selector:{S,G,E,F,A}

MPR Selector:{B,F,H}

MPR Selector:{B,E,D}

MPR Selector:{A,H}

MPR Selector:{G,D}

31 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 62: Infrastructureless Wireless networks

Building the Topology Table

D

S B

E A

F GH

MPR Selector:{B,F,H}

BTopology Table

Des Lhop Seq HtimeF G 2 30H G 2 30

MPR Selector:{S,G,E,F,A}

MPR Selector:{G,D}S

Topology TableDes Lhop Seq HtimeF G 2 30H G 2 30B G 2 30

MPR Selector:{B,E,D}

MPR Selector:{A,H}

Broadcasting contin-ues. . .

D

B

A

GH

MPR Selector:{}

MPR Selector:{}

MPR Selector:{}

MPR Selector:{S,G,E,F,A}

MPR Selector:{B,F,H}

MPR Selector:{B,E,D}

MPR Selector:{A,H}

MPR Selector:{G,D}

31 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 63: Infrastructureless Wireless networks

Building the Topology Table

D

S B

E A

F GH

MPR Selector:{B,F,H}

BTopology Table

Des Lhop Seq HtimeF G 2 30H G 2 30

MPR Selector:{S,G,E,F,A}

MPR Selector:{G,D}

S

Topology TableDes Lhop Seq HtimeF G 2 30H G 2 30B G 2 30

MPR Selector:{B,E,D}

MPR Selector:{A,H}

Broadcasting contin-ues. . .

D

B

A

GH

MPR Selector:{}

MPR Selector:{}

MPR Selector:{}

MPR Selector:{S,G,E,F,A}

MPR Selector:{B,F,H}

MPR Selector:{B,E,D}

MPR Selector:{A,H}

MPR Selector:{G,D}

31 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 64: Infrastructureless Wireless networks

Building the Topology Table

D

S B

E A

F GH

MPR Selector:{B,F,H}

BTopology Table

Des Lhop Seq HtimeF G 2 30H G 2 30

MPR Selector:{S,G,E,F,A}

MPR Selector:{G,D}

S

Topology TableDes Lhop Seq HtimeF G 2 30H G 2 30B G 2 30

MPR Selector:{B,E,D}

MPR Selector:{A,H}

Broadcasting contin-ues. . .

D

B

A

GH

MPR Selector:{}

MPR Selector:{}

MPR Selector:{}

MPR Selector:{S,G,E,F,A}

MPR Selector:{B,F,H}

MPR Selector:{B,E,D}

MPR Selector:{A,H}

MPR Selector:{G,D}

31 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 65: Infrastructureless Wireless networks

Building the Topology Table

D

S B

E A

F GH

MPR Selector:{B,F,H}

BTopology Table

Des Lhop Seq HtimeF G 2 30H G 2 30

MPR Selector:{S,G,E,F,A}

MPR Selector:{G,D}S

Topology TableDes Lhop Seq HtimeF G 2 30H G 2 30B G 2 30

MPR Selector:{B,E,D}

MPR Selector:{A,H}

Broadcasting contin-ues. . .

D

B

A

GH

MPR Selector:{}

MPR Selector:{}

MPR Selector:{}

MPR Selector:{S,G,E,F,A}

MPR Selector:{B,F,H}

MPR Selector:{B,E,D}

MPR Selector:{A,H}

MPR Selector:{G,D}

31 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 66: Infrastructureless Wireless networks

Building the Topology Table

D

S B

E A

F GH

MPR Selector:{B,F,H}

BTopology Table

Des Lhop Seq HtimeF G 2 30H G 2 30

MPR Selector:{S,G,E,F,A}

MPR Selector:{G,D}S

Topology TableDes Lhop Seq HtimeF G 2 30H G 2 30B G 2 30

MPR Selector:{B,E,D}

MPR Selector:{A,H}

Broadcasting contin-ues. . .

