+ All Categories
Home > Documents > Instrumentation

Instrumentation

Date post: 09-Apr-2016
Category:
Upload: fpttmm
View: 4 times
Download: 1 times
Share this document with a friend
Description:
instrumentation
94
Instrumenta*on Chris Carr Monday 26 th November 2012 with thanks to Patrick Brown for many of the magnetometer slides
Transcript
Page 1: Instrumentation

Instrumenta*on  

Chris  Carr  Monday  26th  November  2012  

with  thanks  to  Patrick  Brown  

for  many  of  the  magnetometer  slides    

Page 2: Instrumentation

PG  Instrumenta*on  Lectures  2012  

•  Monday  26th  10:00  -­‐  11:30    1.  General  principles  and  prac-ce  for  instrumenta-on  2.  Design  for  the  space  environment    

•  Monday  26th  14:00  -­‐  15:30    3.  Magne-c  Field  Instruments    

•  Wednesday  5th  December  Tutorial  Session  (Juliet)  –  See  handout  

2  

Page 3: Instrumentation

The  Scien*fic  Method  

3  

Page 4: Instrumentation

The  Scien*fic  Method  

4  

Page 5: Instrumentation

General  principles  and  Prac*ce  for  Instrumenta*on  

General  Design  Considera*ons    Linear  Systems  

•  Transfer  Func*on  •  Series  systems  and  feedback  

Characterisa*on  •  Sta*c  Response,  Frequency  Response  and  Transient  Response  •  Calibra*on  

Digi*sa*on  •  Digital  Signals  •  Aliasing  

Feedback  •  Reason  for  using  

Fourier  •  Bandwidth  considera*ons  

Noise  •  Sources  and  Characteris*cs  

5  

Page 6: Instrumentation

Fluxgate  Magnetometer  Instrument  for  the    ESA/CNSA  ‘Double  Star’  Mission  

6  

Page 7: Instrumentation

Design    Considera*ons  

•  Measurement  Range  •  Resolu*on  •  Frequency  Response  •  Noise  •  Calibrated  accuracy  •  Stability  (over  *me  and  temperature)  •  Mass,  power,  telemetry  •  Reliability  •  Thermal  and  mechanical  stresses  •  Radia*on  •  Cost  •  Schedule  •  Poli*cs!  

7  

Page 8: Instrumentation

Block  Diagram  –  ‘Generic  Instrument’  

8  

Page 9: Instrumentation

Sensor  o`en  kept  apart  from  the  rest  of  the  instrument    •   Reduce  interference  •   Because  the  environment  is  hos*le  for  the  electronics  •   For  user  convenience  

Sensor  signal  is  usually  small/weak  Transmission  line  •   Preserves  the  signal  shape  and  strength  •   Prevents  interference  from  outside  signals  

Condi*oning  Electronics  •   Boosts  the  signal  (amplifica*on)  •   Removes  unwanted  signals  (filtering)  

Converts  from  a  voltage  to  a  sequence  of  

numbers  

We  can  do  much  more  sophis*cated  signal  

processing  in  the  ‘digital  domain’  

 

9  

Page 10: Instrumentation

Desired  characteris*cs  of  our    func*onal  elements    

•  Predictable  input/output  rela*onship  (Transfer  Func-on)    for  example  –  B  to  volts  for  a  sensor  –  volts  to  volts  for  a  filter,  or  amplifier  –  volts  to  ‘number’  for  Analogue  to  Digital  Converter  

•  Linear  input/output  response  –  Allows  Fourier  and  related  techniques  to  be  applied  

•  Isola-on  between  blocks  –  Each  block  does  not  influence  connected  elements  (no  ‘loading’)  –  Low  output  impedance  and  high  input  impedance  

Bolton:  Mechatronics   10  

Page 11: Instrumentation

Desired  characteris*cs  of  our    func*onal  elements    

•  Predictable  input/output  rela*onship  (Transfer  Func-on)    for  example  

•  Linear  input/output  response  •  Isola-on  between  blocks  

Physical  Quan*ty  

Low  Zout  High  Zin   Low  Zout  High  Zin   Low  Zout  High  Zin  

volts   volts  Filtering,    Amplifica*on  

More  usually  ADC    and  storage  

11  

The  sensor  shall  not  ‘load’  the  quan*ty  to  be  measured  

Page 12: Instrumentation

 Linear  Systems  and  the  Transfer  Func*on  

•  System  transfer  func*on  is  Laplace-­‐domain  representa*on  of  the  input/output  rela*onship    

