+ All Categories
Home > Documents > Inorganic Chemistry 2

Inorganic Chemistry 2

Date post: 11-Jan-2022
Category:
Upload: others
View: 11 times
Download: 0 times
Share this document with a friend
46
1 Advanced Inorganic Chemistry Alireza Gorji [email protected] Department of Chemistry, Yazd University 1. Crystal Field Theory CFT 2. Ligand Field Theory LFT 3. Molecular Orbital Theory MOT Bonding in Coordination Chemistry اسیون کوئوردینمی در شی پیوند2 [email protected]
Transcript
Page 1: Inorganic Chemistry 2

12/4/2015

1

Advanced Inorganic Chemistry

Alireza [email protected]

Department of Chemistry, Yazd University

1. Crystal Field Theory CFT

2. Ligand Field Theory LFT

3. Molecular Orbital Theory MOT

Bonding in Coordination Chemistry

پیوند در شیمی کوئوردیناسیون

[email protected]

Page 2: Inorganic Chemistry 2

12/4/2015

2

[email protected]

t2g

π-donor ligands

[email protected]

Page 3: Inorganic Chemistry 2

12/4/2015

3

π-acceptor ligands

CN-, CO, PR3, C2H4

ML π-bonding (π-back bonding)

[email protected]

[email protected] 6

Page 4: Inorganic Chemistry 2

12/4/2015

4

[email protected] 7

[email protected] 8

Page 5: Inorganic Chemistry 2

12/4/2015

5

[email protected] 9

[email protected] 10

Page 6: Inorganic Chemistry 2

12/4/2015

6

[email protected] 11

[email protected] 12

Page 7: Inorganic Chemistry 2

12/4/2015

7

[email protected] 13

[email protected] 14

Page 8: Inorganic Chemistry 2

12/4/2015

8

[email protected] 15

[email protected] 16

Page 9: Inorganic Chemistry 2

12/4/2015

9

[email protected] 17

[email protected] 18

Page 10: Inorganic Chemistry 2

12/4/2015

10

[email protected] 19

[email protected] 20

Page 11: Inorganic Chemistry 2

12/4/2015

11

[email protected] 21

[email protected] 22

Page 12: Inorganic Chemistry 2

12/4/2015

12

[email protected] 23

[email protected] 24

Page 13: Inorganic Chemistry 2

12/4/2015

13

[email protected] 25

1d-d transition

Ligand Field transition

The Electronic Spectra of Coordination Compounds

طیف الکترونی ترکیبات کوئوردیناسیون

[email protected]

Page 14: Inorganic Chemistry 2

12/4/2015

14

The aim of this chapter is to demonstrate how to interpret the origins of the

electronic spectra of coordination comps and to correlate these spectra with bonding.

The spectrum of the d3 complex [Cr(NH3)6] in aqueous solution

The Electronic Spectra of Coordination Compounds

[email protected]

[email protected]

Page 15: Inorganic Chemistry 2

12/4/2015

15

[email protected]

The classification of microstates

We start the analysis by setting up a table of microstates of the d2

configuration;have been only the microstates allowed by the pauli

principle have been included.The largest value of ML, which for a d2

configuration is +4. This state must belong to a term with L=4 (a G

term).

We can concluded that the terms of a 3d2 configuration are 1G, 3F, 1D, 3P, and 1S. These terms account for all 45 permitted states

Term Number of state1G 9x1 = 93F 7x3 = 211D 5x1 = 53P 3x3 = 91S 1x1 = 1

Total: 45

[email protected]

Page 16: Inorganic Chemistry 2

12/4/2015

16

It is possible to identify the term of lowest energy by using Hund’s rule

1. For a given configuration, the term with the greatest multiplicity

lies lowest in energy. For the d2 configuration, this rule predicts that

the ground state will be either 3F or 3P.

2. For a term of given multiplicity, the greater value of L, the lower

the energy. In this case, the 3F term is lower in energy than 3P

term.The ground term of a d2 species such as Ti2+ is expected to be 3F.

