+ All Categories
Home > Documents > INSTRUCTION MANUAL OPTICAL INTERFACE …toshiba-tds.com/tandd/pdf/pcsystems/Manual/G1IF1-6F2S...1 6...

INSTRUCTION MANUAL OPTICAL INTERFACE …toshiba-tds.com/tandd/pdf/pcsystems/Manual/G1IF1-6F2S...1 6...

Date post: 19-Mar-2018
Category:
Upload: truongnhi
View: 214 times
Download: 0 times
Share this document with a friend
27
6 F 2 S 0 7 5 5 INSTRUCTION MANUAL OPTICAL INTERFACE UNIT (CROSS-SITE FIBRE LINK UNIT) G1IF1 © TOSHIBA Corporation 2002 All Rights Reserved. ( Ver. 0.6 )
Transcript

6 F 2 S 0 7 5 5

INSTRUCTION MANUAL OPTICAL INTERFACE UNIT

(CROSS-SITE FIBRE LINK UNIT)

G1IF1

© TOSHIBA Corporation 2002 All Rights Reserved.

( Ver. 0.6 )

1

6 F 2 S 0 7 5 5

Safety Precautions Before using this product, please read this chapter carefully.

This chapter describes the safety precautions recommended when using the optical interface unit type G1IF1. Before installing and using the equipment, this chapter must be thoroughly read and understood.

Explanation of symbols used Signal words such as DANGER, WARNING, and two kinds of CAUTION, will be followed by important safety information that must be carefully reviewed.

Indicates an imminently hazardous situation which will result in death or serious injury if you do not follow the instructions.

Indicates a potentially hazardous situation which could result in death or serious injury if you do not follow the instructions.

CAUTION Indicates a potentially hazardous situation which if not avoided, may result in minor injury or moderate injury.

CAUTION Indicates a potentially hazardous situation which if not avoided, may result in property damage.

DANGER

WARNING

2

6 F 2 S 0 7 5 5

• Exposed terminals Do not touch the terminals of this equipment while the power is on, as the high voltage generated is dangerous.

• Residual voltage Hazardous voltage can be present in the DC circuit just after switching off the DC power supply. It takes approximately 30 seconds for the voltage to discharge.

• Fibre optic When connecting this equipment via an optical fibre, do not look directly at the optical signal.

CAUTION

• Earth The earthing terminal of the equipment must be securely earthed.

CAUTION

• Operating environment The equipment must only used within the range of ambient temperature, humidity and dust detailed in the specification and in an environment free of abnormal vibration.

• Ratings Before applying the DC power supply to the equipment, check that they conform to the equipment ratings.

• Connection cable Carefully handle the connection cable without applying excessive force.

• Modification Do not modify this equipment, as this may cause the equipment to malfunction.

• Disposal When disposing of this equipment, do so in a safe manner according to local regulations.

WARNING

3

6 F 2 S 0 7 5 5

Contents Safety Precautions 1

1. Introduction 4

2. Application 4

3. Description 5 3.1 General Description 5 3.2 Electrical Connections 6 3.3 Indications 10 3.4 Response during Communication Fail 10

4. Installation 11 4.1 Receipt of Relays 11 4.2 Mounting 11 4.3 Electrostatic Discharge 11 4.4 Handling Precautions 11 4.5 External Connections 12

5. Commissioning and Maintenance 13 5.1 General 13 5.2 Precautions 13 5.3 Preparation 13 5.4 Commissioning Procedure 14 5.5 Maintenance 14

Appendix A Outline of Optical Interface Unit 15

Appendix B Technical Data 19

The data given in this manual are subject to change without notice. (Ver. 0.6)

4

6 F 2 S 0 7 5 5

1. Introduction The Optical interface unit G1IF1 facilitates connection of the fibre optic protection signalling channel of the GRL100 line differential relay to remote multiplexing equipment associated with a switched telecommunications network. This manual should be used in conjunction with the manual for the GRL100 relay.

Table 1 G1IF1 Models

Model Telecommunication Outer case G1IF1-01∗∗ X.21 With outer case G1IF1-02∗∗ CCITT-G703-1.2.1 Option(*) G1IF1-03∗∗ CCITT-G703-1.2.2 or -1.2.3 Option(*) G1IF1-04∗∗ X.21 Option(*)

(*): If the outer case is required, it is ordered separately as option. See Appendix C.