G(s) =X(s)

Y (s)=

L{x(t)}L{y(t)}

Integral  Laplace  Transform   Note  similarity  to  Fourier  Transform  however    •  Is  single-­‐sided  (t  from  zero  to  infinity)  •  Transforms  to  a  func*on  of  the  complex  variable  s  •  The  Laplace  transform  has  no  direct  physical  

meaning  

L{f(t)} = F (s) =

Z 1

0f(t)e�stdt

s = � + j!12  

Page 13: Instrumentation

Generally  required  configura*ons:    Systems  in  series  and  with  feedback  

13  

X(s)

Y (s)= G1(s)G2(s)G3(s)

Bolton:  Mechatronics  

X(s)

Y (s)=

G(s)

1 +G(s)H(s)

Page 14: Instrumentation

U*lity  of  the  Transfer  Func*on  

14  x(t) = L�1{G(s)Y (s)}

•  Predict  output  x  for  any  arbitrary  input  y  –  or  vice-­‐versa  

Page 15: Instrumentation

Linearity  requires  func*onal  blocks  to  be      Linear  Time-­‐Invariant  

•  Governed  by  an  n’th-­‐order  linear  ordinary  differen*al  equa*on  of  the  form  

–  y(t)  is  the  input  (forcing  func-on)  –  x(t)  is  the  output  (response  func-on)  

•  Most  prac*cal  system  elements  can  be  modeled  as  zero,  first  or  second-­‐order  LTI    

a0x+ a1dx

dt

+ a2d

2x

dt

2. . . an

d

nx

dt

n= b0y

15  

Page 16: Instrumentation

Zero-­‐order  System  

•  No  *me-­‐dependence  –  Output  responds  instantly  to  input  

•  Characterised  by  Sta-c  Sensi-vity  •  Examples:  Poten*ometer,  ideal  amplifier  

–  Rare  in  reality,  but  many  devices  can  be  approximated  as  zero-­‐order  

a0x = b0y

Ks =b0a0

16  

Page 17: Instrumentation

First-­‐order  System  

•  For  the  sta*c  case  •  Exponen*al  *me  dependence    

characterised  by  -me  constant  •  Examples:  First-­‐order  filter  (e.g.  RC),  many  sensors  (e.g.  any  temperature  

sensor),  many  instruments  (e.g.  magnetometer)  

a0x+ a1dx

dt

= b0y

dx

dt

= 0 ! Ks =b0

a0

⌧ =a1a0

17  

Page 18: Instrumentation

Second-­‐order  System  

•  Sta*c  response  

•  Natural  frequency  

•  Damping  ra*o  

•  Examples:    2nd  order  filter,    many  mechanical,  electrical  and  mechatronic  systems  

a0x+ a1dx

dt

+ a2d

2x

dt

2= b0y

dx

dt

= 0 ! Ks =b0

a0

!0 =

ra0a2

⇠ =a1

2pa0a2

18  

Page 19: Instrumentation

Frequency  Response  for  the    Second-­‐order  System  

•  Recover  Frequency  Response  from  Transfer  Func*on  by  sejng  σ=0  

•  Bode  Plot  is  log-­‐log  plot  of  G(jω)  •  For  high-­‐damping  (ξ>1)  second-­‐

order  system  tends  to  first-­‐order  behaviour  

X(s)

Y (s)= G(s) ! G(j!)

