+ All Categories
Home > Documents > [INGESAS_IC3]_PM00IPTT01_A

[INGESAS_IC3]_PM00IPTT01_A

Date post: 26-Sep-2015
Category:
Upload: arun-kumar
View: 243 times
Download: 11 times
Share this document with a friend
Description:
Ingetam
Popular Tags:
72
INGESAS™ IC3 Communication Unit User Manual ZY8553IJK01C PM00IPTT01_A
Transcript
  • INGESAS IC3

    Communication Unit

    User Manual

    Z

    Y8553IJ

    K01C

    PM

    00IP

    TT

    01_A

  • Contents

    Rev. C Ingeteam Power Technology, S.A. 2013 All rights

    reserved.

    Contents

    Contents............................................................................................................................... 2

    1 Terms and Abbreviations ........................................................................................ 4

    2 Symbols ...................................................................................................................... 6

    3 General Technical Data ............................................................................................ 7

    3.1 Certification and Standards ....................................................................................................................... 7

    3.1.1 Electromagnetic Compatibility(EMC) .............................................................................................. 7

    3.1.2 Climatic ................................................................................................................................................... 8

    3.1.3 Mechanical ............................................................................................................................................. 8

    3.1.4 Protection Level. .................................................................................................................................. 9

    3.2 Environmental Operating Conditions. ..................................................................................................... 9

    3.2.1 Mechanical Environment Conditions .............................................................................................. 9

    3.2.2 Environmental Climatic Conditions. .............................................................................................. 10

    3.3 Storage and Transport Conditions. ........................................................................................................ 10

    4 Hardware Elements ................................................................................................. 11

    4.1 Rack Types................................................................................................................................................... 11

    4.1.1 IC3541 Module (CH 2PS + 1CPU + 7 AUX, 4+4+7 U) .................................................................. 11

    4.2 Power Supply Sources .............................................................................................................................. 14

    4.2.1 Module IC3642 (REDUNDANT PS, 24VDC 50W) ......................................................................... 14

    4.2.2 Module IC3643 (REDUNDANT UNIVERSAL PS, 50W) ............................................................... 19

    4.3 Processor Modules .................................................................................................................................... 25

    4.3.1 IC3191 Module .................................................................................................................................... 25

    4.4 Auxiliary Modules ....................................................................................................................................... 32

    4.4.1 Module IC3211 Switch PRP/HSR .................................................................................................... 32

    4.4.2 IC3398 Digital Inputs/Outputs Digital Module .............................................................................. 36

    5 Software Reference Manual .................................................................................. 41

  • Contents

    Rev. C Ingeteam Power Technology, S.A. 2013 All rights

    reserved.

    5.1 User Information ......................................................................................................................................... 41

    5.1.1 CPU IC3191 .......................................................................................................................................... 41

    5.2 Maintenance Tasks. ................................................................................................................................... 46

    5.2.1 CPU IC3191 .......................................................................................................................................... 46

  • Pag. 4

    Terms and Abbreviations

    1 Terms and Abbreviations

    Local set- This set is composed of at least one power supply module, one or two TSX master

    modules, up to sixteen TSX slave modules and one TSX bus for supporting and connecting

    these modules.

    Local process set. A local set of master TSX CPUs.

    Expansion set. A set of TSX bus terminal modules.

    Firmware. The software embedded in different modules. In some cases, they offer services and

    functions for managing these modules.

    Hot Swap. Hot swap modules. This means that you can extract a module without interrupting the

    power supply of the chassis that supports the module and therefore without necessarily having to

    stop the plant's work.

    LSB. The Least Significant Bit in a set of bits.

    RTSX (Remote Team Serial Expansion). The TSX variant which allows a CPU to access the

    set of expansion data. The RTSX's physical medium is optic fibre. There is a variant called

    FRTSX ("Fast Remote Team Serial Expansion") with a faster communication speed.

    Set-point. Reference value for carrying out operations.

    SSI (Synchronous Serial Interface). Interface used in the absolute position encoders to send

    the value read.

    TSX (Team Serial Expansion). This is a support device for communications between modules.

    It is short range and for local use. Generally, it allows a CPU or a TSX bus terminal module to

    access the data of the input/output modules in its local set.

    Watch-dog. This element regularly checks the functioning of a module in the system and if there

    is an error, it forces it to a safe status.

    Slot. This is the place in the chassis where a module can be connected. It can have different

    widths depending on the type of module to be connected. The width is measured in positions,

    the basic measurement unit is 1 position.

    High Side Drive. This is a method for connecting a digital output through which the source's

    positive pole is connected to the switch, while the negative pole is connected to the load. A

    digital output is considered as being the "high side drive" when the switch acts on the power

    source's positive pole. The digital output has two statuses: positive voltage in low impedance

    (active output) or high impedance (inactive output).

    System power supply source. This is the INGESAS IC3 module responsible for adjusting

    the input voltage to the requirements of the modules connected to the TSX bus.

  • Pag. 5

    Terms and Abbreviations

    Cabinet power supply source. This device is for converting the energy connected to the

    cabinet into operating voltages as the system's power source (if necessary), for modules

    requiring an external power source and other field devices in the plant.

    Earth. The conductive mass of the earth, whose electric potential at any point is conventionally

    taken as zero.

    Functional earth. Low-impedance connection between the electrical circuit and earth, for

    purposes not related to safety, such as improving noise immunity.

    Protection earth. Low-impedance connection in high voltage / current emergency conditions

    between the electrical circuit and earth to reduce the risk to the user as much as possible.

    POF Plastic Optical Fibre.

    HCS Hard-Clad Silica optical fibre.

    V-LINK Commercial versatile link optical fibre.

  • Pag. 6

    Symbols

    2 Symbols

    Throughout this manual, you will see some informative signs related to the system's functioning.

    There are two types of information, depending on the type and importance that must be given.

    N.B.: The information associated to this symbol refers to the instructions that must be followed. Failure to do so may cause the equipment to function incorrectly, become damaged or cause harm to persons.

    Recommendation:

    The information associated to this symbol refers to recommendations or clarifications related to the document.

  • Pag. 7

    General Technical Data

    3 General Technical Data

    The general technical data refers to INGESAS IC3 as a whole and therefore is applicable to

    all of the system's components.

    The possible specific variations of these values in individual modules are covered in the specific

    chapter on each module where applicable.

    N.B.: The validity of data on functioning and tests performed on INGESAS IC3 is subject to correct installation and use.

    3.1 Certification and Standards

    INGESAS IC3 has the following types of certification for its modules:

    UL certification (in process)

    CE marking according to the 2004/108/CE directive: Electromagnetic Compatibility

    (directive EMC/CEM) and Low-Voltage Directive (LVD) (Directive 2006/95/EC).

    3.1.1 Electromagnetic Compatibility(EMC)

    All of the modules comply with European directive 2004/108/CE on electromagnetic compatibility

    (EMC).

    N.B.: INGESAS IC3 complies with the basic requirements of the electromagnetic compatibility directive, providing that the necessary assembly instructions are followed in each case. For detailed assembly instructions, please see the "INGESAS IC3 System Start Up and Configuration Manual.

    The following table shows the immunity tests performed:

    Test Standard Applied Test Level

    Electrostatic discharge immunity EN 61000-4-2 (2001) 15 kV in air discharge mode

    EN 61000-6-2 (2005) 8 kV in discharge mode in direct/indirect contact.

    EN 60255-22-2 (2008)

    Radiated radiofrequency fields immunity test

    EN 61000-4-3 (2006) 10 V / m in the frequency range from 80 to 1000 MHz

    EN 50204(1995) 10 V / m in the frequency range from 900 MHz to 1890 MHz

    EN 61000-6-2 (2005)

    Fast transient burst immunity EN 61000-4-4 (2004) 4 kV in power supply and earth connection

    EN 61000-6-2 (2005) 2 kV in the other terminals

    IEC 60255-22-4 (2008) Class B

    Immunity to signals induced by radio-frequency

    EN 61000-4-6 (2007) 10 Vrms in the frequency range from 0.15 to 80 MHz

    EN 61000-6-2 (2005) 10 Vrms in the frequency range from

  • Pag. 8

    General Technical Data

    Test Standard Applied Test Level

    0.15 to 80 MHz

    Overvoltage pulse immunity EN 61000-4-5 (2006) 1 kV in common mode

    EN 61000-6-2 (2005) 0.5 kV in differential mode.

    EN 60255-22-5 (2008)

    DC voltage variations, dips and interruptions immunity test

    IEC 60255-11 (1979) 30% and 60% dips lasting 10.30, 100, 300 and 1000 ms.

    IEC 61000-4-29 (2000) 30% and 60% dips lasting 10.30, 100, 300 and 1000 ms.