Thus, for d2 the rules predict the order

3F 3P 1G 1D 1S

but the order observed for Ti2+ from spectroscopy is

3F 1D 3P 1G 1S

The energies of the term

[email protected]

The Racah Repulsion Parameters

[email protected]

Page 17: Inorganic Chemistry 2

12/4/2015

17

Energies of d2 free ion terms

3F 1D 3P 1G 1S

[email protected]

Values for Racah Parameters

[email protected]

Page 18: Inorganic Chemistry 2

12/4/2015

18

Splitting of d2 free ion terms in Octahedral field

[email protected]

Splitting of d2 free ion terms in Octahedral field

[email protected]

Page 19: Inorganic Chemistry 2

12/4/2015

19

[email protected]

Splitting of dn free ion terms in Ligand fields

Tanabe-Sugano diagram for d2 config. Orgel diagram for d2 config.

[email protected]

1

2

31

2

Page 20: Inorganic Chemistry 2

12/4/2015

20

3T1g

3T2g

3T1g

3A2g

Electronic Transitions of d2

ion in Octahedral Field

[email protected]

4T1g

4T2g

4T1g

4A2g

Electronic Transitions of d7

ion in Octahedral Field

[email protected]

d5+2

Page 21: Inorganic Chemistry 2

12/4/2015

21

Electronic spectrum of [Co(H2O)6]2+

[email protected]

4T1g

4T2g

4T1g

4T1g (P)

4T1g

4A2g

3T2g

[email protected] 42

3T1g

3T1g

3A2g

4T1g

4T2g

4T1g

4A2g

d5+2d2

d2 , d7 Oh

Page 22: Inorganic Chemistry 2

12/4/2015

22

Hole Formalism in Electronic Transitions of dn ion

43

[email protected]

d7 d3

d2 d8

d2 d7 dn d10-ndn d5+n

Electronic spectrum of [Cr(OH2)6]3+

[email protected]

1

2

3

4A2g

4T2g

4A2g

4T1g

4A2g

4T1g(P)

Page 23: Inorganic Chemistry 2

12/4/2015

23

3

Electronic spectrum of [Ni(OH2)6]2+

[email protected]

3A2g

3T2g

3A2g

3T1g

3A2g

3T1g (P)

12

[email protected] 46

d2 , d7 Td

d2 , d7 Oh

d3 , d8 Td

d3 , d8 Oh

Page 24: Inorganic Chemistry 2

12/4/2015

24

[email protected] 47

d2 , d7 Ohd3 , d8 Oh

[email protected]

Electronic Transitions of d1 ion in Octahedral FieldThe number of microstates possible for dX configuration is given by formula

)!(!

!

XNX

N

d1 case corresponds to X = 1 and N = 10 (maximum occupancy of the d-level). The number of microstates is then 10 which means that any of the five degenerate d-orbitals may be occupied by an electron with a spin of ½ or - ½.

The orbital angular momentum for Ti3+, L = 2, the spin S = 1/2 and the term is 2D

Page 25: Inorganic Chemistry 2

12/4/2015

25

2T2g

2Eg

Electronic Transitions of d1 ion in Octahedral Field

[email protected]

lmax

Hole Formalism in Electronic Transitions of dn ion

[email protected]

d4 d9

dn d10-n

d1 d6

dn d5+n

Page 26: Inorganic Chemistry 2

12/4/2015

26

[email protected] 51

Td Oh

2T2g

2E

Td Oh

[email protected] 52

d1 , d6 Td

d1 , d6 Oh

d4 , d9 Td

d4 , d9 Oh

Page 27: Inorganic Chemistry 2

12/4/2015

27

[email protected]

12T2g

2Eg

2T2g

2Eg

15T2g

5Eg

Electronic spectrum of [Fe(OH2)6]2+

[email protected]

5T2g

5Eg

Page 28: Inorganic Chemistry 2

12/4/2015

28

Electronic spectrum of [Cr(H2O)6]2+

15Eg(D) 5T2g

[email protected]

5Eg(D)

5T2g

5

5

5

[email protected] 56

Electronic spectrum of [Cu(OH2)6]2+ 12Eg

2T2g

2Eg

2T2g

2

2

2

Page 29: Inorganic Chemistry 2

12/4/2015

29

d5 metal complexes• Terms of free d5 metal ions are 6S, 4G, 4F, 4D, 4P, 2I, 2H, 2G, 2G, 2F, 2F, 2D, 2D, 2D, 2P, 2S (16 terms, 252

microstates). The lowest energy term is 6S.

• In the octahedral ligand field the 6S term will NOT be split. It gives rise to a single 6A1g term.

• The 6A1g term is the ground state term at weak ligand fields. NO terms of the same multiplicity exists and thus NO spin-allowed e-e transition is possible.