19  

Bolton:  Mechatronics  

Page 20: Instrumentation

Proper*es  of  LTI  Systems  

1.  Frequency  Preserva*on  

2.  Superposi*on  

•  If  elements  are  LTI  then  system  will  be  LTI  •  Fourier  and  Laplace  methods  are  applicable  •  Linear  system  will  not  distort  signal  

–  Non-­‐linearity  will  result  in  genera*on  of  new  frequencies  or  Harmonic  Distor-on  

•  Instrumenter’s  goal  is  to  ensure  a  linear  design  

 Linear  

Time  Invariant  

System  

𝐴0 cos(𝜔0𝑡 + 𝜙0)   𝐴0′ cos(𝜔0𝑡 + 𝜙0′ )  

 Linear  

Time  Invariant  

System  

𝐴0 cos(𝜔0𝑡 + 𝜙0)  +  𝐴1 cos(𝜔1𝑡 + 𝜙1)  +…  

𝐴0′ cos(𝜔0𝑡 + 𝜙0′ )  +  

𝐴1′ cos(𝜔1𝑡 + 𝜙1′ )  +⋯  

20  

Page 21: Instrumentation

System  Characterisa*on  

•  Conclude  that  we  may  fully  characterise  a  system  by  measuring  its  1.   Transient  Response    

(typically  step-­‐input  y(t)=u(t))  2.   Sta-c  Response    

(a`er  transients  decayed,  typically  for  large  t)  3.   Frequency  Response    

(response  to  sinusoidal  input  swept  over  some  range  of  input  frequencies)  

21  

Page 22: Instrumentation

First  order  transient  response  

•  E.g.  temperature  sensor  suddenly  placed  in  hot  liquid  

•  Exponen*al  response  •  Can  measure  the  -me-­‐

constant  and  sta-c  sensi-vity  •  Also  derive  bandwidth  

!c =1

22  

Page 23: Instrumentation

Cluster  Magnetometer  Frequency  Response  

•  Bode  Plot  (Magnitude  part  only)  •  Bandwidth  is  defined  as  response  from  DC  to  ωc    

23  

-­‐3dB  

ωc    

Bandwidth  ~20Hz  

Page 24: Instrumentation

Sta*c  Response:  Devia*on  from  the  ideal  

Non-­‐Linearity  

Hysteresis  

24  

Offset  

All  may  introduce  non-­‐linear  effects  resul*ng  in  artefacts  in  the  data  especially  harmonic  distor*on    •  Offset  may  be  subtracted  •  Non-­‐linearity  and  hysteresis  more  pernicious  

Page 25: Instrumentation

Sta*c  Response  Measurement  

•  Comparison  with    reference  measurement  –  Best  es*mate  of  ‘True  Value’  –  Usually  from  a  ‘higher  quality’  

instrument  

•  Quan*fy  –  Sta*c  Sensi*vity  –  Linearity  –  Zero  offset    –  Hysteresis  

Doebelin:  Measurment  Systems  25  

Page 26: Instrumentation

Calibra*on  Hierarchy  

Primary  Standard  Interna*onally  Recognised  

Secondary  Standard  e.g.  NPL  Accuracy  ***  Cost  £££  

Ter*ary  Standard  e.g.  Specialist  Calibra*on  

Lab  Accuracy  **  Cost  ££  

In-­‐House  Calibra*on  Lab  e.g.  in  industry  or  university  Accuracy  *  Cost  £  

Ter*ary  Standard  e.g.    Specialist  Calibra*on  

Lab  Accuracy  **  Cost  ££  

Ter*ary  Standard  

Secondary  Standard  Other  Na*onal  

Ter*ary  Standard  Other  Na*onal  

26  

Page 27: Instrumentation

Calibra*on  is  used  to  es*mate  Systema*c  Error  

•  “Truth”  ≡  Reference  Measurement  •  “Bias”  ≡  Systema*c  Error  •  “Precision”  ≡  Std  Devia*on  of  distribu*on  

27  

Page 28: Instrumentation

Precision  is  not  the  same  as  Accuracy  

28  

Page 29: Instrumentation

Uncontrolled  External  Input  

•  Temperature-­‐dependent  sta*c-­‐sensi*vity  and  offset  •  Other  environmental  considera*ons  

–  Pressure,  accelera*on,  vibra*on,  illumina*on  –  Dri`,  ageing  (electronic  systems)  –  Wear  (mechanical  systems)  