    50 Hz magnetic fields immunity test

    EN 61000-4-8 (2001) 100 A / m for continuous exposures.

    EN 61000-6-2 (2005) 1000 A / m for 2 s exposures.

    Immunity to pulsing magnetic fields

    EN 61000-4-9 (2001) 1000 A / m for positive and negative pulses.

    Damped oscillatory magnetic field immunity test

    EN 61000-4-10 (2001) 100 A / m in the frequency range from 100 kHz to 1MHz

    Damped oscillatory waves immunity test

    EN 61000-4-12 (2001) 2.5 kV in common mode

    IEC 60255-22-1 (2007) 1 kV in differential mode.

    Dielectric test IEC 60255-5 (2000) 500 Vac, 50 Hz, 1 min

    Insulation resistance test IEC 60255-5 (2000) 500 Vdc

    Voltage pulse test IEC 60255-5 (2000) 1 kV in common mode

    IEC 60255-5 (2000) 1 kV in differential mode.

    Radiated radio-electric emissions measurements

    EN 61000-6-4 (2007) T=23, HR=48%, P=999 mbar.

    EN 55011(2007) T=23, HR=48%, P=999 mbar.

    Tbl. 3.1 Summary of Immunity Results

    3.1.2 Climatic

    The following table shows the immunity tests performed:

    Test Standard Applied Test Level

    Cold test IEC60068-2-1 (1994) -40 C, 16h

    Dry heat test IEC60068-2-2(1994) +75 C, 16h

    Temperature variation test IEC60068-2-14 (1986) -20 C/+ 70 C

    Cyclical humidity heat test IEC60068-2-30 (2005) +25 C, 97%HR (6 cycles 12+12)

    Continuous humidity heat test IEC60068-2-78 (2001) +40 C,93%HR, 16 h.

    Tbl. 3.2 Summary of Immunity Results

    3.1.3 Mechanical

    The following table shows the immunity tests performed:

    Test Standard Applied Test Level

    Vibration test (sinusoidal) IEC60255-21-1 (1988) Class I

    Tbl. 3.3 Vibration Test Result

  • Pag. 9

    General Technical Data

    3.1.4 Protection Level.

    The protection level refers to the level of protection, using standard testing methods, provided by

    cover against the penetration of dangerous agents, external solid materials, water, or other

    external mechanical impacts.

    Protection Level.

    Protection Level (IEC 60529) IP20

    Tbl. 3.4 Protection Level.

    3.2 Environmental Operating Conditions.

    Environmental operating conditions refer to the characteristics that must be fulfilled where

    INGESAS IC3 is to be installed.

    INGESAS IC3 has been designed to be installed in a fixed indoor place.

    3.2.1 Mechanical Environment Conditions

    Environmental mechanical conditions refer to the mechanical limits that must be fulfilled in the

    place where INGESAS IC3 is to be installed.

    Recommendation:

    If these limits can be exceeded in the place where INGESAS IC3 is going to be installed, appropriate measures should be taken to reduce these values. An example of such measures includes the use of shock-absorbing systems.

    Vibration Test

    Constant frequency Frequency 15 Hz

    Current 28.9 m/s2

    Duration 4.5 h on each axis (x,y,z)

    Scanning frequency Range From 3 Hz to 100 Hz

    Current See Scanning Frequency Test Table.

    Duration 4.5 h on each axis (x,y,z)

    Tbl. 3.5 Vibration Test.

    Shock test

    Impact type 1/2 sinusoidal wave cycle

    Acceleration peak / Pulse duration 15 g / 11 ms

    Number of pulses 3 successive pulses in each direction (+ and -) and per axis (x,y,z) = 3 x 2 x 3 = 18 pulses

    Tbl. 3.6 Shock test.

  • Pag. 10

    General Technical Data

    Scanning frequency test

    Frequency (Hz) 5 11 18 20 30 32 50 60 100

    Ax, Ay, Az (m/s2) 2 11 11 20 20 14 14 10 10

    Tbl. 3.7 Scanning frequency test.

    3.2.2 Environmental Climatic Conditions.

    Environmental climatic conditions refer to the limits of environmental variables surrounding the

    INGESAS IC3 equipment.

    Recommendation:

    If these limits can be exceeded in the place where INGESAS IC3 is to be installed, appropriate measures should be taken to reduce these values. An example of such measures includes the use of forced cooling or heating resistors.

    Environmental Climatic Conditions

    Horizontal Assembly Temperature Range 0C - 60C

    Relative Humidity Range 30% - 90%

    Maximum Level of Contamination (EN 60255-5 Section 4.4)

    Level 2

    Environmental classification Open Type

    Tbl. 3.8 Environmental Climatic Conditions.

    3.3 Storage and Transport Conditions.

    The "Storage and Transport Conditions" table shown below details the conditions for storing and

    transporting INGESAS IC3 modules or components, providing that they are in their original

    packaging:

    Storage and Transport Conditions

    Vibrations See Environmental Mechanical Conditions table

    Impacts

    Temperature Range -20C +90C

    Relative Humidity Range 10% - 95%

    Tbl. 3.9 Storage and Transport Conditions.

  • Pag. 11

    Hardware Elements

    4 Hardware Elements

    The description of hardware elements establishes the hardware characteristics specific to each

    module that composes the equipment.

    4.1 Rack Types

    4.1.1 IC3541 Module (CH 2PS + 1CPU + 7 AUX, 4+4+7 U)

    Fig. 4.1 IC3541

  • Pag. 12

    Hardware Elements

    Fig. 4.2 IC3541

    Functional Description

    Module IC3541 CH 2PS + 1CPU + 7 AUX, 4+4+7 U is the support panel in which the modules

    that compose a local set are assembled.

    It may contain 2 power sources, , 1 CPU, up to 7 auxiliary modules, DI/DO, etc.

    Inside the rack, signals are exchanged and interconnections are made between the modules and

    the bus terminal module. This exchange is made via the TSX bus at a speed of up to

    100Mbits/s.

    The modules are fed using the backpanel. To do this, the rack has some connectors in which

    you should insert the corresponding modules.

  • Pag. 13

    Hardware Elements

    Physical Features

    The module's dimensions and characteristics can be observed in the following figure:

    Fig. 4.3 Module IC3541's Dimensions

    Connection Diagram

    The rack is the support which holds all of the modules. This rack has to be connected to the

    functional earth by means of the connector in the chassis.

    Fig. 4.4 Rack Connection Diagram

    Technical Data

    The technical data for module IC3541 CH 2PS + 1CPU + 7 AUX, 4+4+7 U can be seen in the

    following table:

    Property Value

    Dimensions (Width x Height x Depth) 483.75 mm x 177.8 mm x 174.8 mm

    Weight 2918 g.

    Number of available slots 2 power sources. 1 CPU or bus terminal module. 7 auxiliary modules.

    Tbl. 4.1 IC3541 Technical Data

  • Pag. 14

    Hardware Elements

    4.2 Power Supply Sources

    4.2.1 Module IC3642 (REDUNDANT PS, 24VDC 50W)

    Fig. 4.5 Module IC3642

    Functional Description

    Module IC3642 REDUNDANT PS 24VDC 50W is a 50 W power source for feeding other

    system modules. The output voltages are 5V (5A), 3.3V (5A).

    The module is fed at 24 Vdc and it feeds the modules connected to the rack's slots with the

    correct voltage.

    The power source is equipped for redundancy. Two power sources can be connected in parallel.

    If one of them fails, the other immediately takes control without a voltage drop. All of the

    erroneous power source's LEDs will switch off, allowing the user to replace it.

    Redundancy functioning is known as N+1 mode. When two power sources are connected in

    parallel, the maximum continuous output is 5A.

  • Pag. 15

    Hardware Elements

    Physical Dimensions

    The module's dimensions and characteristics can be observed in the following figure:

    Fig. 4.6 Module IC3642

  • Pag. 16

    Hardware Elements

    Connections Diagram

    The following figure shows the input connectors and LEDs.

    Fig. 4.7 IC3642 Connections Diagram

    1 5V output correct LED.

    2 3.3 V output correct LED.

    3 Input correct LED.

    4 24Vdc input voltage connector (+, - and earth in descending order).

    Technical Data

    The technical data of module IC3642 REDUNDANT PS 24VDC 50W can be seen in the

    following tables:

    Mechanical Data

    Dimensions (Width x Height x Depth) 52.25 mm x 175 mm x 140 mm

    Weight 346 g.