D

B

A

GH

MPR Selector:{}

MPR Selector:{}

MPR Selector:{}

MPR Selector:{S,G,E,F,A}

MPR Selector:{B,F,H}

MPR Selector:{B,E,D}

MPR Selector:{A,H}

MPR Selector:{G,D}

31 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 67: Infrastructureless Wireless networks

Building the Routing Table

Topology Table on SDes Lhop Seq HtimeF G 2 30H G 2 30B G 2 30F B 3 30A B 3 30E B 3 30G B 3 30B A 6 30E A 6 30D A 6 30A D 7 30H D 7 30D H 8 30G H 8 30

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2H B 3D B 3

32 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 68: Infrastructureless Wireless networks

Building the Routing Table

Topology Table on SDes Lhop Seq HtimeF G 2 30H G 2 30B G 2 30F B 3 30A B 3 30E B 3 30G B 3 30B A 6 30E A 6 30D A 6 30A D 7 30H D 7 30D H 8 30G H 8 30

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2H B 3D B 3

32 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 69: Infrastructureless Wireless networks

Building the Routing Table

Topology Table on SDes Lhop Seq HtimeF G 2 30H G 2 30B G 2 30F B 3 30A B 3 30E B 3 30G B 3 30B A 6 30E A 6 30D A 6 30A D 7 30H D 7 30D H 8 30G H 8 30

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2H B 3D B 3

32 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 70: Infrastructureless Wireless networks

Building the Routing Table

Topology Table on SDes Lhop Seq HtimeF G 2 30H G 2 30B G 2 30F B 3 30A B 3 30E B 3 30G B 3 30B A 6 30E A 6 30D A 6 30A D 7 30H D 7 30D H 8 30G H 8 30

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2H B 3D B 3

32 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 71: Infrastructureless Wireless networks

Building the Routing Table

Topology Table on SDes Lhop Seq HtimeF G 2 30H G 2 30B G 2 30F B 3 30A B 3 30E B 3 30G B 3 30B A 6 30E A 6 30D A 6 30A D 7 30H D 7 30D H 8 30G H 8 30

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2H B 3D B 3

32 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 72: Infrastructureless Wireless networks

Building the Routing Table

Topology Table on SDes Lhop Seq HtimeF G 2 30H G 2 30B G 2 30F B 3 30A B 3 30E B 3 30G B 3 30B A 6 30E A 6 30D A 6 30A D 7 30H D 7 30D H 8 30G H 8 30

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2H B 3D B 3

32 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 73: Infrastructureless Wireless networks

Building the Routing Table

Topology Table on SDes Lhop Seq HtimeF G 2 30H G 2 30B G 2 30F B 3 30A B 3 30E B 3 30G B 3 30B A 6 30E A 6 30D A 6 30A D 7 30H D 7 30D H 8 30G H 8 30

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2

Neighbor Table on SNb:{E,F,B},2hopNb:{G,A}

Routing Table on SDes Nhop HopsE E 1F F 1B B 1A B 2G B 2H B 3D B 3

32 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 74: Infrastructureless Wireless networks

Any Hybrid Approach ?

Merging advantages from both approaches:build a routing table at 4 ∼ 5 hopslaunch a reactive process if d is not

Applicative concerns:OLSR is attractive because networks often smallAODV scales well but no all-to-all routing

33 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 75: Infrastructureless Wireless networks

Research Activity:Multi-Sinks QueryRange

34 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 76: Infrastructureless Wireless networks

Multi-sink Multi-hop WSN

0 50 100 150 200 250 3000

50

100

150

200 Target application: “fireman application”Many sensors (small, blue) and somefiremen (large, green)

Firemen talk directly with the sensors

Gather only local information

On demand, fixed rate data gathering

Hop based query, constrained flooding

Simple to deploy and scalable

Networking assumptions:

IEEE 802.15.4 MAC layer, ZigBee tree routing

No in-network data aggregation, compression

Static sensors and sinks (may extend to mobile sinks)

35 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 77: Infrastructureless Wireless networks

