+ All Categories
Home > Documents > InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

Date post: 19-Jan-2016
Category:
Upload: kermit
View: 35 times
Download: 0 times
Share this document with a friend
Description:
InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes. David B. Jackrel , Homan B. Yuen, Seth R. Bank, Mark A. Wistey, Xiaojun Yu, Junxian Fu, Zhilong Rao, and James S. Harris, Jr. Solid State Research Lab, Stanford University LSC Meeting – LHO August 16 th , 2005. LIGO-G050435-00-Z. Outline. - PowerPoint PPT Presentation
23
STANFORD InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes David B. Jackrel, Homan B. Yuen, Seth R. Bank, Mark A. Wistey, Xiaojun Yu, Junxian Fu, Zhilong Rao, and James S. Harris, Jr. Solid State Research Lab, Stanford University LSC Meeting – LHO August 16 th , 2005 IGO-G050435-00-Z
Transcript
Page 1: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

InGaAs and GaInNAs(Sb)Advanced LIGO Photodiodes

David B. Jackrel, Homan B. Yuen, Seth R. Bank, Mark A. Wistey, Xiaojun Yu, Junxian Fu, Zhilong Rao, and James

S. Harris, Jr.Solid State Research Lab, Stanford University

LSC Meeting – LHOAugust 16th, 2005

LIGO-G050435-00-Z

Page 2: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

2 / 18

Outline

Introduction AdLIGO Photodiode Specifications Device Materials Device Design

GaIn(N)As(Sb) Materials & Device Results

Conclusion

Page 3: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

3 / 18

Advanced LIGO Schematic

Power Stabilization

Auxiliary Length Sensing

High-Speed

Low Power

Commercial Device

180 W

Low Noise

Iph ~ 200 mA

Commercial Device?

Page 4: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

4 / 18

LIGO AS-Photodiode Specifications

I-LIGO Advanced LIGO

DetectorBank of

6PDsDC -

Readout

RF – Readout

Steady-State “Power” (mW)

60030 – 100

(same as DC)

Operating Frequency

30 Mhz100 kHz 200 MHz

Quantum Efficiency

80% 90%(same as DC)

DamageThreshold

(MW/cm2)

< 5 < 50(same as DC)

Page 5: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

5 / 18

1 eV Materials: InGaAs & GaInNAs

GaInNAs(Sb)

25% InGaAs

1064nm light 1.13eV

º Ge

Page 6: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

6 / 18

Metamorphic-InGaAs vs. GaInNAsDouble Heterostructres

1m2m I- GaInNAs(Sb)

8% In, 2% N, (4% Sb)I- In0.25Ga0.75As

GaInNAs(Sb) MBE growth with RF-Plasma source for N

Sb surfactant effects improve thin strained nitride films

Page 7: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

7 / 18

Conventional PD

Adv. LIGO Back-Illuminated PD

High Power Linear

Response High Speed

Back-Illuminated Photodiodes

Page 8: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

8 / 18

Outline

Introduction

GaIn(N)As(Sb) Materials and Device Results

Materials Characterization Summary Dark Current Bandwidth Quantum Efficiency Saturation Power Level

Conclusion & Future Work

Page 9: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

9 / 18

Materials Characterization Summary

PL Intensi

ty(A.U.)

Relaxation

(%)

Absorption

(%)TDD

(cm-2)

Trap Densit

y (cm-3)

MM- InGaAs 24.1 88.9 96% 1e7 2.0e13

GaInNAs 2.2 4.3 60% ~1e5 1.1e14

GaInNAs(w/

Deflection Plates) 8.5 - 70% ~3e5 -

GaInNAsSb(w/ D.P.) 1.1 44.6 80% < 1e5 -

XRD-Reciprocal Space Map (224)

Photoluminescence (PL) SpectraAbsorption SpectraDeep-Level Transient Spectroscopy (DLTS)

A

B

A

B

Spectral Cathodoluminescence (CL) Imagingto determine Threading Dislocation Density (TDD)

Intensity Peak Energy

Page 10: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

10 / 18

Dark Current Density:GaIn(N)As(Sb) Devices

- J d

k (

A/c

m2)

Page 11: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

11 / 18

MM-InGaAs: 3dB Bandwidth

= 3 mm MM-InGaAs PD

BW ~ 1/RCBW > 200 MHz

= 400 m

Psat ~ 10 mW

AdLIGO PD Specifications:

3-dB Bandwidth Sat. Power

DC-Scheme: 100 kHz 30 – 100 mWRF-Scheme: 200 MHz

AdLIGO RF-Readout Challenging for PDs!