    Slot width 2 positions

    Tbl. 4.2 IC3642 Mechanical Data

  • Pag. 17

    Hardware Elements

    Electrical Data

    Power supply voltage 2425% Vdc -

    Maximum input current 3.2 A (max.) -

    Maximum output current In 3.3 V 5 A

    Maximum output current In 5 V 5 A

    Dissipated power 12 W (max.) -

    Incorrect power supply LED. Green LED on when the input voltage is correct.

    -

    5V output correct LED. Green LED indicating that there is voltage in the 5 V output.

    -

    3.3 V output correct LED. Green LED indicating that there is voltage in the 3.3 V output.

    -

    Input voltage supervision Voltage drop detection in the primary circuit (Power supply failure signal)

    If the voltage is less than 24V-25% (18V)

    Output voltage supervision Voltage drop detection in the PS_OK signal output

    If any of the output voltages are less than -5% or greater than +13%

    Protection against inverse polarisation

    Serial diodes -

    Redundancy. Mode N+1 -

    Output reductions depending on the temperature.

    With 60C temperature 100% of the output power

    Insulation Between input and output 2000 Vac for 60s.

    Insulation Between input and earth 2000 Vdc for 60s.

    Continuous conducted emission. Class EN 55022 , Part 15 FCC Class A

    -

    Radiated emission EN 55011 class A -

    Electrostatic discharges (ESD) EN 61000-4-2 air 15 kV, contact 8 kV

    -

    Fast transient burst immunity EN 61000-4-4, in common mode and in 2 kV differential mode.

    -

    Shock waves (SURGE) EN 61000-4-5, in common mode and in 2 kV differential mode.

    -

    RF in common mode EN 61000-4-6, 10 Vrms -

    Radiated immunity (IR) EN 61000-4-3, 10V/m -

    Immunity to voltage dips, brief interruptions and voltage variations in DC power supply access points.

    EN 61000-4-29 -

    Tbl. 4.3 IC3642 Electrical Data

    Module Diagnostics

    The power source is continuously supervising the voltage value in the primary circuit. As soon as

    the voltage is detected as being below the admissible limit, the power source informs the system

    so that it can stop correctly and so that no damage is caused to the other modules.

    If the input voltage is less than 24V-25%, the "input voltage LED" will switch off. When the

    voltage is greater than 24V-25%, the LED will switch on and the "power supply failure" signal in

    the back panel's bus will show a low level (0 volts).

    The power source is protected against power supply connections with inverse polarity. In the

    case of backfeeding, there is no voltage consumption and the LEDs will stay off.

  • Pag. 18

    Hardware Elements

    The output voltage is monitored. If any of the output voltages is outside the limits, the power

    source will inform the system through signal "PS_OK".

    When one of the output voltages is less than -5% or greater than +13%, and signal "PS_OK" is

    low. In this case, only the "incorrect output voltage" LED will be on.

    During redundant operation, a low "PS_OK" signal means a failure in one of the two power

    sources. The user can hot swap the power source whose LEDs are off and replace it by

    hotswapping it with a new power source.

    Troubleshooting Possible Causes and Solutions

    IC3642. The Troubleshooting Table contains a list of the possible errors that may occur in

    module IC3642 REDUNDANT PS 24VDC 50W with the possible causes and solutions.

    Correct Input Error LED Correct Output Error LED Possible causes Possible solutions

    Off _ The power source is not receiving a correct voltage for it to function properly.

    Check the power source's input voltage to see that it is within the admissible range and check the connection's polarity.

    On Off (Any of the LEDs). Operating without redundancy.

    There is a short-circuit somewhere in the system's backplane or in the module itself.

    Remove the power source from the rack and start up the system. If none of the LEDs switch on, change the power source. If the LEDs switch on, perform the following tests. Connect the power source and unplug the rest of the system's modules. If none of the LEDs light up, there is a problem with one of the rack's connectors. Change the rack. If the LEDs switch on, perform the remaining tests. While there is no voltage, insert the next module. Switch on the system. If none of the LEDs light up, change the module that you had inserted. If the LED lights up, repeat the process with the next module until you find the damaged one.

    On Off (Any of the LEDs). Operating with redundancy.

    If any of the power source's LEDs are off and the voltage in the bus is correct, change the power source module. If none of the output LEDs are on, check the modules one by one as if there were no redundancy.

    Tbl. 4.4 IC3642 Troubleshooting.

  • Pag. 19

    Hardware Elements

    4.2.2 Module IC3643 (REDUNDANT UNIVERSAL PS, 50W)

    Fig. 4.8 IC3643 Module

    Functional Description

    Module IC3643 Redundant Universal PS 50W is a 50 W power source for feeding other system

    modules. The output voltages are 5V (5A), 3.3V (5A).

    The module is fed from 110Vdc to 300Vdc or 115V~ to 250V~ and feeds the modules

    connected to the rack's slots with the appropriate voltage.

    The word "universal" is used because of the extensive input voltage range and the capacity to

    work both in AC and DC.

    Redundancy: The power source is equipped to function in redundant mode. Two power sources

    can be connected in parallel. If one of them fails, the other immediately takes control without a

    voltage loss. All of the erroneous power source's LEDs will switch off, allowing the user to

    replace it.

    Redundancy functioning is known as N+1 mode. When two power sources are connected in

    parallel, the maximum continuous output will be 5A.

  • Pag. 20

    Hardware Elements

    Physical Dimensions

    The module's dimensions and characteristics can be observed in the following figure:

    Fig. 4.9 IC3643 Module

  • Pag. 21

    Hardware Elements

    Connections Diagram

    The following figure shows the input connectors and LEDs.

    Fig. 4.10 IC3643 Connections Diagram

    1. 5V output correct LED.

    2. 3.3 V output correct LED.

    3. Input correct LED.

    4. Input voltage cable connector (+, - and earth in descending order).

    Technical Data

    The technical data of module IC3643 Redundant Universal PS 50W can be seen in the following

    tables:

    Mechanical Data

    Dimensions (Width x Height x Depth) 52.25 mm x 175 mm x 130.4 mm

    Weight 371 g.

    Slot width 2 positions

    Tbl. 4.5 IC3643 Mechanical Data

  • Pag. 22

    Hardware Elements

    Electrical Data

    Power supply voltage 110-300Vdc, 115-250V~ -

    Maximum input current 0.75 Adc (max.), 0.7A~ (max) -

    Maximum output current In 3.3 V 5 A

    Maximum output current In 5 V 5 A

    Dissipated power 10 W (max.) -

    Incorrect power supply LED. Green LED on when the input voltage is correct.

    -

    5V output correct LED. Green LED indicating that there is voltage in the 5 V output.

    -

    3.3 V output correct LED. Green LED indicating that there is voltage in the 3.3 V output.

    -

    Input voltage supervision Voltage drop detection in the primary circuit (Power supply failure signal)

    If the input voltage is less than 75Vdc or 50V~

    Output voltage supervision Voltage drop detection in the PS_OK signal output

    If any of the output voltages are less than -5% or greater than +13%

    Redundancy. Mode N+1 -

    Output reductions depending on the temperature.

    With 60C temperature 100% of the output power

    Insulation Between input and output 2000 Vac for 60s.

    Insulation Between input and earth 2000 Vdc for 60s.

    Continuous conducted emission. Class EN 55022 , Part 15 FCC Class A

    -

    Radiated emission EN 55011 class A -

    Electrostatic discharges (ESD) EN 61000-4-2 air 15 kV, contact 8 kV

    -

    Fast transient burst immunity EN 61000-4-4, in common mode and in 2 kV differential mode.

    -

    Shock waves (SURGE) EN 61000-4-5, in common mode and in 2 kV differential mode.

    -

    RF in common mode EN 61000-4-6, 10 Vrms -

    Radiated immunity (IR) EN 61000-4-3, 10 V/m -

    Immunity to voltage dips, brief interruptions and voltage variations in DC power supply access points.

    EN 61000-4-29 -

    Immunity to voltage dips, brief interruptions and voltage variations in AC power supply access points.

    EN 61000-4-11 -

    Tbl. 4.6 IC3643 Electrical Data

  • Pag. 23

    Hardware Elements

    Module Diagnostics

    The power source is continuously supervising the voltage value in the primary circuit. As soon as

    the voltage is detected as being below the admissible limit, the power source informs the system

    so that it can stop correctly and so that no damage is caused to the other modules.

    If the input voltage is less than 75Vdc or 50Vac-25%, the "input voltage LED" will switch off.

    When the voltage is greater than these values, the LED will switch on and the "power supply

    failure" signal in the back panel's bus will show a low level (0 volts).

    Since the power source can work with AC and DC input voltages, the input voltage connector

    (number 4 in the connections diagram) does not have any polarity. This means that when a DC

    power supply is being used, it is possible to work with a negative or positive polarity. Hence,

    there is no danger of inverting the polarity.