2. Application The Optical interface unit G1IF1 provides a connection between a fibre optic communications channel and a switched telecommunications network. It is applied in the protection signalling channel of the GRL100 line differential relay, allowing two GRL100 relays to communicate over a telecommunications channel.

The G1IF1 provides an interface for connection of the fibre optic protection signalling port of the GRL100 relay to remote multiplexing equipment having a standard CCITT G703 or X.21 type interface to the electrical connections of a telecommunications system. Figure 2.1 illustrates the application of the G1IF1 unit.

Figure 2.1 Application of G1IF1 Unit

In most situations the telecommunications equipment is remote from the protection equipment in the substation. The G1IF1 unit is normally located close to the multiplexer and may be up to 2km away from the GRL100 relay. The fibre optic cable must be either 50/125µm (for distances up to 1km) or 62.5/125µm (for distances up to 2km) and should be terminated with standard ST type connectors.

The G1IF1 is connected to the switched telecommunications network via a multiplexer. The interface is defined according to the CCITT G703 or X.21 standard. The connections should be made using shielded, twisted pair cable.

GRL100 Line Diff. Relay

G1IF1 Switched Telecomms Muliplexer

Fibre Optic Cable

CCITT G703 or X.21 Interface

5

6 F 2 S 0 7 5 5

3. Description 3.1 General Description

Figure 3.1 illustrates the operation of the Optical interface unit. The GRL100 relay and the telecommunications multiplexer are illustrated to facilitate the explanation.

The G1IF1 unit provides three fibre optic connectors. The transmitter / receiver pair TX/RX connect to the GRL protection signalling channel. The clock transmitter CLK can be used to transmit the CCITT-G703-1.2.3(1.2.2) or X.21 timing signal, although it is not required in applications such as this, where the receive signal from the G703-1.2.3(1.2.2) or X.21 is synchronized to the clock signal. The CLK is not used for the CCITT-G703-1.2.1 interface. An additional connection point, labelled SPARE (not shown in Figure 3.1), can be used for fitting of a spare fibre optic cable.

Optical to electrical and electrical to optical conversion is performed on the transmit and receive signals from the GRL100 relay respectively. CMI type encoding is used for the optical signals. CMI encoding always results in a 50% duty factor, making the signals easy to check during commissioning.

Code conversion is performed for connection to the CCITT-G703 or X.21 interface. G703 or X.21 is a synchronous interface, and provides a 64kHz timing signal, which the G1IF1 uses for synchronisation. The connections to the G703 or X.21 interface use balanced drivers and receivers in accordance with the G703 or RS422A/V.11 standard.

GRL100

G1IF1 Telecomms Muliplexer

50/125µm62.5/125µmFibre

CCITT G703 Cable

Code Conversion

Sync.

E/O

E/O Serial Comms Interface

Sync.

64kHz

O/E

O/E

Code Conversion

+

-Auxiliary DC Supply DC/DC

Converter

TX

TXRX

RX

CLKE/O O/E

CLK

(∗)

(∗): not required for CCITT G703 1.2.1.

Figure 3.1 Operation of G1IF1 Unit

6

6 F 2 S 0 7 5 5

3.2 Electrical Connections

A 12-way ring terminal, connector TB1 of G1IF1 provides connections for the auxiliary dc supply as well as test points for the telecommunications channel. The G1IF1-01 provides the additional X.21 connector is a 15-way DIN type.

The G1IF1 auxiliary dc supply input has a nominal 48V rating as standard for communications equipment. However the G1IF1 can also be provided with dc 110/125V rating or dc 220/250V rating for 110/125V or 220/250V substation battery supplies.

The connections to the G1IF1-01 are shown in Figure 3.2 (a), not including the test points. The figure also illustrates the functions of three removable links. The X.21 interface circuit is designed for 500V isolation against the rest of the system. However, it may not be desirable to leave the common connection floating, particularly where high levels of interference are expected. Therefore the X.21 common can be tied via a 10kΩ resistance to the frame ground, by fitting link J1. Alternatively, the fitting of links JIG and JFG connects the X.21 common directly to the frame ground.

It is recommended that a shielded cable be used for the X.21 interface. The shield should be tied directly to the frame ground by the fitting of link JFG.

