+ All Categories
Home > Documents > Inheritance of coat colour and type of fleece in alpaca

Inheritance of coat colour and type of fleece in alpaca

Date post: 17-Jan-2015
Category:
Upload: simposium-camelidos
View: 1,452 times
Download: 0 times
Share this document with a friend
Description:
INHERITANCE OF COAT COLOUR AND TYPE OF FLEECE IN ALPACAPonencia Magistral presentada en el III Simposium Internacional de Investigaciones Sobre Camélidos Sudamericanos. Arequipa - Perú.
Popular Tags:
75
INHERITANCE OF COAT COLOUR AND TYPE OF FLEECE IN ALPACA RENIERI Carlo University of Camerino School of Environmental Sciences Animal Production Unit Italy
Transcript
Page 1: Inheritance of coat colour and type of  fleece in alpaca

INHERITANCE OF COAT COLOUR AND TYPE OF

FLEECE IN ALPACA

RENIERI CarloUniversity of Camerino

School of Environmental SciencesAnimal Production Unit

Italy

Page 2: Inheritance of coat colour and type of  fleece in alpaca

RESEARCH GROUPProf. Carlo Renieri, Senior Researcher

Dr Marco Antonini, researcherProf. Alessandro Valbonesi, reseracher

Dr. Antonietta La Terza, PhD Tutor

Vincenzo La Manna, PhD tutor

Dr. Dario Pediconi, Post doc

Siva Arumugam Saravanaperumal, PhD candidateChandramohan Bathrachalam, PhD candidate

Gabriela Molina, PhD candidateAnnalisa Candelori, Phd candidate

Page 3: Inheritance of coat colour and type of  fleece in alpaca

Experimental Segregation DesignExperimental Segregation Design

An experimental trial involving 17 alpaca rams and 230 alpaca An experimental trial involving 17 alpaca rams and 230 alpaca dams was performed at the Experimental Station of dams was performed at the Experimental Station of Quimsachata, Peru. The Station is located on the Andean Quimsachata, Peru. The Station is located on the Andean Plateau at 4300 m under the management of the INIA ILLPA Plateau at 4300 m under the management of the INIA ILLPA PUNO. The trial is organised in a hierarchical scheme as PUNO. The trial is organised in a hierarchical scheme as follows:follows:

One hundred forty nine One hundred forty nine (149) crias were born. At (149) crias were born. At birth, the type of fleece birth, the type of fleece and the coat colour were and the coat colour were identified. Blood samples identified. Blood samples and skin biopsies for and skin biopsies for molecular genetic analysis molecular genetic analysis were sampled from were sampled from parents and crias.parents and crias.

CROSSCROSS RAMSRAMS DAMSDAMS

White x WhiteWhite x White2 Suri2 Suri 30 Huacaya30 Huacaya

2 Huacaya2 Huacaya 30 Suri30 Suri

White x White x ColouredColoured

2 Suri2 Suri 30 Huacaya Café30 Huacaya Café

2 Huacaya2 Huacaya10 Suri Lf + 8 Ap + 10 Suri Lf + 8 Ap + GrGr

Black x BlackBlack x Black2 Suri2 Suri 30 Huacaya30 Huacaya

2 Huacaya2 Huacaya 17 Suri17 Suri

Black x BrownBlack x Brown1 Suri1 Suri 15 Huacaya15 Huacaya

1 Huacaya1 Huacaya 15 Suri15 Suri

Brown x Brown x BrownBrown

2 Suri2 Suri 30 Huacaya30 Huacaya

1 Huacaya1 Huacaya 15 Suri15 Suri

TotalTotal 1717 230230

Page 4: Inheritance of coat colour and type of  fleece in alpaca

• RENIERI C:, VALBONESI A., LA MANNA V., ANTONINI M., ASPARRIN M., 2009. Inheritance of Suri and Huacaya type of fleece in alpaca. Italian J. Anim. Sci., 8, 83-91.

• VALBONESI A., PACHECO C., LEBBORONI G., ANTONINI M., RENIERI C., 2009. Phenotipic and genetic variation of fleece weight, fineness of fibre and its coefficient of variability in Peruvian alpaca. EAAP Annual Meeting 2009, abstract

• VALBONESI A., APAZA CASTILLO N., LA MANNA V., GONZALES CASTILLO M.L., HUANCA MAMANI T., RENIERI C., 2009. Inheritance of white, black and brown coat color in alpaca by segregation analysis. Eaap Annual Meeting 2009, abstract 3947

• CREPALDI P., MILANESI E., NICOLOSO L., LA MANNA V., RENIERI C., 2009. Evualuation of MC1R gene polymorphism in Vicugna pacos. EAAP Annual Meeting 2009, abstract 4093.