    The output voltage is monitored. If any of the output voltages is outside the limits, the power

    source will inform the system through signal "PS_OK".

    When one of the output voltages is less than -5% or greater than +13%, and signal "PS_OK" is

    low. In this case, only the "incorrect output voltage" LED will be on.

    During redundant operation, a low "PS_OK" signal means a failure in one of the two power

    sources. The user can hot swap the power source whose LEDs are off and replace it by

    hotswapping it with a new power source.

  • Pag. 24

    Hardware Elements

    Troubleshooting. Possible Causes and Solutions

    IC3643. The Troubleshooting Table contains a list of the possible errors that may occur in

    module IC3643 Redundant Universal PS 50W with the possible causes and solutions.

    Correct Input Error LED Correct Output Error LED Possible causes Possible solutions

    Off _ The power source is not receiving a correct voltage for it to function properly.

    Check the power source's input voltage to see that it is within the admissible range and check the connection's polarity.

    On Off (Any of the LEDs). Operating without redundancy.

    There is a short-circuit somewhere in the system's backplane or in the module itself.

    Remove the power source from the rack and start up the system. If none of the LEDs switch on, change the power source. If the LEDs switch on, perform the following tests. Connect the power source and unplug the rest of the system's modules. If none of the LEDs light up, there is a problem with one of the rack's connectors. Change the rack. If the LEDs switch on, perform the remaining tests. While there is no voltage, insert the next module. Switch on the system. If none of the LEDs light up, change the module that you had inserted. If the LED lights up, repeat the process with the next module until you find the damaged one.

    On Off (Any of the LEDs). Operating with redundancy.

    If any of the power source's LEDs are off and the voltage in the bus is correct, change the power source module. If none of the output LEDs are on, check the modules one by one as if there were no redundancy.

    Tbl. 4.7 IC3643 Troubleshooting.

  • Pag. 25

    Hardware Elements

    4.3 Processor Modules

    4.3.1 IC3191 Module

    Fig. 4.11 IC3191 Module

    Functional Description

    Module IC3191 CPU is the main processor or CPU. It controls the system's logic by running the

    corresponding user programs.

    Module IC3191 CPU is based on a modular architecture supported in industrial standards that

    allow future product updates to be incorporated easily. For this purpose, it is possible to use

    modules developed by both Ingeteam and by other manufacturers, facilitating a wide range of

    improvements in the future.

    The basic IC3191 CPU includes a microprocessor module with the following characteristics:

    Intel Atom N270 1.6Ghz microprocessor.

    L1 cache: 32 KB for instructions and 24 KB for data.

    L2 cache: 512 KB

    SDRAM : 1 GB DDR 333 MHz (can be updated to 2 GB) .

  • Pag. 26

    Hardware Elements

    There is a built-in Flash memory in the microprocessor nodule for storing the CPU's initialisation

    code (BIOS/Bootloader). The following resources are also available for continuous storage of

    code and data:

    Compact Flash. The IC3191 CPU has two slots, each one for supporting a 4 Gb, type

    1 Compact Flash memory:

    A Compact Flash which cannot be accessed by the user, for storing firmware

    and the application. This Compact Flash slot is connected to the primary IDE

    channel.

    A Compact Flash which can be accessed by the user, for storing the

    configuration and parameter log. This Compact Flash slot is connected to the

    secondary IDE channel. It can be hotswapped (insertion and extraction).

    NVRAM. The IC3191 CPU offers up to 128 KB non-volatile RAM for persistent

    dynamic storage, 62 KB of which is user-accessible.

    EEPROM. The IC3191 CPU has a 1K EEPROM:

    An all-purpose, restricted access EEPROM for saving configuration data, e.g.

    the CPU version.

    Furthermore, the CPU module is also capable of acting as a communications interface

    between other CPU-type modules, bus terminal modules and other types of devices compatible

    with the communication standards supported.

    For this purpose, the CPU has six 10/100 Mbits/s Ethernet ports based on the 10/100BaseTX

    standard, 1 USB 2.0 port and 2 RS-232/485 ports. These are all situated on the chassis

    backplane (IC3541) on which the CPU is mounted.

    The Ethernet and USB ports are protected against different types of electromagnetic

    interference, complying with the tests in the following table:

    Port ESD (IEC6100-4-2)

    Quick Trans. Shock waves (IEC6100-4-5)

    Osc. damped Insulation

    Ethernet 15 KV/ 8 KV 2 KV 2 KV/ 1 KV 1 KV/ 500 V 1000 Vms

    COM 15 KV/ 8 KV 2 KV 2 KV/ 1 KV 1 KV/ 500 V 1000 Vms

    USB 15 KV/ 8 KV - - - -

    Tbl. 4.8 IC3191 test for Ethernet ports, COM and USB

    The CPU is able to manage up to 16 TSX slaves at a speed of up to 100Mbit/s.

    The IC3191 CPU offers you the following hardware resources for measuring time:

    Realtime clock.

    Standard 8254 counter/timer built into the microprocessor module.

    Three external counters for the microprocessor module. These counters can request

    interrupts from the CPU.

  • Pag. 27

    Hardware Elements

    The IC3191 CPU module is fed by the INGESAS backpanel using voltages of 5V 5 and 3.3V

    5. The power source offers the following:

    Protection against overvoltages and overcurrents.

    Hotswap driver circuit enabling you to insert/extract the CPU in a controlled manner

    while the backpanel is being fed.

    Continuous power supply voltage for over 100us after the NMI signal has been

    activated when the power source is switched off.

    The IC3191 CPU module has the following user interfaces:

    OFF/ON/TST switch.

    ON LED.

    OK LED.

    POWER LED.

    Speed and link/activity LED per Ethernet channel.

    LCD with 3 buttons and 13 LEDs (on the front of the chassis).

    You can also Hot-Swap the CPU, although you must make sure that you switch the CPU to Off

    Mode before removing it.

    Configuring the Module

    There are three functioning modes: Run Mode, Test Mode and Off Mode , each with different

    CPU functional features. There is a switch on the front of the CPU for configuring the operating

    mode.

    The switch can be set to one of three positions:

    Off mode: The CPU must be in this mode in order to switch off correctly. If you insert

    a CPU while in this mode, the LED will not light up, even if the module is being fed

    voltage correctly. When switching to either of the other two modes, the ON LED must

    be on. When switching from one of these statuses to Off Mode or if there is a system

    voltage failure, the CPU must be shut down properly: the ON LED should switch off

    after being set to this mode. This procedure is necessary in order to hotswap the CPU

    without losing the power supply. If there is a redundant system with two CPUs, the

    redundant CPU will take control of the plant and you can swap the main CPU once

    the ON LED has switched off.

    Run Mode: Normal functioning mode which the CPU uses to control systems. In this

    position, the CPU runs the user program as well as the other internal tasks.

    Test Mode: Special functioning mode. The CPU has no communication.

  • Pag. 28

    Hardware Elements

    Physical Features

    The module's dimensions and characteristics can be observed in the following figure:

    Fig. 4.12 IC3191 Module

  • Pag. 29

    Hardware Elements

    Connections Diagram

    There now follows a connection diagram of the CPU and the elements that compose it.

    Fig. 4.13 IC3191 Connection Diagram

    1 Mod_ON diagnostics LED.

    2 Mod_OK diagnostics LED.

    3 ON LED.

    4 CFLASH memory slot.

    5 Ethernet 0 port.

    6 Ethernet 1 port.

    7 Connector for external IRIG_B synchronisation source.

    8 Switch for selecting the operating mode (OFF/ON/TST).

    9 RS-232/485 serial port.

    10 RS-232/485 serial port.

    11 Ethernet 2A port.

    12 Ethernet 2B port.

    13 Ethernet 3A port.

    14 Ethernet 3B port.

  • Pag. 30

    Hardware Elements

    Technical Data.

    Typical data on the IC3191 CPU can be seen in the following table:

    Mechanical Data

    Dimensions (Width x Height x Depth) 105 mm x 174 mm x 154.5 mm

    Weight 720 g.

    Slot width 4 positions

    Tbl. 4.9 IC3191 Mechanical Data

    Electrical Data

    Power supply voltage 5 V 5 and 3.3 V 5 via backplane. -

    Maximum power supply consumption.

    In 3.3 V 1 A (max.)

    Maximum power supply consumption.

    In 5 V 2.5 A (max.)

    Typical power supply consumption.