DC/DC

ISOLATION

Code Conversion

GRL100 Relay Fibre-optic cable

O/E

E/O TX

RX

+5V

0V

+

-

Code Conversion

A 4

A 6

8

TX

CLK

RX Communication

equipment (X.21 interface:D-sub 15pin)

Power on

Data from COM

Data from Relay

CLK from COM TB1-2

TB1-1

TB1-3

FG

P

N

E/O

CLK

SG R

CG

1

JFG

JIG

J1

A 2

B 9

B 11

B 13

FG

LG

FG

Figure 3.2 (a) Connection Diagram for G1IF1-01 and G1IF1-04

7

6 F 2 S 0 7 5 5

Figure 3.2 (b) shows the connections for G1IF1-02 and -03.

TB1-12

Code Conversion

GRL100 Relay Fibre-optic cable

O/E

E/O TX

RX

Code Conversion

TB1-8

TB1-10

TX

CLK

RX Communication

equipment

Power on

TX from COM

TX from RELAY

CLK from COM

E/O

CLK

TB1- 6

TB1- 7

TB1-9

TB1-11

+5V

0V

+

- TB1-2

TB1-1

TB1-3

FG1

P

N

LG

FG

G703 1.2.3(1.2.2) I/F only

FG2

DC/DC

Figure 3.2 (b) Connection Diagram for G1IF1-02 and G1IF1-03

8

6 F 2 S 0 7 5 5

Figure 3.3 shows the signal definitions for the G703 or X.21 connection, note that a number of the signals specified for the standard are not required for this application. Table 3.1 specifies all electrical connections to the G1IF1 unit.

(a) Signal Definitions for G1IF1-01 (X.21) Interface

(b) Signal Definitions for G1IF1-02 and -03 (G703) Interface

Figure 3.3 Signal Definitions

11

1 6 7

8

9

10

Shield Ground

Ta FG

Tb

Ra Rb

Sa Sb

Transmit

Receive

Signal Timing

G1IF1-02, 03 Telecommunications Multiplexer

(G703 1.2.3, 1.2.2 I/F only)

13

1 2 9 3

10

4 11 5

12 6

7

15 8

14

Shield Ground

Ta SG

Tb

Ra Rb

Sa Sb

Common Ground

Transmit

Receive

Signal Timing

G1IF1-01 Telecommunications Multiplexer

9

6 F 2 S 0 7 5 5

Table 3.1 Electrical Connections

(a) Electrical Connections to the G1IF1-01 and -04 (X.21)

Circuit Signal Signal Terminal Numbers

Name Type TB1 X.21

Ta V.11/RS422 6 2 Transmit

Tb V.11/RS422 7 9

Sa V.11/RS422 10 6 Timing

Sb V.11/RS422 11 13

Ra V.11/RS422 8 4 Receive

Rb V.11/RS422 9 11

P 2 - Power

Supply N

3 -

FG Frame Ground 1 -

LG Internal Common - -

SG Shield Ground - 1

Ground/

Common

CG Common Ground 12 8

(b) Electrical Connections to the G1IF1-02 and -03 (G703)

Circuit Signal Signal Terminal Numbers

Name Type TB1

Ta CCITT G703 6 Transmit

Tb CCITT G703 7

Sa CCITT G703 10 Timing

Sb CCITT G703 11

Ra CCITT G703 8 Receive

Rb CCITT G703 9

P 2 Power

Supply N

3

FG1 Frame Ground 1

LG Internal Common -

FG2 Shield Ground 12

Ground/

Common

CG Common Ground -

DC rated voltage

48V dc

10

6 F 2 S 0 7 5 5

3.3 Indications

The G1IF1 unit provides four light emitting diodes (LEDs) for indication purposes. Table 3.2 details the labels, colours and functions associated with each LED.

Table 3.2 Indication LEDs

LED Label Colour Function

Power Green Lit when auxiliary dc power is present

TX from COM Yellow Indicates data transmission from the telecommunications channel to the GRL100 relay

TX from RELAY Yellow Indicates data transmission from the GRL100 relay to the telecommunications channel

CLK from COM Yellow Indicates the timing signal from the G703 or X.21 interface.