• BATHRACHALAM C., LA MANNA V., RENIERI C., LA TERZA A., 2009. Asip and MC1R in coat color variation in Alpaca. Eaap 2009, abstract 4398.

• PRESCIUTTINI S., VALBONESI A., APAZA N., ANTONINI M., HUANCA T., RENIERI C., 2010. Fleece variation in alpaca (Vicugna pacos): a two-locus model for the Suri/Huacaya phenotype. BMC Genetics 2010, 11:70. http://www.biomedcentral.com/1471-2156/11/70

• ALLAIN D., RENIERI C., 2010. Genetics of fibre production and fleece characteristics in small ruminants, Angora rabbit and South American camelids. Animal, 2010 (4) 9: 1472-1481

• La Manna V., La Terza A., Grezzi S., Saravanaperumal S.A., Apaza N., Huanca T., Renieri C., Bozzi R., 2010. A microsatellite study on the genetic distance between suri and huacaya sub populations in Peruvian Alpacas (Vicugna pacos). BMC Genetics, submitted.

• Chandramohan B., La Manna V., Renieri C., La Terza A., 2010. Asip and MC1R genes in Alpaca. WCGALP, PP2-154, p. 238

Page 5: Inheritance of coat colour and type of  fleece in alpaca
Page 6: Inheritance of coat colour and type of  fleece in alpaca

FULL WHITEDominante or recessive ?

• Dominante– Bustinza (1968)– Davis (2010)

• Recessive– Gandarillas (1971)

Page 7: Inheritance of coat colour and type of  fleece in alpaca

BUSTINZA (1968)

• WHITE x WHITE– 619 full and spotted white– 387 solid

• WHITE x SOLID– 746 full and spotted white– 712 solid

Page 8: Inheritance of coat colour and type of  fleece in alpaca

DAVID (2010)

• WHITE x WHITE– 71 full and spotted white– 30 solid

• WHITE x SOLID– 91 full and spotted white– 108 solid

Page 9: Inheritance of coat colour and type of  fleece in alpaca

BLACK vs BROWN

• DOMINANCE OF BLACK– Davis (2010)

• DOMINANCE OF BROWN– Velasco (1981)– Gandarillas (1971)

Page 10: Inheritance of coat colour and type of  fleece in alpaca

VELASCO (1981)

• BLACK x BLACK– 5 black

• BLACK x BROWN– 3 black– 5 brown

• BROWN x BROWN– 4 black– 27 brown

Page 11: Inheritance of coat colour and type of  fleece in alpaca

DAVIS (2010)

• BLACK x BLACK– 44 black– 7 brown

• BLACK x BROWN– 26 black– 17 brown

• BROWN x BROWN– 16 black– 69 brown

Page 12: Inheritance of coat colour and type of  fleece in alpaca
Page 13: Inheritance of coat colour and type of  fleece in alpaca
Page 14: Inheritance of coat colour and type of  fleece in alpaca

Conclusions for white (1)

• The inheritance of white can be defined by a single gene segregation, without any modifying effect.

• It is independent and completely dominant on pigmented animals, without any difference in segregation on black and brown pattern.

• This hypothesis is fully supported by the segregations observed in crosses involving white rams and pigmented dams , as well as in crosses of white parents, assuming that the frequency of heterozygous females ranges from 35% up to 100%.

Page 15: Inheritance of coat colour and type of  fleece in alpaca

Conclusion for white (2)

• White in mammals arise from improper melanoblast development or survival, reflecting absence of mature melanocytes.

• White can be caused by defects at various stages of melanocytes development, including proliferation, survival, migration, invasion of the integument, hair follicle entry and melanocytes stem cell renewal (Baxter et al., 2004).

• Many white traits have been identified in mouse and man, and 10 of the genes have been cloned (Baxter et al., 2004).

• The hypothesis is that the gene for white in alpaca is among these loci.

Page 16: Inheritance of coat colour and type of  fleece in alpaca
Page 17: Inheritance of coat colour and type of  fleece in alpaca
Page 18: Inheritance of coat colour and type of  fleece in alpaca
Page 19: Inheritance of coat colour and type of  fleece in alpaca

Conclusion for black and brown

• Black is dominant over brown.

• This hypothesis is fully supported by the segregations observed in crosses involving black rams and brown dams , as well as in crosses of black parents, assuming that the frequency of heterozygous females ranges from 54% up to 100%.