29  

Page 30: Instrumentation

Calibra*on  Principle  

•  Compare  against  reference  measurement  with  other  input  factors  controlled  /  constant  –  Cover  parameter  space    –  Control  external  factors  such  as  

temperature  

30  

Page 31: Instrumentation

Calibra*on  Principle  

•  Helmholtz  coils  null  Earth’s  field  and  apply  test  B  

•  Temperature-­‐controlled  Box  houses  Magnetometer  under  test  

•  Reference  magnetometer  mounted  outside  box  

31  

Page 32: Instrumentation

Sampling  and  Digi*sa*on  

•  Is  a  2-­‐stage  process  •  Is  not  just  a  phenomenon  of  the  digital  age  •  All  laboratory  data  is  

1.  Sampled  (measurement  taken  every  minute)  2.  Digi*sed  (number  wriven  in  a  lab-­‐book)  

32  

Page 33: Instrumentation

1.  Sample  &  Hold  circuit  (regular  sampling)  

2.  Analogue  to  Digital  Converter  (linear  approxima*on)      

Electronic  Digi*ser  

33  

Page 34: Instrumentation

Quan*sa*on  

•  Sampling  quan*ses  *me  into  a  set  of  discrete  values  –  Want  regularly  spaced  samples  (sampling  *me  Ts)  –  Variability  or  ‘noise’  on  Ts  is  known  as  jiPer  –  Stable  clock  signal    

(e.g.  square-­‐wave)    will  ensure  regular,    low-­‐jiver  sampling    

•  Digi-sa-on  quan*ses    the  con*nuous  analogue    quan*ty  (usually  a  voltage)    as  a  discrete  number    –  Introduces  an  error    

to  the  digi*sed  signal  –  Quan-sa-on  Error  

34  

Page 35: Instrumentation

•  Quan*sa*on  error  will  be  –  over  a  long  series  of  input  values  –  uniformly  distributed  between  ±½  the  resolu*on  of  the  digi*ser  

•  Quan*sa*on  adds  noise  •  RMS  noise  added  is    

35  

NRMS =qp12

Page 36: Instrumentation

Nyquist  Theorem  

•  A  signal  can  only  be  properly  sampled  if  it  has  frequency  components  below  half  the  sample  rate  –  Wagon-­‐Wheel  Effect    –  This  is  Aliasing  

 

36  

Page 37: Instrumentation

Aliasing  

37  

Page 38: Instrumentation

Frequency-­‐domain  Characteris*cs  of  the  Digi*sed  Signal  next section. As an example of this, assume

fs

= 100 Hz and the input signal contains allof the frequencies 25, 70, 160 and 510 Hz addedtogether. The spectrum of the analogue signalwould show all these frequencies. The spectrumof the digital signal shows the frequencies 25,30, 40 and 10 Hz. The first is correct, but thelast 3 are aliases.

It gets worse. If we see a signal at 10 Hz inthe digital data we have no means of know-ing if the original analogue signal was 10 Hz,90 Hz, 110 Hz, 190 Hz etc. It could be thatall of these signals were present, so all of thealiases would add on top of the real 10 Hz sig-nal, thus destroying any knowledge we mightneed about the amplitude of the original 10 Hzsignal. This illustrates a key point about alias-ing: not only does it generate new false fre-quencies, it can also destroy information aboutthe correct, lower frequencies. Because it is soimportant, we will study this in more detail inthe first lab session.

The Frequency Characteristics ofSampled Signals

One important point to start with is that a sam-pled signal is fundamentally unlike any otherkind of continuous signal you will have comeacross before. According to equation 5.1, theoriginal signal has been multiplied by a series ofdelta functions to create what we might call an’impulse train’. It is non-zero for values of nT

s

,but zero in-between. This gives it a very com-plicated spectrum, which we can see by takingthe Fourier Transform of equation 5.1 to get3

3We will cover the integral Fourier transform in moredetail later on in the course. In general, the mathemat-ics for sampled signals and the equivalent transformsinto the frequency domain are rather involved and be-yond the scope of this course. The result is quoted hereto give an understanding of the behaviour of the sam-pled signal under the Fourier transform but you wouldnot be expected to know or derive this.