3.4 Response during Communication Fail

(1) When the data transmission from telecommunication multiplexer to G1IF1 is stopped:

The LED “TX from COM” turns off and the data “0” is transmitted to the relay. At that time, the relay at local terminal detects a communication failure.

(2) When the data transmission on fibre optic interface from the relay to G1IF1 is stopped:

The LED “TX from RELAY” turns off and the send signal (the voltage between terminals TB1-6 and TB1-7) becomes “0V”. “0V” means undefined data in G703-1.2.1 and means “0” data in G703-1.2.2 / 1.2.3.

(3) When the timing signal from telecommunication multiplexer to G1IF1 is stopped:

The LED “CLK from COM” turns off and the data transmission on fibre optic interface from G1IF1 to the relay is stopped. The data transmission to telecommunication multiplexer is continued. The relay at the remote terminal detects a communication failure intermittently because the bit synchronising between the relay at the local terminal and telecommunication multiplexer.

11

6 F 2 S 0 7 5 5

4. Installation 4.1 Receipt of Relays

On receiving the G1IF1, carry out the acceptance inspection immediately. In particular, check for damage during transportation, and if any is found, contact the vendor.

Always store the unit in a clean, dry environment.

4.2 Mounting

Refer to Appendix A for details of mechanical fixings.

4.3 Electrostatic Discharge

CAUTION

The printed circuit board (PCB) within the G1IF1 is not intended to be a removable module. Do not remove the PCB from the unit case, since electronic components on the PCB are very sensitive to electrostatic discharge. If it is absolutely essential to take the PCB out of the case, do not touch the electronic components and terminals with your bare hands. Additionally, always put the PCB in a conductive anti-static bag when storing it.

4.4 Handling Precautions

A person's normal movements can easily generate electrostatic potential of several thousand volts. Discharge of these voltages into semiconductor devices when handling electronic circuits can cause serious damage, which often may not be immediately apparent but the reliability of the circuit will have been reduced.

The electronic circuits are completely safe from electrostatic discharge when housed in the case. Do not expose them to risk of damage by removing the PCB unnecessarily.

The unit incorporates the highest practicable protection for its semiconductor devices. However, if it becomes necessary to remove the PCB, precautions should be taken to preserve the high reliability and long life for which the equipment has been designed and manufactured.

CAUTION

• Before removing the PCB, ensure that you are at the same electrostatic potential as the equipment by touching the case.

• Handle only the edges of the PCB. Avoid touching the electronic components, PCB surface or connectors.

• Do not pass the PCB to another person without first ensuring you are both at the same electrostatic potential. Shaking hands achieves equipotential.

• Place the PCB on an anti-static surface, or on a conducting surface which is at the same potential as yourself.

• Do not place the PCB in a polystyrene tray.

It is strongly recommended that detailed investigations on electronic circuitry should be carried out in a Special Handling Area such as described in the IEC 60747.

12

6 F 2 S 0 7 5 5

4.5 External Connections

External connections to the G1IF1 are shown in section 3.2. There are three types of connection to the unit.

The fibre optic connections are made with standard ST type connectors. Transmitters are of the LED type. When handling fibre optic cables, care should be taken so as not to cause damage by rough treatment or by exceeding the minimum bend radius of the fibre.

The CCITT G703 interface connection is made with a ring terminal block labeled TB1. The X.21 interface connection is made with a standard 15-way DIN type connector.

The power supply and safety earth connections should be made with ring-type crimp terminals to the terminal block TB1.

13

6 F 2 S 0 7 5 5

5. Commissioning and Maintenance 5.1 General

The G1IF1 should be commissioned in conjunction with the GRL100 relay with which it is specified.

Test personnel must be familiar with general relay testing practices and safety precautions to avoid personal injuries or equipment damage.

5.2 Precautions

CAUTION

• The unit is provided with a grounding terminal. Before starting the work, always make sure the unit is grounded.

• Ensure that the auxiliary supply connections are properly fixed to their terminals. • Before turning on the power, check that the polarity and voltage of the power supply are

correct. • Turn off the auxiliary supply before checking the interior of the unit.

• While the power is on, do not mount/dismount the PCB.

Failure to observe any of the precautions above may cause damage or malfunction of the unit. Refer to section 4.4 for information on handling precautions.

5.3 Preparation

Test equipment The following test equipment is required for the commissioning tests.

• DC power supply.