• At strong ligand fields spin pairing occurs (t23e2 t2

5). As a result, the ground state term and the multiplicity change from 6A1g to 2T2g(I)

.

4G

(t2)5

(t2)4(e)1

(t2)2(e)3

(t2)1(e)4

octahedral and tetrahedral d5

2T2

6A1

4P

4T1

4T2

4E

4T1

4T1

4T2

4E

4A2

6S

free ion weak field strong field

[email protected]

[email protected] 58

Configuration (example) Ground

state

Excited states w/same S # Abs.bands

d1 oct (Ti(H2O)63+), d9 tetr. 2T2

2E2 1

d2 oct (V(H2O)63+), d8 tetr. 3T1 (F) 3T2,

3T1 (P), 3A2 3

d3 oct (Cr(H2O)63+), d7 tetr. 4A2

4T2, 4T1 (F), 4T1 (P) 3

d4 oct (Cr(H2O)62+), d6 tetr. 5E2

5T2 1

d5 oct (Mn(H2O)62+) or tetr. 6A1 none 0

d6 oct (Fe(H2O)62+), d4 tetr. 5T2

5E2 1

d7 oct (Co(H2O)62+), d3 tetr. 4T1 (F) 4T2,

4T1 (P), 4A2 3

d8 oct (Ni(H2O)62+), d2 tetr. 3A2

3T2, 3T1 (F), 3T1 (P) 3

d9 oct (Cu(NH3)62+), d1 tetr. 2E2

2T2 1

Summary

Page 30: Inorganic Chemistry 2

12/4/2015

30

[email protected] 59

Summary

Electronic Transitions in Low Spin Complexes

[email protected] 60

low spin

high spin Orgel Diagram

Tanabe-Sugano Diagram

Tanabe-Sugano Diagram

Page 31: Inorganic Chemistry 2

12/4/2015

31

[email protected] 61

Tanabe – Sugano Diagram

d2 A=0 C/B=4.42

E(1S)= A+14B+7C E(1S)= 14B+7C E(1S)/B= 14+7C/B 44.9 52.9E(1G)= A+4B+2C E(1G)= 4B+2C E(1G)/B= 4+2C/B 12.8 20.8

E(1D)= A-3B+2C E(1D)= -3B+2C E(1D)/B= -3+2C/B 5.8 13.8

E(3P)= A+7B E(3P)= +7B E(3P)/B= +7 7 15E(3F)= A-8B E(3F)= -8B E(3F)/B= -8 -8 0

Tanabe – Sugano Diagram

[email protected] 62

Page 32: Inorganic Chemistry 2

12/4/2015

32

[email protected] 63

low spin high spin low spin high spin

[email protected] 64

low spin high spin low spin high spin

Page 33: Inorganic Chemistry 2

12/4/2015

33

[email protected] 65

[email protected] 66

The Nephelauxetic Effect[V(H2O)6]

3+. B = 610 cm-1

V3+(g) B = 861 cm-1

This value indicates that electron repulsions are weaker than in the free ion. This

weakening occurs because the occupied moleculer orbitals are delocalized over the

ligands and away from the metal.

nephelauxetic parameter = B (comp)/ B(free ion)

The values of depend on the metal ion and the ligand. They vary along the

nephelauxetic series:

Br- Cl- CN- NH3 H2O F-

A small value of indicates a large measure of d-electron delocalization on to the

ligands and hence a significant character in the complex.The softer ligand, the

smaller the nephelauxetic parameter.

Page 34: Inorganic Chemistry 2

12/4/2015

34

[email protected] 67

Determination of O and B

O

OO

d1, d3, d4, d6, d8, d9 1=O

d2, d7 3 - 1 =O

[email protected]

CrF63-

14900, 22700 , 34400 cm-1

= 14900 cm-1

2 + 3 - 3 1 = 15B’ = 12400

15B’ = 12400

B’ ≈ 827 cm-1

d3, d81 =

2 = 7.5B’ + 1.5 - 0.5 [225 B’2+2-18B’]1/2

3 = 7.5B’ + 1.5 + 0.5 [225 B’2+2-18B’]1/2

(2 +3 -31)/15=B’

Page 35: Inorganic Chemistry 2

12/4/2015

35

V(H2O)63+ (d2)

1 = 17800 (3T1g 3T2g)

2 = 25700 (3T1g3T1g(P)) cm-1

The third expected transition 3 (3T1g(F) 3A2g) is far in the UV region and is masked by other absorptions. We can calculate the 3.