Fs

(!) =1

Ts

1X

n=�1F (! + n!

s

) (5.3)

!s

=2⇡

Ts

= 2⇡fs

This shows that the spectrum of the sampledsignal is the same as the original signal, but re-peated infinitely along the frequency axis. Fig-ure 5.3 gives a graphical illustration of this.Panels (a) and (b) show the original signal andits spectrum. We can see that the signal is lim-ited to a band of frequencies below the Nyquistfrequency, so we should be able to sample itproperly. In fact, we are sampling comfortablyabove this at about 3 times the highest fre-quency in the analogue signal. Note that thissignal and its spectrum is highly stylised; realsignals rarely have such neatly compact spec-tra, as we shall see later, however it illustratesa principle here.

Panel (c) shows the sampled version of the sig-nal, in the form of an impulse train, and inthe spectrum (d) we can see the new repeatingfrequencies generated by the sampling process.The reason for this is not straightforward butonce understood does provide a rather satisfy-ing explanation for aliasing. In equation 5.1we can see that the original signal was multi-plied by an infinite sequence of delta-functions(the so-called comb function). Now, the Fouriertransform of the comb function happens to beanother comb function4. Further, multiplica-tion in the time-domain is equivalent to con-volution in the frequency domain. Therefore,in the frequency-domain we expect that thespectrum of the sampled signal is the spectrumof the original signal convolved with a combfunction. This is why the spectrum repeats in-finitely. Note that in the figure only the posi-tive frequency range is shown. We know thatthe Fourier transform generates negative fre-quencies as well; this is what accounts for thepart of the spectrum labeled “lower-sideband”.The spectra “copies” repeat each multiple of thesample frequency. If we reduce the sample rate

4See the table of Fourier transforms in Poularikas

20

38  Figure 5.3: Sampled Signals in the Frequency Domain (from Smith, www.dspguide.com)

21

Proper  Sampling    (obeys  Nyquist)  

 Improper  Sampling  

(aliasing)  

Page 39: Instrumentation

Avoid  Aliasing  High  design  priority  

–  An*-­‐alias  filter  •  Filters  the  analogue  signal  •  Removes  frequencies  higher  than  the  Nyquist  limit    

39  

Page 40: Instrumentation

Feedback  

•  Many  sensors  are  non-­‐linear  over  the    input  range  we  need  

•  However  approximately  linear  over  a    limited  range  

•  We  can  use  Nega*ve  Feedback  to    operate  the  sensor  only  in  the  linear  regime  

•  Will  see  how  this  is  applied  to    Magnetometers  using    magne-c  feedback  

40  

Approximately    linear  range  

Page 41: Instrumentation

Feedback:  a  Frac*on  B  of  the  output  is  fed-­‐back  to  the  input  

If  B  is  posi*ve  then  we  have  posi-ve  feedback.  This  is  usually  Unstable  

41  

Page 42: Instrumentation

Example:  Climate  Feedback  

42  

Page 43: Instrumentation

If  B  is  nega*ve  then  we  have  nega-ve  feedback.  This  is  usually  Stable  

•  The  output  acts  so  as  to  reduce  the  input  •  The  Gain  of  the  system  is  reduced  •  This  is  also  called  Closed  Loop  Opera-on  •  Behaviour  of  the  Feedback  path  becomes  dominant  

43  

G =

A

1 +BA⇡ 1

Bfor BA � 1

Page 44: Instrumentation

Example:  Mechanical  Governor  Maintain  constant  speed  (independent  of  load)  

44  

Page 45: Instrumentation

Fourier  Representa*on  of  Signals  

•  Mul*plica*on  in  the  *me  domain  -­‐>  Convolu*on  in  the  frequency  domain  •  A  signal  which  is  finite  in  *me  is  theore*cally  infinite  in  frequency  •  Real  signals  have  large  bandwidths   45  

Page 46: Instrumentation

Discussion  ques*on:  

•  How  much  does  it  cost  to  build  an  instrument  to  generate  this  waveform?  