    In 3.3 V 0.75 A (typical)

    Typical Power Supply Consumption

    In 5 V 2 A (typical)

    Dissipated Power 15 W (max.) -

    Tbl. 4.10 IC3191 Electrical Data

    Specific module data

    Main microprocessor Intel Atom N270 1.6Ghz. -

    RAM 1 Gbyte. -

    NVRAM 128 Kbytes. -

    FLASH Memory 4 Gbyte. -

    Backup battery for RAM BR2032 lithium battery which can be removed from the CPU backplane

    -

    Communication ports Ethernet 2 10/100-Base-TX ports with RJ-45 connector at 10/100Mbit/s + 2x2 10/100-Base-TX ports with RJ-45 connector at 10/100Mbit/s.

    Communication ports Serial Two RS-232/485 ports with female SubD-9 connector up to 115Kbps.

    Communication ports Serial 1 x USB 2.0 port with USB Type A connector at 1.5/12/480 Mbit/s

    Maximum number of TSX slaves 16 -

    Time synchronisation IRIG-B002 Two pin 5.08mm header

    LCD 3-line local diagnostics display with backlight.

    -

    Programming languages supported

    IEC 61131 - 3 -

    Temperature Ambient temperature of 0 to 60C without forced cooling.

    -

    Humidity Humidity of 10% to 90% without condensation.

    -

    Hot Swap Dependant on setting CPU to Off mode beforehand.

    -

    Tbl. 4.11 Specific Module Data

    Autodiagnostics signalling

    In Service LED Red In Service LED

    ON LED Green active

    LED OK Orange running

  • Pag. 31

    Hardware Elements

    Autodiagnostics signalling

    Ethernet link status LED 1 green LED per Ethernet port: Off: No link. On: With inactive link Flashing: With active link

    -

    Ethernet link speed LED 1 yellow LED per Ethernet port: Off: 10Mbits/s speed On: 100Mbits/s speed

    -

    Temperature supervision Built-in microprocessor temperature sensor The microprocessor module has other temperature sensors.

    -

    Temperature supervision 2 sensors for ambient temperature inside the CPU The system is able to request interrupts or reset the CPU depending on the temperatures measured.

    -

    Power supply voltage supervision Supervision of minimum thresholds of the external power supply voltage and those generated internally. The CPU will stay in reset mode while the voltage does not exceed the minimum threshold.

    -

    Watchdog Space of time during which the CPU is monitored. This can be configured to initialise the CPU or permanently reset it until the power supply is interrupted. The watchdog triggers if it is not refreshed within a configurable period of time.

    -

    Tbl. 4.12 Signalling / Autodiagnostics.

    N.B.: The battery may explode as a result of inappropriate use. Do not recharge, dissemble or throw it into a fire.

    Troubleshooting. Possible Causes and Solutions

    The IC3191 Troubleshooting Table contains a list of the possible errors that may occur in the

    IC3191 CPU module, with the possible causes and solutions.

    Error Possible causes Possible solutions

    Does not light up in Run or Test mode

    The external power supply voltages are below the admissible thresholds.

    Check that the status of the power supply source is correct

    Does not light up in Run or Test mode

    There is a short-circuit in the processor module

    Replace the module

    Tbl. 4.13 IC3191 Module Troubleshooting

  • Pag. 32

    Hardware Elements

    4.4 Auxiliary Modules

    4.4.1 Module IC3211 Switch PRP/HSR

  • Pag. 33

    Hardware Elements

    Functional Description

    IC3211 PRP/HSR is a PRP/HSR switch module.

    The module has two PRP/HSR ports and one Redundancy Box with 4 RJ45 ports. You can

    connect a total of 4 redundancy boxes to provide PRP/HSR network redundancy to equipment

    that does not have it.

    There are two versions of this module:

    IC3211AA, with PRP/HSR RJ45 connectors.

    IC3211AB, with PRP/HSR optical fibre connectors.

    Physical Dimensions

    The module's dimensions and characteristics can be observed in the following figure:

    Fig. 4.14 Module IC3211

  • Pag. 34

    Hardware Elements

    Connections Diagram

    The IC3211AA connections diagram is as follows:

    Fig. 4.15 IC3211AA Connections Diagram

    1 LED ON.

    2 LED OK.

    3 Redundancy Box Ethernet 1.

    4 Redundancy Box Ethernet 1 LED.

    5 Redundancy Box Ethernet 2.

    6 Redundancy Box Ethernet 2 LED.

    7 Redundancy Box Ethernet 3.

    8 Redundancy Box Ethernet 3 LED.

    9 Redundancy Box Ethernet 4.

    10 Redundancy Box Ethernet 4 LED.

    11 Ethernet A.

    12 Ethernet A LED.

    13 Ethernet B.

    14 Ethernet B LED.

  • Pag. 35

    Hardware Elements

    The IC3211AB connections diagram is as follows:

    Fig. 4.16 IC3211AB Connections Diagram

    1 LED ON.

    2 LED OK.

    3 Redundancy Box Ethernet 1.

    4 Redundancy Box Ethernet 1 LED.

    5 Redundancy Box Ethernet 2.

    6 Redundancy Box Ethernet 2 LED.

    7 Redundancy Box Ethernet 3.

    8 Redundancy Box Ethernet 3 LED.

    9 Redundancy Box Ethernet 4.

    10 Redundancy Box Ethernet 4 LED.

    11 Ethernet A.

    12 Ethernet A LED.

    13 Ethernet B.

    14 Ethernet B LED.

  • Pag. 36

    Hardware Elements

    Technical Data

    Typical data of the IC3211 CPU can be seen in the following table:

    Signalling/Autodiagnostics

    LED ON Green In Service LED

    LED OK Green In Service LED

    Ethernet link status LED 1 green LED per Ethernet port: Off: No link. On: With inactive link. Flashing: With active link

    Tbl. 4.14 Signalling / Autodiagnostics.

    4.4.2 IC3398 Digital Inputs/Outputs Digital Module

    Functional Description

    The IC3398 module provides digital I/Os to INGESAS IC3. It has 8 digital outputs and 4 digital

    inputs per module.

  • Pag. 37

    Hardware Elements

    There are different versions of the module depending on the voltage admitted.

    IC3398AA, inputs/outputs at 24 Vdc

    IC3398BA, inputs/outputs at 48 Vdc

    IC3398CA, inputs/outputs at 125 Vdc

    IC3398DA, inputs/outputs at 220 Vdc

    Physical Dimensions

    The module's dimensions and characteristics can be observed in the following figure:

    Fig. 4.17 Module IC3211

  • Pag. 38

    Hardware Elements

    ConnectionsDiagram

    The IC3398 connections diagram is as follows:

    Fig. 4.18 IC3398 Connections Diagram

    1 Digital outputs.

    2 Digital inputs.

    Technical Data

    Typical data of the IC3398 module can be seen in the following table:

    IC3398AA IC3398BA IC3398CA IC3398DA

    Rated voltage 24 Vdc 48 Vdc 125 Vdc 220 Vdc

    Active above 12 Vdc 37 Vdc 87 Vdc 172 Vdc

    Inactive under 9 Vdc 32 Vdc 82 Vdc 165 Vdc

    Burden 3 mA rated voltage 3 mA rated voltage 3 mA rated voltage 3 mA rated voltage

    Tbl. 4.15 Digital inputs

  • Pag. 39

    Hardware Elements

    IC3398AA IC3398BA IC3398CA IC3398DA

    24 Vdc 48 Vdc 125 Vdc 220 Vdc

    Maximum closure current (4 s)

    15 A 15 A 15 A 15 A

    Pitch current (permanent):

    8 A 8 A 8 A 8 A

    Connection capacity 2000 VA at 250 Vdc 2000 VA at 250 Vdc 2000 VA at 250 Vdc 2000 VA at 250 Vdc

    Activation time

  • Pag. 40

    Hardware Elements

    Digital inputs

    Fig. 4.21 Digital inputs

  • Pag. 41

    Software Reference Manual

    5 Software Reference Manual

    The INGESAS IC3 Software Reference Manual contains detailed information on common

    operations to perform with INGESAS IC3.

    The information contained in this manual is aimed at those who are familiar with the concepts

    and elements that compose an automation system. To use the equipment, the user must be

    qualified,i.e. someone who is capable of using electrical and electronic equipment according to

    the corresponding safety standards.

    In this manual, you will find the following:

    User informaiton.

    Configuring the Equipment

    5.1 User Information

    This chapter describes the information that the user receives via the LEDs and front screen.

    5.1.1 CPU IC3191

    Descriptionof the Front of the Module

    The equipment composed of an IC3191 CPU and an IC3541 rack has a series of elements on its

    front. Some of these elements, LEDs and the display are used for communicating certain pieces

    of information to the user. Other elements such as buttons and the USB are for maintenance

    operations. This chapter will describe these hardware elements. The chapter that follows will

    discuss potential maintenance operations.

  • Pag. 42

    Software Reference Manual

    5.1.1.1 Front LEDs

    Functional Description

    Fig. 5.1 IC3541 Rack

    In the picture of the IC3541 rack, you see that it has13 LEDs on the front, each one with a

    different meaning.