Page 12: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

12 / 18

InGaAs & GaInNAs PDs – IQE(w/ FCA & Incomplete Absorption)

AdLIGO Requirement

inphotons

outcurrentQE

Int.

Page 13: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

13 / 18

GaIn(N)As(Sb) PD QE

GaInNAs

GaInNAsSb*

InGaAs

(* scaled to account for FCA in thick substrates)

Int.

Page 14: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

14 / 18

Photodiode Saturation Power

GaInNAs

GaInNAsSb*

InGaAs

Bias V: 3 ~ 8 V(* scaled to account for FCA in thick substrates)

LIGO GW-PD Requirement

Page 15: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

15 / 18

Photodiode Results Summary

Materials Parameters Photodetectors

Abs.

(%)

Relax.

(%)TDD

(cm-2)

Trap Density (cm-

3)IQE(%)

Jdk

(A/cm2)

MM- InGaAs 96% 88.9 1e7 2.0e13 75% ~ 10

GaInNAs 60% 4.3 ~1e5 1.1e14 62% ~ 0.1

GaInNAsSb 80% 44.6 < 1e5 -56%

(scaled) ~ 1

Page 16: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

16 / 18

Conclusion

AdLIGO AS-PD Specification

B-I PDs

Developed at Stanford

F-I PDs

Commercial devices

Saturation Power

(mW)30 - 100 ~ 150 100 ~ 200

Quantum Efficiency 90 %

75 %( 90 % w/ substrate

removal)

~ 90 %

Bandwidth

(MHz)

100 kHz

( 200 MHz RF-scheme)

4 1 ~ 10

Damage Threshold

(MW / cm2)

< 5(w/ 1 s shutter & 1 mm spot)

Modeling

~ 3 (w/ 1 mm

spot)

Modeling

~ 0.4 (w/ 1 mm

spot)

Page 17: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

17 / 18

AdLIGO Photodiode Development: Future Work

Substrate removal 90 % QE

High-Temperature Packaging LLO or LHO Damage Threshold Tests? Compatible with other experiments (GEO-600, MIT?)

Surface Uniformity & Noise Characterization GEO-600

Multi-Element Sensors? Additional pointing information Spatial mode information

Fabricate AdLIGO Photodiodes

Page 18: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

18 / 18

Acknowledgements

National Science Foundation (NSF); this material is based on work supported by the NSF under grants 9900793 and 0140297.

Aaron Ptak, Manuel Romero and Wyatt Metzger at National Renewable Energy Labortatory (NREL) in Golden, CO

Gyles Webster at Accent Optical in San Jose, CA

Thank You

Page 19: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

Extra slides

Page 20: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

20 / 18

Molecular Beam Epitaxy (MBE)

Effusion cells for In, Ga and Al

Cracking cell for As and Sb

RF-Plasma N cell

Deflection Plates (DP) on Plasma Source

protect growth surface from ion damage

+ V

- Vsubstrate

Nitrogen cell

Page 21: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

21 / 18

Double-HeterostructurePIN Photodiodes

N- and P- transparent

Absorption occurs in I-region

where E-field is large

n-

i-

p-

0 1 2 3 m

2

eV

1

0

-1

-2

InGaAs DH-PIN device simulated by ATLAS (Silvaco)

light

Page 22: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

22 / 18

Lattice-Mismatched Epitaxy

misfit dislocation

afilm

asubstrate

afilm > asubstrate

h < hc

h > hc

hc critical thickness

Page 23: InGaAs and GaInNAs(Sb) Advanced LIGO Photodiodes

STANFORD

23 / 18

Materials Results Summary

PL Intensi

ty(A.U.)

Relaxation

(%)

Absorption

(%)TDD

(cm-2)

Trap Densit

y (cm-3)

MM- InGaAs 24.1 88.9 96% 1e7 2.0e13

GaInNAs 2.2 4.3 60% ~1e5 1.1e14

GaInNAs (DP) 8.5 - 70% ~3e5 -

GaInNAsSb 1.1 44.6 80% < 1e5 -


Recommended