2/1 = 1.44

2:

2/B = 42(approximately): B= 2/42 = 25700cm-1/42 = 610 cm-1

1:

1/B = 29 (approximately): B= 1/29 = 17800 cm-1/29= 610 cm-1

Since o/B= 31, o= 31xB = 31x 610 cm-1 = 19000cm-1

3 ≈ (60)(610)=37210 cm-1

[email protected]

1

2

UV/VIS spectra of three

chromium(III) complexes:

a) [Cr(en)3]3+

b) [Cr(ox)3]3-

c) [CrF6]3-

look for the shift of the two

absorption peaks 1 and 2

to lower frequencies.

a)

b)

c)

[email protected]

a) [Cr(en)3]3+

b) [Cr(ox)3]3-

c) [CrF6]3-

Page 36: Inorganic Chemistry 2

12/4/2015

36

[email protected] 71

[Ni(en)3]2+(purple)

9000 cm-114000 cm-1

25000 cm-1

[Ni(H2O)6]2+(green)

B1g B2g

B1g Eg

Free ion term Oh D4h

When degenerate orbitals are asymmetrically occupied, J-T distortions arelikely

[email protected]

John-Teller Distortion in Spectrum

Page 37: Inorganic Chemistry 2

12/4/2015

37

Eg A1gEg B1g

[email protected]

12T2g

2Eg

2- Charge Transfer Transitions

[email protected] 74Ligand to Metal Charge Transfer Metal to Ligand Charge Transfer

Page 38: Inorganic Chemistry 2

12/4/2015

38

[email protected] 75

Ligand to Metal Charge Transfer (LMCT)

Ligand to Metal Charge Transfer

[email protected] 76

Ligand to Metal Charge Transfer (LMCT)

Page 39: Inorganic Chemistry 2

12/4/2015

39

[email protected] 77

Metal to Ligand Charge Transfer (MLCT)

Metal to Ligand Charge Transfer

[email protected] 78

Intensity & Selection Rule

Bear-Lambert

A: جذب

b: cm طول مسیرعبور نور

A = log(I0/I)

: M-1cm-1 ضریب جذب مولی

c: M غلظت

A = bc

A

l

Page 40: Inorganic Chemistry 2

12/4/2015

40

Intensity & Selection Rule

[email protected] 79

i

j Transition Moment Integral

0

0 dO ji

Forbiden

Allowed

غیر مجاز

مجاز

اربیتیاسپینی

g g

u u

غیر مجاز

S0غیر مجاز

[email protected] 80

Intensity & Selection Rule

اسپین تقارن (M-1cm-1)

d-d (Oh) مجاز

(S=0)

غیرمجاز

g g

20-200

d-d (Td) مجاز

(S=0)

مجاز >250

d-d غیرمجاز

(S0)

<1

CT مجاز

(S=0)

مجاز 1000-50000

Page 41: Inorganic Chemistry 2

12/4/2015

41

[email protected] 81

The spectrum of the d3 complex [Cr(NH3)6] in aqueous solution

The Electronic Spectra of Coordination Compounds

Electronic spectrum of [Mn(H2O)6]2+

Why is absorption by [Mn(H2O)6]2+

so weak?6A1Excited states is no spin-allo-wed absoption, may be very weakforbidden transitions to excited stateof spin multiplicity other than 6

[email protected]

S0 غیر مجازاسپین

Page 42: Inorganic Chemistry 2

12/4/2015

42

[email protected]

Vibronic Coupling

Absorption

, cm-12500012500

[email protected]

Absorption of a TMC in the UV and visible regions results from transitions of electrons between the energy levels available in the metal complex.

Of our interest will be:

1) The number of absorption bands

2) The energy of absorption bands

3) The intensity of absorption bands

4) The band width of absorption bands

1

2

Page 43: Inorganic Chemistry 2

12/4/2015

43

[email protected] 85

[email protected] 86

Page 44: Inorganic Chemistry 2

12/4/2015

44

[email protected] 87

[email protected] 88

Page 45: Inorganic Chemistry 2

12/4/2015

45

[email protected] 89

[email protected] 90

Page 46: Inorganic Chemistry 2

12/4/2015

46

[email protected] 91

[email protected] 92


Recommended