Page 20: Inheritance of coat colour and type of  fleece in alpaca
Page 21: Inheritance of coat colour and type of  fleece in alpaca

API Faint BrownLight Brown

Grey BlackBrown

Alpaca – Huacaya TypeInternational Year of

Natural Fibers 2009

Page 22: Inheritance of coat colour and type of  fleece in alpaca

Alpaca – Suri Type

APIBrown

Redish brownGreyWhite

Black

International Year of Natural Fibers

2009

Page 23: Inheritance of coat colour and type of  fleece in alpaca

Mechanisam of action of Asip and MC1R

Page 24: Inheritance of coat colour and type of  fleece in alpaca

White (BL) X Brown (CA)

S0502BL

282298CA

076108LF

EEI-024NE

297204CC

072108BL

Black (NE) X Brown (CC)

Pedigree chart of samples in progressPedigree chart of samples in progress

Page 25: Inheritance of coat colour and type of  fleece in alpaca

• Up to now we amplified full coding and 3’ UT region of Asip and MC1R

• the full coding region of Asip comprises of 402 bp and it codes for a protein of 133 aa and 3’ UTR comprises of 243 bp

• the entire coding region for MC1R comprises of 954 bp and it codes for a protein of 317 aa and 3’UTR includes 626 bp

• Structure of AsipAsip mRNA

Our findings

AAAAAAAAA

3’ Un Translated Region

ATG TGA

Coding Region5’ UTR ???

AAAAAAAAA

3’ Un Translated Region

ATG TGA

Coding Region5’ UTR ???

402 bp402 bpBp ???Bp ??? 243 bp243 bp

626 bp626 bp954 bp954 bpBp ???Bp ???

Structure of MC1RMC1R mRNA

Page 26: Inheritance of coat colour and type of  fleece in alpaca
Page 27: Inheritance of coat colour and type of  fleece in alpaca
Page 28: Inheritance of coat colour and type of  fleece in alpaca
Page 29: Inheritance of coat colour and type of  fleece in alpaca
Page 30: Inheritance of coat colour and type of  fleece in alpaca

MC1R

Asip

Page 31: Inheritance of coat colour and type of  fleece in alpaca
Page 32: Inheritance of coat colour and type of  fleece in alpaca
Page 33: Inheritance of coat colour and type of  fleece in alpaca
Page 34: Inheritance of coat colour and type of  fleece in alpaca
Page 35: Inheritance of coat colour and type of  fleece in alpaca
Page 36: Inheritance of coat colour and type of  fleece in alpaca