46  

t

f(t)

2

0 1.5 3 4.5 6 7.5

Page 47: Instrumentation

Answer  

•  A  mathema*cally  perfect  voltage  output  is  not  possible  •  Bandwidth  roughly  ∝  cost  •  We  will  always  lose  some  frequencies  and  corrupt  the  signal  

•  Engineering:  “The  Art  of  Compromise”  –  Fidelity  ∝  bandwidth  but  –  Noise  ∝  bandwidth  and  –  Bandwidth  costs  money  –  Etc…  

•  We  must  analyse  all  the  trade-­‐offs  when  designing  the  instrument  

47  

Page 48: Instrumentation

Noise  

•  Is  usually  the  limi*ng  factor  in  our  measurement  ability  •  Comes  from    

–  The  sensor  (physics  of  the  measurement)  –  The  electronics  –  Digi*sa*on  –  Interference  

•  We  will  consider  1.  Thermal  Noise  2.  Shot  Noise  3.  Flicker  Noise  (1/f)  

48  

Page 49: Instrumentation

Sources  of  noise  in  experimental  data  

Total  noise  in  measurement  

Intrinsic  Noise  

Sensor  physics  

E.g.  Barkhausen  noise  from  magne*c  materials  

Sensor  electronics  

Thermal  noise   Shot  noise  

Measurement  noise  

Quan*sa*on  noise  

Flicker  or  1/𝑓   noise  

Extrinsic  Noise  

Sensor  Pickup  

Environmental  Interference  e.g.  magne*c  

sources  

Electronic  Interference  

Conduc*ve  pickup  through  

power/signal  wires  

Radia*ve  pickup    by  

Magne*c  field  (induc*ve)  or  Electric  Field  (capaci*ve)  

49  

Page 50: Instrumentation

Noise  comes  from  stochas*c  processes  

•  Can  only  be  described  sta*s*cally  •  Amplitude  probability  func*on  

–  Normal  (Gaussian)  for  shot,  thermal,  flicker  –  Uniform  (flat)  for  quan*sa*on  noise  

•  Power  Spectrum  –  Flat  (white)  for  thermal,  shot    –  ∝1/𝑓     (pink)  

for  flicker  

50  

Page 51: Instrumentation

Thermal  Noise  

51  

 

      •  Random  thermal  mo*on  of  conduc*on  electrons  

•  Any  resistance  allows  the  material  to  support  an  electric  field  resul*ng  in  noise  voltage  

•  Model  as  ideal  (noiseless)  resistor    in  series  with    ideal  (zero-­‐resistance)  voltage  source    

•  RMS  noise  voltage  measured  across  any    resistance  R  with  a  meter  bandwidth  B  is  

   

•  Reduce  thermal  noise  by  –  Reducing  measurement  bandwidth  –  Reduce  temperature    

VNRMS =p

4RkBTB

Page 52: Instrumentation

Shot  Noise  

•  Sta*s*cal  fluctua*on  in  number  of  charge  carriers  crossing  a  poten*al  barrier  –  Prevalent  in  semiconductor  or  electron  tube  devices  –  Seen  as  noise  in  the  current  signal  from  the  device  –  Due  to  quan*sa*on  of  charge,  so  only  observed  with  small  currents  –  Not  present  wires  or  resis*ve  devices  where  long-­‐range  E-­‐field  interac*ons  act  

to  ‘smooth’  the  charge-­‐carrier  sta*s*cs  

•  RMS  current  noise  on  a  DC  current  I  measured  with  bandwidth  B    

52  

INRMS =p2eIB

Page 53: Instrumentation

Flicker  or   1/𝑓   noise  

•  A  fundamental  property  of  measurement  

•  Ubiquitous  •  Source  generally  unknown  •  Technology  dependent  

53  

Pf1. . . f2 = k

Z f2

f1

1

fdf = k ln

fhfl

Power / 1

f

Page 54: Instrumentation

Composite  Noise  Power  Spectrum  

54  

Consequences  and  Mi*ga*on  •  Noise  is  a  func*on  of  physical  parameters  such  as  temperature,  

resistance,  current  but  always  bandwidth    •  Reducing  bandwidth  reduces  total  noise  measured  

–  Use  filtering  –  Recall  though  that  bandwidth  reduc*on  impacts  signal  fidelity    –  Consider  more  sophis*cated  techniques  such  as  phase  sensi*ve  

detec*on  

Page 55: Instrumentation

55  

2.  Design  for  the  Space  Environment  

–  Accommoda*on  –  Mechanical  Stresses  –  Thermal  Stresses  –  Radia*on  –  Reliability/Redundancy      