Multi-sink Multi-hop WSN

0 50 100 150 200 250 3000

50

100

150

200 Target application: “fireman application”Many sensors (small, blue) and somefiremen (large, green)

Firemen talk directly with the sensors

Gather only local information

On demand, fixed rate data gathering

Hop based query, constrained flooding

Simple to deploy and scalable

Networking assumptions:

IEEE 802.15.4 MAC layer, ZigBee tree routing

No in-network data aggregation, compression

Static sensors and sinks (may extend to mobile sinks)

35 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 78: Infrastructureless Wireless networks

Multi-sink Multi-hop WSN

0 50 100 150 200 250 3000

50

100

150

200 Target application: “fireman application”Many sensors (small, blue) and somefiremen (large, green)

Firemen talk directly with the sensors

Gather only local information

On demand, fixed rate data gathering

Hop based query, constrained flooding

Simple to deploy and scalable

Networking assumptions:

IEEE 802.15.4 MAC layer, ZigBee tree routing

No in-network data aggregation, compression

Static sensors and sinks (may extend to mobile sinks)

35 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 79: Infrastructureless Wireless networks

Multi-sink Multi-hop WSN

0 50 100 150 200 250 3000

50

100

150

200 Target application: “fireman application”Many sensors (small, blue) and somefiremen (large, green)

Firemen talk directly with the sensors

Gather only local information

On demand, fixed rate data gathering

Hop based query, constrained flooding

Simple to deploy and scalable

Networking assumptions:

IEEE 802.15.4 MAC layer, ZigBee tree routing

No in-network data aggregation, compression

Static sensors and sinks (may extend to mobile sinks)

35 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 80: Infrastructureless Wireless networks

Multi-sink Multi-hop WSN

0 50 100 150 200 250 3000

50

100

150

200 Target application: “fireman application”Many sensors (small, blue) and somefiremen (large, green)

Firemen talk directly with the sensors

Gather only local information

On demand, fixed rate data gathering

Hop based query, constrained flooding

Simple to deploy and scalableNetworking assumptions:

IEEE 802.15.4 MAC layer, ZigBee tree routing

No in-network data aggregation, compression

Static sensors and sinks (may extend to mobile sinks)35 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 81: Infrastructureless Wireless networks

Network Sharing Without Congestions

0 50 100 150 200 250 3000

50

100

150

200Capacity of sensors c = 5Each flow consumes r = 1Nodes within u hops generate traffic

S1

S2u1 = 5

u2 = 1

Configurations Feasible?(5, 1) yes

u1 = 4

u2 = 2

Configurations Feasible?(5, 1) yes(4, 2) no

u1 = 3

u2 = 2

Configurations Feasible?(5, 1) yes(4, 2) no(3, 2) yesu1 = 2

u2 = 3

Configurations Feasible?(5, 1) yes(4, 2) no(3, 2) yes(2, 3) yes

62 configurations

36 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 82: Infrastructureless Wireless networks

Network Sharing Without Congestions

0 50 100 150 200 250 3000

50

100

150

200Capacity of sensors c = 5Each flow consumes r = 1Nodes within u hops generate traffic

S1

S2

u1 = 5

u2 = 1

Configurations Feasible?(5, 1) yes

u1 = 4

u2 = 2

Configurations Feasible?(5, 1) yes(4, 2) no

u1 = 3

u2 = 2

Configurations Feasible?(5, 1) yes(4, 2) no(3, 2) yesu1 = 2

u2 = 3

Configurations Feasible?(5, 1) yes(4, 2) no(3, 2) yes(2, 3) yes

62 configurations

36 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 83: Infrastructureless Wireless networks

Network Sharing Without Congestions

0 50 100 150 200 250 3000

50

100

150

200Capacity of sensors c = 5Each flow consumes r = 1Nodes within u hops generate traffic

S1

S2

u1 = 5

u2 = 1

Configurations Feasible?(5, 1) yes

u1 = 4

u2 = 2

Configurations Feasible?(5, 1) yes(4, 2) no

u1 = 3

u2 = 2

Configurations Feasible?(5, 1) yes(4, 2) no(3, 2) yes

u1 = 2

u2 = 3

Configurations Feasible?(5, 1) yes(4, 2) no(3, 2) yes(2, 3) yes

62 configurations

36 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 84: Infrastructureless Wireless networks