MC1RMC1R sequence alingment of Black X Cafe claro sequence alingment of Black X Cafe claro 10 20 30 40 50 60 70 80 90 .........|.........|.........|.........|.........|.........|.........|.........|.........|ATGCCTGTGCTCGGCCCCCAGAGGAGGCTGCTGGGCTCCCTCAACTCCACCCCCCAAGCCACCACCCACCTCGGACTGGCCACCAACCAG ATGCCTGTGCTCGGCCCCCAGAGGAGGCTGCTGGGCTCCCTCAACTCCACCCCCCAAGCCACCACCCACCTCGGACTGGCCACCAACCAG ATGCCTGTGCTCGGCCCCCAGAGGAGGCTGCTGGGCTCCCTCAACTCCACCCCCCAAGCCACCACCCACCTCGGACTGGCCGCCAACCAG 100 110 120 130 140 150 160 170 180 .........|.........|.........|.........|.........|.........|.........|.........|.........|ACGGGGCCCCAGTGCCTGGAGGTGTCTGTTCCCGATGGGCTGTTCCTCAGCCTGGGGCTGGTGAGCCTCGTGGAGAACGTGCTGGTGGTGACGGGGCCCCAGTGCCTGGAGGTGTCTGTTCCCGATGGGCTGTTCCTCAGCCTGGGGCTGGTGAGCCTCGTGGAGAACGTGCTGGTGGTGATGGGGCCCCAGTGCCTGGAGGTGTCTGTTCCCGACGGGCTGTTCCTCAGCCTGGGGCTGGTGAGCCTCGTGGAGAACGTGCTGGTGGTG 190 200 210 220 230 240 250 260 270 .........|.........|.........|.........|.........|.........|.........|.........|.........|GCTGCCATCACCAAGAACCGCAACCTGCATTCTCCCATGTATTACTTCATCTGCTGCCTGGCCGCGTCGGACCTGCTGATGAGCATGAGCGCTGCCATCACCAAGAACCGCAACCTGCATTCTCCCATGTATTACTTCATCTGCTGCCTGGCCGCGTCGGACCTGCTGATGAGCATGAGCGCTGCCATCACCAAGAACCGCAACCTGCATTCTCCCATGTATTACTTCATCTGCTGCCTGGCCGCGTCGGACCTGCTGGTGAGCATGAGC 280 290 300 310 320 330 340 350 360 .........|.........|.........|.........|.........|.........|.........|.........|.........|AACGTGCTGGAGACGGCCGTCATGCTGCTGCTGGAGGCTGGCGCCCTGGCCACATGGGCTACGGTGGTGCAGCAGCTGGACAATGTCATGAACGTGCTGGAGACGGCCGTCATGCTGCTGCTGGAGGCTGGCGCCCTGGCCACATGGGCTACGGTGGTGCAGCAGCTGGACAATGTCATGAACGTGCTGGAGACGGCCGTCATGCTGCTGCTGGAGGCTGGCGCCCTGGCCACATGGGCTACGGTGGTGCAGCAGCTGGACAAGGTCATG 370 380 390 400 410 420 430 440 450 .........|.........|.........|.........|.........|.........|.........|.........|.........|GATGTGCTCATCTGCAGCTCCATGGTGTCCAGCCTCTGCTCTCTGGGTGCTATCGCCGTGGACCGCTACATCTCCATCTTCTATGCACTGGATGTGCTCATCTGCAGCTCCATGGTGTCCAGCCTCTGCTCTCTGGGTGCTATCGCCGTGGACCGCTACATCTCCATCTTCTATGCACTGGATGTGCTCATCTGCGGCTCCATGGTGTCCAGCCTCTGCTCTCTGGGTGCTATCGCCGTGGACCGCTACATCTCCATCTTCTATGCACTG 460 470 480 490 500 510 520 530 540 .........|.........|.........|.........|.........|.........|.........|.........|.........|CGCTACCACAGCATCGTGACGCTGCCTCGGGCATGGCGGGCCATCGCGGCCATCTGGGTGGCCAGCGTCCTCTCCAGCACCCTCTTCATCCGCTACCACAGCATCGTGACGCTGCCTCGGGCATGGCGGGCCATCGCGGCCATCTGGGTGGCCAGCGTCCTCTCCAGCACCCTCTTCATCCGCTACCACAGCATCGTGACGCTGCCTCGGGCATGGCGGGCCATCGCGGCCATCTGGGTGGCCAGCGTCCTCTCCAGCACCCTCTTCATC 550 560 570 580 590 600 610 620 630 .........|.........|.........|.........|.........|.........|.........|.........|.........|ACCTACTATGATCACACAGCCGTCCTCCTCTGTCTCGTCAGCTTTTTTGTAGCCATGCTGGCGCTCATGGCGGTGCTGTATGTCCACATGACCTACTATGATCACACAGCCGTCCTCCTCTGTCTCGTCAGCTTTTTTGTAGCCATGCTGGCGCTCATGGCGGTGCTGTATGTCCACATGACCTACTATGATCACACAGCCGTCCTCCTCTGTCTCGTCAGCTTTTTTGTAGCCATGCTGGCGCTCATGGCGGTGCTATATGTCCACATG 640 650 660 670 680 690 700 710 720 .........|.........|.........|.........|.........|.........|.........|.........|.........|CTGGCCCGGGCGTGCCAGCATGCCCGGGGCATCGCCCAGCTCCACAAGAGACAGCGCCCCATCCACCAGGGCTTTGGCCTCAAGGGCGTGCTGGCCCGGGCGTGCCAGCATGCCCGGGGCATCGCCCAGCTCCACAAGAGACAGCGCCCCATCCACCAGGGCTTTGGCCTCAAGGGCGTGCTGGCCCGGGCGTGCCAGCATGCCCGGGGCATCGCCCAGCTCCACAAGAGACAGCGCCCCATCCACCAGGGCTTTGGCCTCAAGGGCGTG 730 740 750 760 770 780 790 800 810 .........|.........|.........|.........|.........|.........|.........|.........|.........|GCCACGCTCACCATCCTGCTGGGCATCTTCTTCCTCTGCTGGGGCCCCTTCTTCCTGCACCTTTTCCTCATCGTCCTCTGTCCTCAGCACGCCACGCTCACCATCCTGCTGGGCATCTTCTTCCTCTGCTGGGGCCCCTTCTTCCTGCACCTTTTCCTCATCGTCCTCTGTCCTCAGCACGCCACGCTCACCATCCTGCTGGGCATCTTCTTCCTCTGCTGGGGCCCCTTCTTCCTGCACCTTTTCCTCATCGTCCTCTGTCCTCAGCAC 820 830 840 850 860 870 880 890 900 .........|.........|.........|.........|.........|.........|.........|.........|.........|CTTTTCCTCATCGTCCTCTGTCCTCAGCACAACCTCTTCCTTGCCCTCATCATCTGCAACTCCATCGTGGACCCCCTCATCTATGCCTTCCTTTTCCTCATCGTCCTCTGTCCTCAGCACAACCTCTTCCTTGCCCTCATCATCTGCAACTCCATCGTGGACCCCCTCATCTATGCCTTCCTTTTCCTCATCGTCCTCTGTCCTCAGCACAACCTCTTCCTTGCCCTCATCATCTGCAACTCCATCGTGGACCCCCTCATCTATGCCTTC 910 920 930 940 950.........|.........|.........|.........|.........|.........|CGCAGCCAGGAGCTCCGGAAGACACTCCAGGAGGTGCTGCAGTGCTCCTGGTGATGCAGCCAGGAGCTCCGGAAGACACTCCAGGAGGTGCTGCAGTGCTCCTGGTGATGCAGCCAGGAGCTCCGGAAGACACTCCAGGAAGTGCTGCAGTGCTCCTGGTGA