• Calibrated voltmeter.

Visual inspection After unpacking the product, check for any damage to the case. If there is any damage, the internal module might also have been affected. Contact the vendor.

Unit ratings Check that the items described on the nameplate on the front of the unit conform to the user’s specification. The items are: unit type and model, and auxiliary DC supply voltage rating.

14

6 F 2 S 0 7 5 5

5.4 Commissioning Procedure

The G1IF1 should be commissioned in conjunction with the GRL100 relay with which it is specified. Refer to the GRL100 manual for full details. It is necessary to commission both ends of the protection scheme together.

Ensure that all necessary communication connections are made at each end of the protection scheme. Apply auxiliary power to both GRL100 relays and to both G1IF1 units. Any failure in communication will be indicated by the GRL100 relays. If communication is healthy then proceed with commissioning of the GRL100 relays.

5.5 Maintenance

Periodic maintenance is not necessary.

15

6 F 2 S 0 7 5 5

Appendix A

Outline of Optical Interface Unit

16

6 F 2 S 0 7 5 5

Dimensions and Connections

TOSHIBA

168

180

195 130

66

2- Φ5

2-5×9

RX

TB1

1

12

TX CLK SPARE

X.21

156

Power

TX from COM

TX from RELAY

CLK from COM

For G1IF1-01∗∗, and G1IF1-04∗∗ only

17

6 F 2 S 0 7 5 5

Outer Case Dimensions for G1IF1-01∗∗

4-Φ6

166 200 226 246

266

300

326

346

87

CROSS SITE FIBRE LINK UNIT

18

6 F 2 S 0 7 5 5

Outer Case Dimensions for G1RK7-0102 and -0103 (Option)

4-Φ6

166 200 226 246

266

300

326

346

87

OPTICAL INTERFACE UNIT

For G1RK7-0103 only

19

6 F 2 S 0 7 5 5

Appendix B

Technical Data

20

6 F 2 S 0 7 5 5

TECHNICAL DATA

Ratings DC power supply: 48Vdc

110Vdc/125Vdc

220Vdc/250Vdc

(Normal range: -20% to +10% of rated voltage, superimposed AC voltage ≤ 12%, break in supply duration ≤ 20ms)

Burden: less than 8W

Optical Interface Operative Range: <1km with 50/125µm GI fibre (3dB/km)

<2km with 62.5/125µm GI fibre (3dB/km)

Wavelength: 820nm

Connector Type: ST

Fibre Type: 50/125µm or 62.5/125µm glass fibre

21

6 F 2 S 0 7 5 5

Environmental Performance Claims for G1IF1

Test Standards Details

Atmospheric Environment

Temperature IEC60068-2-1/2 Operating range: -10°C to +55°C. Storage / Transit: -25°C to +70°C.

Humidity IEC60068-2-3 56 days at 40°C and 93% relative humidity.

Enclosure Protection IEC60529 IP50 (Dust Proof) for G1IF1 with outer case IP40 (excluding terminal parts) for G1IF1 without outer case

Mechanical Environment

Vibration IEC60255-21-1 Response - Class 1 Endurance - Class 1

Shock and Bump IEC60255-21-2 Shock Response Class 1 Shock Withstand Class 1 Bump Class 1

Seismic IEC60255-21-3 Class 1

High Voltage Environment

Dielectric Withstand IEC60255-5 2kVrms for 1 minute between PSU terminals and earth. 500Vrms for 1 minute between X.21 interface terminals and earth.

High Voltage Impulse IEC60255-5 Three positive and three negative impulses of 5kV(peak), 1.2/50µs, 0.5J between all terminals and between all terminals and earth.

Electromagnetic Environment

High Frequency Disturbance /

Damped Oscillatory Wave

IEC60255-22-1 Class 3 IEC61000-4-12, EN61000-4-12 Class 3

1MHz 2.5kV applied to PSU terminals in common mode. 1MHz 1.0kV applied to PSU terminals in differential mode. 0.1MHz 2.5kV applied to PSU terminals in common mode. 0.1MHz 1.0kV applied to PSU terminals in differential mode.

Electrostatic Discharge

IEC60255-22-2 Class 4 8kV contact discharge. 15kV air discharge.