  • Pag. 43

    Software Reference Manual

    LEDs

    Here is a zoomed in view of the LED area and the chassis control panel.

    Fig. 5.2 LEDs

    There are 13 LEDs divided into two positions. There are two LEDs with set meanings and

    several LEDs with user-definable information. The meaning of each LED is as follows:

    1 User-definable.

    2 User-definable.

    3 User-definable.

    4 User-definable.

    5 User-definable.

    6 User-definable.

    7 User-definable.

    8 User-definable.

    9 ON: The equipment is energised and on.

    10 OK: The equipment is active.

    11 Reserved for future use.

    12 Reserved for future use.

    13 Reserved for future use.

    The LEDs definable by the user can be used with IEC-61131-3 logic.

  • Pag. 44

    Software Reference Manual

    5.1.1.2 Display and Front Control Panel

    Functional Description

    Fig. 5.3 IC3541 Rack

    The IC3541 rack has a front display and 3 buttons which allow you to see and modify the

    equipment's configuration.

    Control panel

    On the front cover of the IC3541 rack, there are 3 buttons which let you make a series of

    adjustments to the equipment. The action performed by each of the buttons will depend on the

    menu shown on the display.

    Fig. 5.4 Front Control Panel.

    As can be seen in the picture below, the display is divided into two areas: the right-hand area

    shows three options with a black background. These options work as a menu. To selection one

    of them, click on the button at the right.

  • Pag. 45

    Software Reference Manual

    Fig. 5.5 Screen

    Button 1 corresponds to menu option 1 (ALONE), button 2 corresponds to menu option 2

    (MASTER) and so on.

    Screen

    The IC3541 rack has a front display with three lines. The default display will show the following

    information:

    Fig. 5.6 Startup Screen

    1 Type of equipment. The possible values are: NO CONFIG, TEST, STANDALONE,

    MASTER, ACTIVE, BACKUP, UNKNOWN.

    2 Equipment's firmware version.

    3 UCS time in UTC.

    4 When you click on button 4, you access the network information menu.

    5 When you click on button 5, you access the UCS type menu.

    6 When you click on button 6, you access the tools menu.

    Equipment Type and Status

    The first line of the display shows the equipment's status, the possible statuses have the

    following meanings:

    1 NO CONFIG: The equipment is not configured.

    2 TEST: The level at the back of the IC3191 CPU is in TEST position.

    3 STANDLONE: The equipment is configured as being standalone.

    4 MASTER: The equipment is configured as being the master.

    5 ACTIVE: The equipment is configured as the BACKUP, and is active. The MASTER

    may not be present or is malfunctioning.

    6 BACKUP: The equipment is configured as the BACKUP and is inactive. There is an

    active MASTER.

  • Pag. 46

    Software Reference Manual

    7 UNKNOWN: The equipment is not configured as a valid option.

    5.1.1.3 Front USB

    Functional Description

    Fig. 5.7 IC3541 Rack

    On the front of the IC3541 rack, there is a USB connector which allows you to perform the

    following operations:

    Load a new firmware.

    Load the communications configuration.

    Load the UCS configuration.

    Save the communications and UCS configuration in a new USB memory.

    These operations are described in the chapter entitled "Maintenance Tasks".

    5.2 Maintenance Tasks.

    This chapter describes the different operations that can be performed on the equipment. Some

    of these actions are performed using both the control panel and the display on the front of the

    equipment. Other actions are performed via the USB port on the front of the rack.

    5.2.1 CPU IC3191

    Functional Description

    There now follows a description of all of the maintenance operations that can be performed on

    the IC3191 CPU from an IC3541 rack.

  • Pag. 47

    Software Reference Manual

    5.2.1.1 Connection to the Ethernet Network

    Functional Description.

    As can be seen in the following picture, the system has six RJ-45-type Ethernet connectors.

    Fig. 5.8 IC3191 Backplane

    However, the six RJ-45 connectors do not belong to six different network drivers. The system

    has four different network drivers, these drivers being two different types:

    ETH0 and ETH1: These are single drivers. Each driver has an Ethernet port.

    ETH2 and ETH3 are double drivers. Each driver has two Ethernet ports. They are

    redundant. Each driver port must be connected to a different network and the driver

    decides which port to communication through; if one fails it will automatically switch

    to the other. However, both Ethernet driver ports have the same IP addresses. This

    functioning is totally user-transparent. Obviously, if there is only one network, you can

    use either port to connect to the equipment to the network, but there will of course be

    no redundancy.

    For this reason, there are four Ethernet drivers, two single ones (ETH0 and ETH1) and two with

    redundancy (ETH2 and ETH3).

  • Pag. 48

    Software Reference Manual

    Connection

    In order for the equipment to function correctly, a specific functional feature has been defined for

    each network adaptor. Hence, when installing the equipment, you must respect this connection

    between the different network drivers and the networks available.

    ETH0 and ETH1: These drivers will be used for MASTER/BACKUP interconnection.

    The MASTER's ETH0 driver is to be connected to the BACKUP's ETH0 driver using a

    crossed cable. The MASTER's ETH1 driver is to be connected to the BACKUP's

    ETH1 driver using a crossed cable. Equipment configured as STANDALONE or which

    does not have a MASTER/BACKUP configuration must not use these network drivers.

    ETH2: This driver will be used for interconnection with the main control desk. Since

    this driver has a double port, it can be connected to two different networks with

    access to the main control desk. If there is only one network, connect it to either of

    the ETH2 driver's ports.

    ETH3: This driver will be used for interconnection to the substation. Since this driver

    has a double port, it can be connected to two different substation network. If there is

    only one network, connect it to either of the ETH3 driver's ports.

    5.2.1.2 Mains Configuration Display.

    Functional Description

    Using the IC3541 rack's front control panel, you can see the UCS's network configuration. This

    configuration is shown on the front display. However, you cannot modify the configuration using

    the control panel.

    Fig. 5.9 Control panel

    To see the equipment's network configuration, you need to go to the startup screen. When you

    click button 1, you will see the configuration of the first network adapter configured and with

    network connection. This is an example of the screen:

  • Pag. 49

    Software Reference Manual

    Fig. 5.10 ETH1

    1 Network adapter.

    2 IP Address.

    3 Subnetwork mask.

    4 NEXT button for viewing the configuration of the next network adapter. If a network

    adapter is not connected to the network, its configuration is not shown. If there are no

    more network adapters configured and connected, when you press the button, no

    action will be performed.

    5 This button does not perform any action.

    6 BACK button: Returns to the startup/home screen.

    If a network adapter has more than one IP address, a screen will be shown per address:

    Fig. 5.11 Equipment with several IP addresses.

    On the right of the adapter's name (1), you can see a number in brackets. This number is for

    distinguishing the various IP addresses. When you click on the NEXT button, you will see the

    following IP address for this adapter or the following adapter, as applicable.

    Where there is no network adapter connected, the following scree in shown:

    Fig. 5.12 Equipment with no network connection.

  • Pag. 50

    Software Reference Manual

    5.2.1.3 Viewing and Modifying the Installation Type

    Functional Description

    An IC3191 CPU can be configured in three different ways:

    1 Master.

    2 Backup.

    3 Standalone.

    Using the control panel and the front display, it is possible to view and modify the type of UCS.

    Let's start from the startup screen.

    Fig. 5.13 Startup Screen

    When you click on button 5, you enter the "UCS Type" menu. In this menu, you will see a screen

    like this:

    Fig. 5.14 TYPE Menu Screen

    The meaning of the three lines on the left are as follows:

    1 UCS Type: This can be: MASTER, BACKUP, STANDALONE, UNKNOWN.

    2 UCS Status - ONLINE or TEST: This status depends on the position of the level on

    the IC3191 CPU's backplane.

    3 Equipment Status: This can be ACTIVE OR PASSIVE. ACTIVE means that the UCS

    is functioning. Normally, a MASTER UCS will have a ACTIVE status. PASSIVE

    should only appear when a UCS is configured as being BACKUP and when its UCS

    MASTER is disconnected.

    UCS Types

    A UCS can work alone or form part a MASTER/BACKUP pair. When is work as a

    MASTER/BACKUP, you will have UCS redundancy. There are two different types of UCS:

  • Pag. 51

    Software Reference Manual

    1 STANDALONE: A UCS which works alone.

    2 MASTER: The UCS works in a MASTER/BACKUP configuration. By default, the

    UCS MASTER is always active.

    3 BACKUP: The UCS is in a passive status by default. It is only activated if there is no

    communication with the UCS MASTER.