Father (bLACK)Father (bLACK)Mother (Cafe claro)Mother (Cafe claro)F1 (white)F1 (white)

TTTTAA

RRCCCC

MMMMVV

SSSSGG

Father (bLACK)Father (bLACK)Mother (Cafe claro)Mother (Cafe claro)F1 (white)F1 (white)

Father (bLACK)Father (bLACK)Mother (Cafe claro)Mother (Cafe claro)F1 (white)F1 (white)

Father (bLACK)Father (bLACK)Mother (Cafe claro)Mother (Cafe claro)F1 (white)F1 (white)

Father (bLACK)Father (bLACK)Mother (Cafe claro)Mother (Cafe claro)F1 (white)F1 (white)

Father (bLACK)Father (bLACK)Mother (Cafe claro)Mother (Cafe claro)F1 (white)F1 (white)

Father (bLACK)Father (bLACK)Mother (Cafe claro)Mother (Cafe claro)F1 (white)F1 (white)

Father (bLACK)Father (bLACK)Mother (Cafe claro)Mother (Cafe claro)F1 (white)F1 (white)

Father (bLACK)Father (bLACK)Mother (Cafe claro)Mother (Cafe claro)F1 (white)F1 (white)

Father (bLACK)Father (bLACK)Mother (Cafe claro)Mother (Cafe claro)F1 (white)F1 (white)

Father (bLACK)Father (bLACK)Mother (Cafe claro)Mother (Cafe claro)F1 (white)F1 (white)