Page 56: Instrumentation

Fluxgate  Magnetometer  Instrument:  Imperial  College,  IGeP  Braunschweig,  IWF  Graz,  NASA-­‐GSFC  

•  Radia*on  hard  •  Hi-­‐Rel  •  Dual-­‐redundant  bus  

architecture  •  Fault-­‐tolerant  by  

design  •  12-­‐years  con*nuous  

opera*on    (4  instruments)  

•  No  degrada*on    

56  

Page 57: Instrumentation

 Instrument  Accommoda*on    

on  the    Satellite  Pla|orm  

57  

•  Sensor  –  Boom-­‐mounted  –  Removed  from  magne*c  

sources  on  the  pla|orm  –  But  thermally  challenging  

and  exposed  to  radia*on  

•  Electronics  Box  –  Pla|orm-­‐mounted  –  Benign  thermal/radia*on  

environment  

Page 58: Instrumentation

58  

Sensor  and  Electronics    Accommoda*on  

Page 59: Instrumentation

Mechanical  Stress  

•  Test  design  for  –  Sta*c  load  

•  10’s  g  –  Random  load  

•  General  ‘strength’  test  –  Sinusoidal  load  

•  Search  for  resonances  –  Acous*c  load  

•  Exhaust  reflec*on  from  pad  –  Shock  test  

•  Stage  separa*on,  especially  upper-­‐stage    pyro-­‐separa*on  from  satellite  

•  Mission-­‐specific  test  levels  59  

Page 60: Instrumentation

Thermal  Stress  •  1361  Wm-­‐2  at  1RE    •  x10  at  Mercury  (BepiColombo)  or  Solar  Orbiter  perihelion  •  Local  cooling  by  conduc*on  and  radia*on  only  •  Conversely,  shadowed  

structure  down  to  100K  •  Rota*on  or  eclipses  

results  in  extreme  thermal  cycling  

•  Poten*al  for  cracking  or    deforma*on  

•  Material  selec*on  to  match  thermal  expansion  coeffs  

•  Electronics  and  solder  joints  par*cularly  vulnerable  

60  

Page 61: Instrumentation

Radia*on  Electron,  proton  and  heavy-­‐ion  effects  

•  Primarily  CMOS  and  bipolar  transistor  effects  

1.  Total  dose  effects  –  2kRad  LEO  –  20-­‐100kRad  polar  Earth  orbit  

(Cluster)  –  1MRad  at  Jupiter  

2.  Single  event  effects  –  High-­‐energy  par*cles  –  Transient  effects  such  as  

memory  ‘bit-­‐flips’  –  ‘Latch-­‐up’  –  Catastrophic  gate  rupture  

3.  Displacement  Damage  –  Crystal  lajce  corrup*on  –  Op*cs  and  optoelectronics  

specially  vulnerable  

 

61  

Total Dose Effects in MOS Gate Oxides

Holes are trapped at interface between VG

Electron-hole pairs

n+ n+ Source Drain

- -+

+ ++ +

+

+

from ionization in gate oxide gate oxide and channel

Ionization produces electron-hole pairs within the gate

Holes are trapped at oxide-silicon interface – Changes gate threshold voltage – Two types of traps: hole traps and interface traps

2008 Detector Workshop 8

Displacement Damage

Effects of Displacement Damage in Semiconductors – Minority carrier lifetime is degraded

• Reduces gain of bipolar transistors • Also affects optical detectors and some types of light-emitting diodes • Effects become important for proton fluences above 1010 p/cm2

– Mobility and carrier concentration are also affected Incident • Only important for high fluences particle

Particles Producing Displacement Damage – Protons (all energies) – Electrons with energies above 150 keV – Neutrons (from on-board power sources)

2008 Detector Workshop 22

Galactic Cosmic Rays

Extremely energetic particles – Produced by inter-galactic acceleration – They occur everywhere in space

GCR particles produce an intense track of electron-hole pairs along their path Charge collected in p-n junctions can cause a basic storage cell to change state (SEU)

Charge ~ Z2

+ + -

+ -+ -

+

+ + +

-

n

p-substrate + -

Incoming particle

Note the longer path length for strikes at angle

2008 Detector Workshop 37

Johnstone/NASA-­‐JPL  

Page 62: Instrumentation

Reliability  

•  Hi-­‐Rel  or  established  reliability  components  

•  Highest  level  of  fabrica*on  scru*ny  and  tes*ng  

•  ‘Burn-­‐in’  to  avoid  ‘infant  mortality’  