    MASTER/BACKUP Functioning

    You can define two UCSs so that they work together forming a MASTER/BACKUP pair, thus

    being able to use redundancy. The steps for implementing a MASTER-BACKUP configuration

    are as follows:

    1 Configure a UCS as a MASTER.

    2 Generate its configuration using the INGESYS eFs tool and export it via the

    Ethernet network or a USB memory.

    3 If the configuration has been exported to a USB memory, load the UCS configuration

    via the USB port.

    4 Disconnect the second UCS from the network and set its rear lever to TEST position.

    5 Configure a UCS as a BACKUP.

    6 Generate its configuration using the INGESYS eFs tool and export it via the

    Ethernet network or to a USB memory.

    7 If the configuration has been exported to a USB memory, load the backup UCS

    configuration via the USB port.

    8 Connect the BACKUP UCS to the network or set the rear lever to the ON position.

  • Pag. 52

    Software Reference Manual

    UCS Statuses

    The UCS can have the following statuses. These statuses can be changed using the lever on

    the IC3191 CPU's backplane. The possible statuses are as follows:

    1 ONLINE: The lever is in the ON position. The equipment is functioning correctly.

    2 TEST: The lever is in the TST position. The equipment is disconnected.

    Modifying the UCS Type

    You can change the UCS type using the display and front control panel. Let's start from the

    startup screen.

    Fig. 5.15 Startup Screen

    Go to the startup menu and click on button 2 to access the Type menu.

    Fig. 5.16 TYPE Menu Screen

  • Pag. 53

    Software Reference Manual

    Once there, press button 1 to access the screen that lets you change the UCS type.

    Fig. 5.17 Type Selection Screen

    This screen will show three types of UCS. Choose the type you wish:

    1 ALONE: When you press button 1, the new type will be STANDALONE.

    2 MASTER: When you press button 2, the new type will be MASTER.

    3 BACKUP: When you press button 3, the new type will be BACKUP.

    After pressing the corresponding button, a new confirmation screen will appear.

    Fig. 5.18 Type Selection Screen

    The three buttons have the following meanings:

    1 YES: When you press button 1, the CPU type will change.

    2 NO: When you press button 2, you return to the startup screen.

    3 BACK: When you press button 3, you return to the previous UCS type selection

    screen.

    When you press the YES button, the UCS type will start changing and at this point, the following

    screen will appear:

    Fig. 5.19 Changing Installation Type

    The OK LED will immediately switch off. When the operation has finished, you will return to the

    startup screen, but the UCS status will be NO_CONFIG:

  • Pag. 54

    Software Reference Manual

    Fig. 5.20 NO CONFIG Screen

    Now the equipment has to restart. In a few seconds, the equipment's display will go black and

    all of the LEDs will switch off. This the signal to restart the equipment. When the equipment has

    restarted completely, the OK LED will switch on and the display will show the startup screen.

    Fig. 5.21 Startup Screen

    As you can see, the UCS type has changed and is now STANDALONE.

    5.2.1.4 Saving the Configuration

    Functional Description

    You can save the UCS configuration on a USB memory connected to the USB connector on the

    front of the IC3541 rack. The steps to follow to save the configuration are as follows:

    Accessing the TOOLS Menu

    Fig. 5.22 Startup Screen

    Using the control panel on the front of the IC3541 rack, you can access the TOOLS menu by

    pressing button 6. When you click on the button, the following screen will appear:

  • Pag. 55

    Software Reference Manual

    Fig. 5.23 TOOLS Screen

    The first option in this menu is for saving the configuration.

    Saving the Configuration

    Using the TOOLS menu, you can save the UCS configuration in a USB memory. The

    configuration is stored in several files with the CNF extension which is stored in a directory in the

    USB memory whose name is composed of the following:

    1 Projects name.

    2 One number. Normally 1.

    3 M or B, depending on the type of UCS. If the UCS is MASTER type or

    STANDALONE, the letter will be M. If the UCS is BACKUP type, the letter will be B.

    To backup the configuration from the TOOLS menu, press button 5. A new screen will appear

    like this:

    Fig. 5.24 SAVE Screen

    This screen has three options:

    1 YES: Save the configuration in the USB memory.

    2 NO: Returns to the startup screen.

    3 BACK: Returns to the previous screen.

  • Pag. 56

    Software Reference Manual

    When you press button 1, the configuration will begin to be saved in the USB memory. While the

    configuration is being saved, a message will appear on the screen. If the operation has not been

    performed successfully, the following screen will appear:

    Fig. 5.25 Error Screen

    1 RETRY: When you press this button, you retry the operation. It is possible that there

    is no USB memory connected to the port.

    2 No action performed.

    3 OK: Returns to the startup screen.

    5.2.1.5 Deleting the Configuration

    Functional Description

    You can delete the configuration stored in the UCS. To delete the configuration, use the control

    panel on the front of the IC3541 rack.

    Accessing the TOOLS Menu

    Fig. 5.26 Startup Screen

    Using the control panel on the front of the IC3541 rack, you can access the TOOLS menu by

    pressing button 6. When you click on the button, the following screen will appear:

    Fig. 5.27 TOOLS Screen

  • Pag. 57

    Software Reference Manual

    To select the option to delete the configuration, press button 4. The menu will change to the

    following:

    Fig. 5.28 TOOLS Screen

    Deleting the Configuration

    Using the TOOLS menu, you can delete the UCS configuration in a USB memory. After deleting

    the configuration, the UCS goes into NO CONFIG. mode.

    To delete the configuration from the TOOLS menu, press button 5. A new screen will appear like

    this:

    Fig. 5.29 CLEAR Screen

    This screen has three options:

    1 YES: Deletes the UCS configuration.

    2 NO: Returns to the startup screen.

    3 BACK: Returns to the previous screen.

    When you press button 1, the OK LED switches off and screen will appear indicating that the

    configuration is being deleted.

    Fig. 5.30 CLEAR Screen

    When the deletion is complete, the startup screen will reappear and you will see the status as

    being NO CONFIG. The OK LED will continue to be off.

  • Pag. 58

    Software Reference Manual

    Fig. 5.31 NO CONFIG Screen

    5.2.1.6 Load Communications Configuration

    FunctionalDescription

    There are two procedures for loading a new configuration in the UCS:

    Via an Ethernet network using INGESYS eFS. For more information, see the

    "INGESYS eFS" manual.

    Using a USB memory stick inserted into the front USB port on the IC3541 rack.

    The configuration must be in the USB memory's root directory.

    To load a new configuration using a USB memory, follow the procedure below:

    Create the new configuration with INGESYS eFS. This program has an option for

    storing the UCS configuration on a USB memory stick. See the INGESYS eFS

    manual for more details.

    Insert the USB memory stick into the front USB port on the IC3541 rack.

    The equipment will automatically detect the new configuration and start to read it.

    The front OK LED will switch off.

    While loading the new configuration, a message will appear on the front panel

    indicating that the new configuration is being loaded.

    Fig. 5.32 Loading Communications Configuration.

    When the installation is complete, you will return to the startup screen.

  • Pag. 59

    Software Reference Manual

    Fig. 5.33 Startup Screen

    The OK LED will switch on.

    5.2.1.7 Load Firmware

    Functional Description.

    There are two ways to load new UCS firmware:

    Via an Ethernet network using INGESYS eFS. For more information, see the

    "INGESYS eFS" manual.

    Using a USB memory stick inserted into the front USB port on the IC3541 rack.

    The configuration must be in the USB memory's root directory.

    To change the firmware using a USB memory, follow the procedure below:

    The firmware consists of a file with an frm extension. Copy this file to the USB

    memory's root directory.

    Insert the USB memory stick into the equipment's USB port.

    This equipment will automatically detect the firmware and installation will start.

    The following message will appear on the display:

    Fig. 5.34 Loading firmware.

    The OK LED will switch off and installation will start.

    When the installation is complete, you will return to the startup screen.

  • Pag. 60

    Software Reference Manual

    Fig. 5.35 Loading firmware.

    The OK LED will switch on.

    5.2.1.8 Loading the UCS Configuration

    Functional Description

    The loading of a new configuration includes the configuration of network elements and other

    parameters such as MASTER/BACKUP. There are two ways of loading a new configuration:

    Via an Ethernet network using INGESYS eFS. For more information, see the

    "INGESYS eFS" manual.

    Using a USB memory stick inserted into the front USB port on the IC3541 rack.

    The new configuration must be in the USB memory's root directory.

    To change the configuration using a USB memory, follow the procedure below:

    Create the configuration file using the INGESYS eFS tool and export it to the USB

    memory. See the INGESYS eFS manual for more details.

    Insert the USB memory stick into the equipment's USB port.

    The equipment will automatically detect the file with the new configuration. The OK

    LED will switch off and the new configuration will be read.