Radiated RF Electromagnetic Disturbance

IEC60255-22-3 Class 3

Field strength 10V/m for frequency sweeps of 80MHz to 1GHz and 1.7GHz to 2.2GHz. Additional spot tests at 80, 160, 450, 900 and 1890Mhz.

Fast Transient Disturbance

IEC60255-22-4 Class 4 4kV, 2.5kHz, 5/50ns applied to PSU inputs. 2kV, 5kHz, 5/50ns applied to G703 or X.21 interface terminals.

Conducted RF Electromagnetic Disturbance

IEC60255-22-6 Class 3 10Vrms applied over frequency range 150kHz to 100Mhz. Additional spot tests at 27 and 68MHz.

Conducted Disturbance over freq. Range 15Hz to 150kHz

IEC61000-4-16, EN61000-4-16, Class 3

Varying voltages applied in common mode as follows: 15Hz to 150Hz: 10V → 1Vrms (20dB/decade) 150Hz to 1.5kHz: 1Vrms 1.5kHz to 15kHz: 1 → 10Vrms (20dB/decade) 15kHz to 150kHz: 10Vrms

22

6 F 2 S 0 7 5 5

Power Frequency Disturbance

IEC60255-22-7 300V 50Hz for 10s applied to PSU terminals in common mode.

Surge Immunity IEC61000-4-5, EN61000-4-5

1.2/50µs surge applied to PSU terminals in common/differential modes: 2kV/1kV (peak)

Conducted and Radiated Emissions

EN55022 Class A Conducted emissions: 0.15 to 0.50MHz: <79dB (peak) or <66dB (mean) 0.50 to 30MHz: <73dB (peak) or <60dB (mean)

Radiated emissions: 30 to 230MHz: <30dB 230 to 1000MHz: <37dB

Power Frequency Magnetic Field

IEC61000-4-8, EN61000-4-8, Class 4

Field applied at 50Hz with strengths of: 30A/m continuously, 300A/m for 1 second.

Pulsed Magnetic Field IEC61000-4-9, EN61000-4-9, Class 5

6.4/16µs magnetic pulses (positive and negative) applied with magnitude 1000A/m.

Damped Oscillatory Magnetic Field

IEC61000-4-10, EN61000-4-10, Class 5

Oscillation frequencies of 0.1MHz and 1MHz applied with magnitude 100A/m.

European Commission Directives

89/336/EEC

Compliance with the European Commission Electromagnetic Compatibility Directive is demonstrated according to generic EMC standards EN50081-2 and EN50082-2.

73/23/EEC

Compliance with the European Commission Low Voltage Directive is demonstrated according to generic safety standards EN61010-1 and EN60950.

R&TTE 1999/5/EC Complies with the European Commission Directive on Radio and Telecommunication Equipment.

23

6 F 2 S 0 7 5 5

Appendix C

Ordering

24

6 F 2 S 0 7 5 5

Optical Interface Unit

Outer Case (Option)

Type:

Optical interface unit G1IF1

Model:

For X21 with outer case

For CCITT-G703-1.2.1

For CCITT-G703-1.2.2 or 1.2.3

For X21

01

02

03

04

DC auxiliary power supply:

DC 48V/54V/60V

DC 110V/125V

DC 220V/250V

01

02

03

G1IF1 − −

Type:

Outer case for Optical interface unit G1RK7

Model:

For G1IF1-02∗∗ and G1IF1-03∗∗ For G1IF1-04∗∗

0102

0103

G1RK7 −

25

6 F 2 S 0 7 5 5

Version-up Records

Version No.

Date Revised Section Contents

0.0 Jul. 16, 2002 -- First issue.

0.1 Oct. 25, 2002 3.2 3.3

Modified Figure 3.2, 3.3 and Table 3.1. Modified Table 3.2

0.2 Jan. 17, 2003 3.2 Added the descriptions of “dc 125V” and “dc 250V” and modified Table 3.1.

0.3 Sep. 22, 2004 3.4 Added the Section 3.4.

0.4 Feb. 09, 2006 1 to 4 Appendices

Modified the description and figures. (Added G1IF1-01.) Modified Appendix A and B, and added Appendix C.

0.5 Jul. 6, 2006 1 Appendices

Modified Table 1. Modified Appendix A, B and C.

0.6 Nov. 30, 2007 Appendices Modified Appendix A. (P17)


Recommended