Page 37: Inheritance of coat colour and type of  fleece in alpaca

10 20 30 40 50 60 70 80 90 .........|.........|.........|.........|.........|.........|.........|.........|.........|ATGCCTGTGCTCGGCCCCCAGAGGAGGCTGCTGGGCTCCCTCAACTCCACCCCCCAAGCCACCACCCACCTCGGACTGGCCGCCAACCAG ATGCCTGTGCTCGGCCCCCAGAGGAGGCTGCTGGGCTCCCTCAACTCCACCCCCCAAGCCACCACCCACCTCGGACTGGCCACCAACCAG ATGCCTGTGCTCGGCCCCCAGAGGAGGCTGCTGGGCTCCCTCAACTCCACCCCCCAAGCCACCACCCACCTCGGACTGGCCACCAACCAG 100 110 120 130 140 150 160 170 180 .........|.........|.........|.........|.........|.........|.........|.........|.........|ACGGGGCCCCAGTGCCTGGAGGTGTCTGTTCCCGACGGGCTGTTCCTCAGCCTGGGGCTGGTGAGCCTCGTGGAGAACGTGCTGGTGGTGACGGGGCCCCAGTGCCTGGAGGTGTCTGTTCCCGATGGGCTGTTCCTCAGCCTGGGGCTGGTGAGCCTCGTGGAGAACGTGCTGGTGGTGATGGGGCCCCAGTGCCTGGAGGTGTCTGTTCCCGATGGGCTGTTCCTCAGCCTGGGGCTGGTGAGCCTCGTGGAGAACGTGCTGGTGGTG 190 200 210 220 230 240 250 260 270 .........|.........|.........|.........|.........|.........|.........|.........|.........|GCTGCCATCACCAAGAACCGCAACCTGCATTCTCCCATGTATTACTTCATCTGCTGCCTGGCCGCGTCGGACCTGCTGGTGAGCATGAGCGCTGCCATCACCAAGAACCGCAACCTGCATTCTCCCATGTATTACTTCATCTGCTGCCTGGCCGCGTCGGACCTGCTGATGAGCATGAGCGCTGCCATCACCAAGAACCGCAACCTGCATTCTCCCATGTATTACTTCATCTGCTGCCTGGCCGCGTCGGACCTGCTGGTGAGCATGAGC 280 290 300 310 320 330 340 350 360 .........|.........|.........|.........|.........|.........|.........|.........|.........|AACGTGCTGGAGACGGCCGTCATGCTGCTGCTGGAGGCTGGCGCCCTGGCCACATGGGCTACGGTGGTGCAGCAGCTGGACAACGTCATGAACGTGCTGGAGACGGCCGTCATGCTGCTGCTGGAGGCTGGCGCCCTGGCCACATGGGCTACGGTGGTGCAGCAGCTGGACAATGTCATGAACGTGCTGGAGACGGCCGTCATGCTGCTGCTGGAGGCTGGCGCCCTGGCCACATGGGCTACGGTGGTGCAGCAGCTGGACAATGTCATG 370 380 390 400 410 420 430 440 450 .........|.........|.........|.........|.........|.........|.........|.........|.........|GATGTGCTCATCTGCGGCTCCATGGTGTCCAGCCTCTGCTCTCTGGGTGCTATCGCCGTGGACCGCTACATCTCCATCTTCTATGCACTGGATGTGCTCATCTGCAGCTCCATGGTGTCCAGCCTCTGCTCTCTGGGTGCTATCGCCGTGGACCGCTACATCTCCATCTTCTATGCACTGGATGTGCTCATCTGCGGCTCCATGGTGTCCAGCCTCTGCTCTCTGGGTGCTATCGCCGTGGACCGCTACATCTCCATCTTCTATGCACTG 460 470 480 490 500 510 520 530 540 .........|.........|.........|.........|.........|.........|.........|.........|.........|CGCTACCACAGCATCGTGACGCTGCCTCGGGCATGGCGGGCCATCGCGGCCATCTGGGTGGCCAGCGTCCTCTCCAGCACCCTCTTCATCCGCTACCACAGCATCGTGACGCTGCCTCGGGCATGGCGGGCCATCGCGGCCATCTGGGTGGCCAGCGTCCTCTCCAGCACCCTCTTCATCCGCTACCACAGCATCGTGACGCTGCCTCGGGCATGGCGGGCCATCGCGGCCATCTGGGTGGCCAGCGTCCTCTCCAGCACCCTCTTCATC 550 560 570 580 590 600 610 620 630 .........|.........|.........|.........|.........|.........|.........|.........|.........|ACCTACTATGATCACACAGCCGTCCTCCTCTGTCTCGTCAGCTTTTTTGTAGCCATGCTGGCGCTCATGGCGGTGCTATATGTCCACATGACCTACTATGATCACACAGCCGTCCTCCTCTGTCTCGTCAGCTTTTTTGTAGCCATGCTGGCGCTCATGGCGGTGCTGTATGTCCACATGACCTACTATGATCACACAGCCGTCCTCCTCTGTCTCGTCAGCTTTTTTGTAGCCATGCTGGCGCTCATGGCGGTGCTGTATGTCCACATG 640 650 660 670 680 690 700 710 720 .........|.........|.........|.........|.........|.........|.........|.........|.........|CTGGCCCGGGCGTGCCAGCATGCCCGGGGCATCGCCCAGCTCCACAAGAGACAGCGCCCCATCCACCAGGGCTTTGGCCTCAAGGGCGTGCTGGCCCGGGCGTGCCAGCATGCCCGGGGCATCGCCCAGCTCCACAAGAGACAGCGCCCCATCCACCAGGGCTTTGGCCTCAAGGGCGTGCTGGCCCGGGCGTGCCAGCATGCCCGGGGCATCGCCCAGCTCCACAAGAGACAGCGCCCCATCCACCAGGGCTTTGGCCTCAAGGGCGTG 730 740 750 760 770 780 790 800 810 .........|.........|.........|.........|.........|.........|.........|.........|.........|GCCACGCTCACCATCCTGCTGGGCATCTTCTTCCTCTGCTGGGGCCCCTTCTTCCTGCACCTTTTCCTCATCGTCCTCTGTCCTCAGCACGCCACGCTCACCATCCTGCTGGGCATCTTCTTCCTCTGCTGGGGCCCCTTCTTCCTGCACCTTTTCCTCATCGTCCTCTGTCCTCAGCACGCCACGCTCACCATCCTGCTGGGCATCTTCTTCCTCTGCTGGGGCCCCTTCTTCCTGCACCTTTTCCTCATCGTCCTCTGTCCTCAGCAC 820 830 840 850 860 870 880 890 900 .........|.........|.........|.........|.........|.........|.........|.........|.........|CTTTTCCTCATCGTCCTCTGTCCTCAGCACAACCTCTTCCTTGCCCTCATCATCTGCAACTCCATCGTGGACCCCCTCATCTATGCCTTCCTTTTCCTCATCGTCCTCTGTCCTCAGCACAACCTCTTCCTTGCCCTCATCATCTGCAACTCCATCGTGGACCCCCTCATCTATGCCTTCCTTTTCCTCATCGTCCTCTGTCCTCAGCACAACCTCTTCCTTGCCCTCATCATCTGCAACTCCATCGTGGACCCCCTCATCTATGCCTTC 910 920 930 940 950.........|.........|.........|.........|.........|.........|TGCAGCCAGGAGCTCCGGAAGACACTCCAGGAAGTGCTGCAGTGCTCCTGGTGACGCAGCCAGGAGCTCCGGAAGACACTCCAGGAGGTGCTGCAGTGCTCCTGGTGACGCAGCCAGGAGCTCCGGAAGACACTCCAGGAGGTGCTGCAGTGCTCCTGGTGA