    While the new configuration is being loaded, the following screen will appear:

    Fig. 5.36 Loading configuration.

  • Pag. 61

    Software Reference Manual

    When the installation is complete, you will return to the startup screen.

    Fig. 5.37 Startup Screen

    The OK LED will switch on again.

    5.2.1.9 Changing the Date and Time.

    Functional Description.

    You can change the equipment's date and time. Remember that if you change the date and time

    using the control panel and the equipment is configured to be synchronised hourly, the

    equipment will change its date/time again with the one received during synchronisation. To

    change the date/time, use the control panel on the front of the IC3541 rack.

    Accessing the TOOLS Menu

    Fig. 5.38 Startup Screen

  • Pag. 62

    Software Reference Manual

    Using the control panel on the front of the IC3541 rack, you can access the TOOLS menu by

    pressing button 6. When you click on the button, the following screen will appear:

    Fig. 1.1 TOOLS Screen

    To select the option to change the date/time, press button 4 repeatedly until you reach the

    following menu:

    Fig. 5.39 TOOLS Screen

    Modifying Date and Time.

    To change the date/time from the TOOLS menu, press button 5. A new screen will appear like

    this:

    Fig. 5.40 Month Screen

    You can use this screen to change the date's month. You will see that the month will be flashing.

    The following options are available on this screen:

    +: Month forwards.

    -: Month backwards.

    1. OK: Confirm the month and go on to select the day.

  • Pag. 63

    Software Reference Manual

    Use buttons 4 and 6 to select the month you wish. Press button 5 to select the day. When you

    press button 5, the following screen will appear:

    Fig. 5.41 Day Screen

    Select the day you wish using buttons 4 and 6. Once you have selected the day, press button 5

    to select the year. When you press button 5, the following screen will appear:

    Fig. 5.42 Year Screen

    Select the year you wish using buttons 4 and 6. Press button 5 to select the date. When you

    press button 5, the following screen will appear:

    Fig. 5.43 Date Screen

    Using the procedure above, use this screen to select the time. After selecting the hour, minutes

    and seconds, you will return to the home screen where the time will be updated.

  • Pag. 64

    Software Reference Manual

    5.2.1.10 Modifying the Time Region.

    Functional Description.

    You can change the time region configured in the equipment. To change the time region, use the

    control panel on the front of the IC3541 rack.

    Accessing the TOOLS Menu

    Fig. 5.44 Startup Screen

    Using the control panel on the front of the IC3541 rack, you can access the TOOLS menu by

    pressing button 6. When you click on the button, the following screen will appear:

    Fig. 5.45 TOOLS Screen

    To select the option to change the time region, press button 4 repeatedly until you reach the

    following screen:

    Fig. 5.46 TOOLS Screen

  • Pag. 65

    Software Reference Manual

    Modifying the Time Region.

    You can change the equipment's time region using the TOOLS menu.

    To change the time region from the TOOLS menu, press button 5. A new screen will appear like

    this:

    Fig. 5.47 Time Region Screen.

    Here, you can select the time region. The time region currently selected has an asterisk before it.

    You will have the following options:

    PREV: Shows you the previous time region.

    OK: Selects the current time region.

    NEXT: Shows the next time region.

    You can browse through the time regions using buttons 4 and 6. When you find the

    one you want, press button 5 to select this time region.

    5.2.1.11 Daylight Saving Time

    Functional Description.

    You can change the equipment's daylight saving time configuration. To change this

    configuration, use the control panel on the front of the IC3541 rack.

    Accessing the TOOLS Menu

    Fig. 5.48 Startup Screen

    Using the control panel on the front of the IC3541 rack, you can access the TOOLS menu by

    pressing button 6. When you click on the button, the following screen will appear:

  • Pag. 66

    Software Reference Manual

    Fig. 5.49 TOOLS Screen

    To select the option to change the daylight saving time, press button 4 repeatedly until you reach

    the following screen:

    Fig. 5.50 TOOLS Screen

    Changing Daylight Saving Time

    You can change the daylight saving time configuration using the TOOLS menu.

    To change the daylight saving time configuration from the TOOLS menu, press button 5. A new

    screen will appear like this:

    Fig. 5.51 Daylight Saving Time Screen

    This screen has three options:

    YES: Activates automatic time change depending on the daylight saving time and

    time region selected.

    NO: Deactivates automatic time change.

    BACK: Cancels the operation.

    The option currently selected appears with an " * ".

  • Pag. 67

    Software Reference Manual

    5.2.1.12 Identification

    Functional Description.

    It is possible to see a series of the equipment's identification parameters To change these

    parameters, use the control panel on the front of the IC3541 rack.

    Accessing the TOOLS Menu

    Fig. 5.52 Startup Screen

    Using the control panel on the front of the IC3541 rack, you can access the TOOLS menu by

    pressing button 6. When you click on the button, the following screen will appear:

    Fig. 5.53 TOOLS Screen

    To select the identification option, press button 4 repeatedly until you reach the following screen:

    Fig. 5.54 TOOLS Screen

    Identification.

    You can view a series of the equipment's identification data using the TOOLS menu.

    To view the equipment's identification data from the TOOLS menu, press button 5. A new screen

    will appear like this:

  • Pag. 68

    Software Reference Manual

    Fig. 5.55 Identification Screen

    This screen shows you the following information:

    Traceability information.

    FPGA version:

    Serial number.

    5.2.1.13 Restart

    Functional Description.

    You can restart the equipment using front panel on the IC3541 rack.

    Accessing the TOOLS Menu

    Fig. 5.56 Startup Screen

    Using the control panel on the front of the IC3541 rack, you can access the TOOLS menu by

    pressing button 6. When you click on the button, the following screen will appear:

    Fig. 5.57 TOOLS Screen

  • Pag. 69

    Software Reference Manual

    To select the identification option, press button 4 repeatedly until you reach the following screen:

    Fig. 5.58 TOOLS Screen

    Restart.

    You can restart the equipment from the TOOLS menu.

    To restart from the TOOLS menu, press button 5. A new screen will appear like this:

    Fig. 5.59 Restart Screen

    This screen has three options:

    YES: Restart the equipment.

    NO: Returns to the startup screen.

    BACK: Returns to the previous screen.

    When you press button 4, the equipment will restart.

  • Parque Tecnolgico de Bizkaia-

    Edificio 110

    E48170 Zamudio (Vizcaya) Spain

    Tel +34-944 039 600

    Fax +34-944 039 679

    http://www.ingeteam.com

    The total or partial reproduction of this publication

    by any means or procedure is prohibited without

    the express and prior written authorisation by

    Ingeteam Power Technology.

    One of the primary goals of Ingeteam Power

    Technology is the continuous improvement of its

    equipment; consequently, the information contained

    in this catalogue may be modified without previous

    notice.

    For further information, please refer to the manual

    or contact us.

  • www.ingeteam.com

    Contents1 Terms and Abbreviations2 Symbols3 General Technical Data3.1 Certification and Standards3.1.1 Electromagnetic Compatibility(EMC)3.1.2 Climatic3.1.3 Mechanical3.1.4 Protection Level.

    3.2 Environmental Operating Conditions.3.2.1 Mechanical Environment Conditions3.2.2 Environmental Climatic Conditions.

    3.3 Storage and Transport Conditions.

    4 Hardware Elements4.1 Rack Types4.1.1 IC3541 Module (CH 2PS + 1CPU + 7 AUX, 4+4+7 U)

    4.2 Power Supply Sources4.2.1 Module IC3642 (REDUNDANT PS, 24VDC 50W)4.2.2 Module IC3643 (REDUNDANT UNIVERSAL PS, 50W)

    4.3 Processor Modules4.3.1 IC3191 Module

    4.4 Auxiliary Modules4.4.1 Module IC3211 Switch PRP/HSR4.4.2 IC3398 Digital Inputs/Outputs Digital Module

    5 Software Reference Manual5.1 User Information5.1.1 CPU IC31915.1.1.1 Front LEDs5.1.1.2 Display and Front Control Panel5.1.1.3 Front USB

    5.2 Maintenance Tasks.5.2.1 CPU IC31915.2.1.1 Connection to the Ethernet Network5.2.1.2 Mains Configuration Display.5.2.1.3 Viewing and Modifying the Installation Type5.2.1.4 Saving the Configuration5.2.1.5 Deleting the Configuration5.2.1.6 Load Communications Configuration5.2.1.7 Load Firmware5.2.1.8 Loading the UCS Configuration5.2.1.9 Changing the Date and Time.5.2.1.10 Modifying the Time Region.5.2.1.11 Daylight Saving Time5.2.1.12 Identification5.2.1.13 Restart