Network Sharing Without Congestions

0 50 100 150 200 250 3000

50

100

150

200Capacity of sensors c = 5Each flow consumes r = 1Nodes within u hops generate traffic

S1

S2

u1 = 5

u2 = 1

Configurations Feasible?(5, 1) yes

u1 = 4

u2 = 2

Configurations Feasible?(5, 1) yes(4, 2) no

u1 = 3

u2 = 2

Configurations Feasible?(5, 1) yes(4, 2) no(3, 2) yes

u1 = 2

u2 = 3

Configurations Feasible?(5, 1) yes(4, 2) no(3, 2) yes(2, 3) yes

62 configurations

36 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 85: Infrastructureless Wireless networks

Network Sharing Without Congestions

0 50 100 150 200 250 3000

50

100

150

200Capacity of sensors c = 5Each flow consumes r = 1Nodes within u hops generate traffic

S1

S2

u1 = 5

u2 = 1

Configurations Feasible?(5, 1) yes

u1 = 4

u2 = 2

Configurations Feasible?(5, 1) yes(4, 2) no

u1 = 3

u2 = 2

Configurations Feasible?(5, 1) yes(4, 2) no(3, 2) yes

u1 = 2

u2 = 3

Configurations Feasible?(5, 1) yes(4, 2) no(3, 2) yes(2, 3) yes

62 configurations

36 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 86: Infrastructureless Wireless networks

Which Configuration is Better?

0 50 100 150 200 250 3000

50

100

150

200Basic considerations:(4, 2): not feasible, (1, 1): inefficient

Optimality criteria:Maximum Impact Range

(5, 1): Sum up to 6Max-Min Fairness

(2, 3) = (3, 2) � (5, 1)

1

2 34

(?, ?, ?, ?)

37 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 87: Infrastructureless Wireless networks

Which Configuration is Better?

0 50 100 150 200 250 3000

50

100

150

200Basic considerations:(4, 2): not feasible, (1, 1): inefficient

Optimality criteria:Maximum Impact Range

(5, 1): Sum up to 6Max-Min Fairness

(2, 3) = (3, 2) � (5, 1)

1

2 34

(?, ?, ?, ?)

37 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 88: Infrastructureless Wireless networks

Problem Formulation

Multi-Dimensional Multiple Choice Knapsack Problema NP-complete problem

Toward a distributed heuristic algorithmonly local views of the networkonly local optimal solutions

38 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 89: Infrastructureless Wireless networks

Problem Formulation

Multi-Dimensional Multiple Choice Knapsack Problema NP-complete problem

Toward a distributed heuristic algorithmonly local views of the networkonly local optimal solutions

38 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 90: Infrastructureless Wireless networks

Protocol

0 50 100 150 200 250 3000

50

100

150

200

A 12

3

4

At each sink:enlarge requirement periodicallyreceive notification from sensorsadjust requirement if it is smaller

At each sensor:measure the trafficdetect congestionsolve the local problemnotify related sinks

39 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 91: Infrastructureless Wireless networks

Conclusion

40 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 92: Infrastructureless Wireless networks

Personal Thoughts

Great theoretical importance:a lot of new and scientifically exciting problemsa multi-disciplinary field (network, algorithms,computational geometry, probabilities)

Unsure applicative importance:no killer application yetcellular networks just do what we want

41 / 41 Gwendal Simon Infrastructure-less Wireless Networks

Page 93: Infrastructureless Wireless networks

Personal Thoughts

Great theoretical importance:a lot of new and scientifically exciting problemsa multi-disciplinary field (network, algorithms,computational geometry, probabilities)

Unsure applicative importance:no killer application yetcellular networks just do what we want

41 / 41 Gwendal Simon Infrastructure-less Wireless Networks


Recommended