Father (White)Father (White)Mother (Cafe)Mother (Cafe)F1 (Light fawn)F1 (Light fawn)

Father (White)Father (White)Mother (Cafe)Mother (Cafe)F1 (Light fawn)F1 (Light fawn)

Father (White)Father (White)Mother (Cafe)Mother (Cafe)F1 (Light fawn)F1 (Light fawn)

Father (White)Father (White)Mother (Cafe)Mother (Cafe)F1 (Light fawn)F1 (Light fawn)

Father (White)Father (White)Mother (Cafe)Mother (Cafe)F1 (Light fawn)F1 (Light fawn)

Father (White)Father (White)Mother (Cafe)Mother (Cafe)F1 (Light fawn)F1 (Light fawn)

Father (White)Father (White)Mother (Cafe)Mother (Cafe)F1 (Light fawn)F1 (Light fawn)

Father (White)Father (White)Mother (Cafe)Mother (Cafe)F1 (Light fawn)F1 (Light fawn)

Father (White)Father (White)Mother (Cafe)Mother (Cafe)F1 (Light fawn)F1 (Light fawn)

Father (White)Father (White)Mother (Cafe)Mother (Cafe)F1 (Light fawn)F1 (Light fawn)

Father (White)Father (White)Mother (Cafe)Mother (Cafe)F1 (Light fawn)F1 (Light fawn)

MC1RMC1R Sequence alignment of White X Cafe Sequence alignment of White X Cafe

AATTTT

TTTTMM

CCRRRR

GGSSGG

Page 38: Inheritance of coat colour and type of  fleece in alpaca
Page 39: Inheritance of coat colour and type of  fleece in alpaca
Page 40: Inheritance of coat colour and type of  fleece in alpaca

Conclusion for Asip and MC1R

Page 41: Inheritance of coat colour and type of  fleece in alpaca
Page 42: Inheritance of coat colour and type of  fleece in alpaca

HIPÓTESIS GENÉTICAS

• Gene dominante: Velasco J., 1980

• Gene recesivo: Calle Escobar R., 1984

• Gene dominante o aplotipo: Ponzoni et al., 1997; Baychelier, 2000; Sponenberg, 2010).

Page 43: Inheritance of coat colour and type of  fleece in alpaca

VELASCO (1981)

• HUACAYA x HUACAYA– 129 H

• SURI x HUACAYA– 9 S– 3 H

• SURI x SURI– 422 S– 89 H

Page 44: Inheritance of coat colour and type of  fleece in alpaca

PONZONI et al. (1997)

• HUACAYA x HUACAYA– 145 H

• SURI x HUACAYA– 11 S– 13 H

• SURI x SURI– 29 S– 6 H

Page 45: Inheritance of coat colour and type of  fleece in alpaca

SPONENBERG (2010)

• HUACAYA x HUACAYA– 4 S– 19633 H

• SURI x HUACAYA– 56 S– 89 H

• SURI x SURI– 1702 S– 278 H

Page 46: Inheritance of coat colour and type of  fleece in alpaca
Page 47: Inheritance of coat colour and type of  fleece in alpaca
Page 48: Inheritance of coat colour and type of  fleece in alpaca
Page 49: Inheritance of coat colour and type of  fleece in alpaca
Page 50: Inheritance of coat colour and type of  fleece in alpaca
Page 51: Inheritance of coat colour and type of  fleece in alpaca
Page 52: Inheritance of coat colour and type of  fleece in alpaca

SURI FROM HUACAYA PARENTS

• Flint (1996)– 12 among 8,446 1.4

• Renieri et al. (2009)– 3 among 2,126 1.4

• Sponenberg (2010)– 4 among 19633 0.025

Page 53: Inheritance of coat colour and type of  fleece in alpaca
Page 54: Inheritance of coat colour and type of  fleece in alpaca

Nueva mutación dominante

Mutación con sobre exprésion genica

Tasa de mutación directa

= 3/2126 = 0.001411101 = 1,411101 x 10-3

Page 55: Inheritance of coat colour and type of  fleece in alpaca
Page 56: Inheritance of coat colour and type of  fleece in alpaca

CRUZAMIENTOS MACHOS HEMBRAS

BLANCO X BLANCO 2 SURI 30 HUACAYA

2 HUACAYA 30 SURI

BLANCO X COLOR 2 SURI 30 HUACAYA CAFÉ

2 HUACAYA 10 SURI LF + 8 AP + GR

COLOR X COLOR

NEGRO X NEGRO 2 SURI 30 HUACAYA

2 HUACAYA 17 SURI

NEGRO X CAFÉ 1 SURI 15 HUACAYA

1 HUACAYA 15 SURI

CAFÉ X CAFÉ 2 SURI 30 HUACAYA

1 HUACAYA 15 SURI

TOTAL : 17 230

Page 57: Inheritance of coat colour and type of  fleece in alpaca
Page 58: Inheritance of coat colour and type of  fleece in alpaca
Page 59: Inheritance of coat colour and type of  fleece in alpaca

HUACAYA GENOTYPE

DOBLE RECESSIVE

ab/ab

Page 60: Inheritance of coat colour and type of  fleece in alpaca

SURIGENOTYPE vs PHENOTYPE

NO SEGREGATING GENOTYPES

AA BBAA BbAa BBAa Bb

AA bbaa BB

SEGREGATINGGENOTYPES

Aa Bb

Aa bb

aa Bb

Page 61: Inheritance of coat colour and type of  fleece in alpaca

TWO LINKED LOCI

TEST CROSS

AB/ab x ab/ab

AB//abconfiguration CIS

Ab//aBconfiguracion TRANS

Page 62: Inheritance of coat colour and type of  fleece in alpaca

CONFIGURATION CISAB//ab x ab//ab

AB//ab SURI

ab//ab HUACAYA

Segregation ratio 1:1

THE MODEL IS INDISTINGUISHABLE FROM A

SINGLE LOCUS RECESSIVE MODEL

Page 63: Inheritance of coat colour and type of  fleece in alpaca

R1SEGREGATION RATIO

R1 = ½ - h Huacaya : ½ + h Suri

Ratio close to 1 : 1

Page 64: Inheritance of coat colour and type of  fleece in alpaca

CONFIGURATION TRANSAB//aB x ab//ab

Ab//ab SURI

aB//ab SURI

NO SEGREGATION OF HACAYA

RECOMBINATION h

Page 65: Inheritance of coat colour and type of  fleece in alpaca

R2SEGREGATION RATIO

R2 = ½ h Huacaya : 1 – ½ h Suri

Ratio close 0 : 1

Page 66: Inheritance of coat colour and type of  fleece in alpaca

hRECOMBINATION RATE

MAXIMUM LIKELIHOOD ESTIMATE

h =0,09995% confidence limits

0.029 – 0.204

Page 67: Inheritance of coat colour and type of  fleece in alpaca
Page 68: Inheritance of coat colour and type of  fleece in alpaca
Page 69: Inheritance of coat colour and type of  fleece in alpaca
Page 70: Inheritance of coat colour and type of  fleece in alpaca
Page 71: Inheritance of coat colour and type of  fleece in alpaca
Page 72: Inheritance of coat colour and type of  fleece in alpaca
Page 73: Inheritance of coat colour and type of  fleece in alpaca
Page 74: Inheritance of coat colour and type of  fleece in alpaca

Conclusions

• analysis of molecular variance (AMOVA), Nei’s and Cavalli-Sforza’s distance all suggest that there is no genetic differentiation between the two Suri and Huacaya populations for the studied loci.

Page 75: Inheritance of coat colour and type of  fleece in alpaca

Recommended