•  Special  processes  for  reliability  and  radia*on-­‐hardness  

•  Circuit  design  prac*ce  to  mi*gate  ‘single-­‐point  failures’  

•  Formal  methodologies:  –  Worst-­‐case  analysis  –  De-­‐ra*ng  –  Failure  Modes  Effects  and  Cri*cality  

Analysis  (FMECA)  

62  

Page 63: Instrumentation

63  

FGMOUTBOARD

SENSOR

FGMINBOARDSENSOR

DUALMULTIPLEXER

& ADC

FGM-OBELECTRONICS

FGM-IBELECTRONICS

bus #2

bus #1

DPU-1DPU-2 MSA

INTERFACE#1

INTERFACE#2DUAL

POWERSUPPLY

UNIT

DUALPOWER

MANAGEMENTUNIT

INTERNALPOWER

DISTRIBUTION

COMMAND &DATA

INTERFACE(REDUNDANT)

INTER-EXPERIMENT

LINKPOWERINTERFACES

REDUNDANTPRIME COMMAND &DATA

INTERFACE(PRIME)

NASA/GSFC IWF GRAZ TU-BS ICSTM

Cluster  FGM  Instrument  Block  

Diagram  

Redundancy  

Page 64: Instrumentation

3.  Magne*c  Field  Instruments  

•  Block  Diagram  for  Spacecra`  Mounted  Instrument  •  Magnetometers:  requirements  for  space  science  •  Proton  magnetometers  •  Op*cally  pumped  magnetometers  (Helium  and  related)  •  Induc*ve  magnetometers  

–  Rota*ng  coil  –  AC  ‘Search-­‐Coil’  type  –  DC  ‘Fluxgate’  type  

•  Magnetoresis*ve  magnetometers  •  Calibra*on  and  magne*c  cleanliness  

64  

Page 65: Instrumentation

65

Generic Spacecraft-Mounted Instrument

Instrument

Analogue

Spacecraft Instrument

Digital

Page 66: Instrumentation

66

Sensor Technology Range (T) Suitable for space

SQUID 10-14 – 10 No – Cryostat needed

Optically Pumped 10-14 – 10-4 Yes – B and |B|

Fluxgate 10-10 – 10-4 Yes – B

Nuclear Precession 10-11 – 10-2 Yes - |B|

Hall Effect 10-3 – 10-2 No

Search Coil 10-12 – 106 Yes for AC fields

•  Three B field components •  Bandwidth typically DC to 30Hz •  Wide dynamic range typically 0.01nT – 50,000nT •  High fidelity (low noise, linear, stable offsets) •  Low resources (mass, power, telemetry) •  Robust (radiation, thermal environment, vibration, shock and static load) •  Sensors fitted to a boom away from S/C magnetic disturbance

Requirements on a ‘DC magnetometer’ for space science

Page 67: Instrumentation

67

Proton Precession Magnetometers

•  Proton rich material eg water, kerosine •  Surrounded by induction coil •  Large external field applied to align

proton magnetic moments •  When applied field is removed abruptly,

protons will precess in phase around ambient field

•  This induces a small AC signal in coil •  Proportional to ambient field

•  Low-bandwidth instrument •  Used for absolute measurement of B •  A variation used on Earth-field mapping

missions eg Oested, CHAMP

Huggard 1970

Page 68: Instrumentation

68

Optically Pumped Magnetometers •  Vector and Scalar Operation (on Cassini)

•  Vector Mode –  Light from a He lamp, 1.08um –  Directed into a He absorption cell –  He cell atoms are in meta-stable state by RF discharge –  Presence of ambient field causes Zeeman splitting –  Emergent radiation is measured by IR detector –  The measured absorption depends on efficiency of the

optical pumping which is a function of the magnetic field –  Helmholtz coils around cell apply rotating sweep fields –  Signal modulated by rotating sweep fields applied by

surrounding Helmholtz coils –  Output is a sinusoid whose magnitude and phase give the

size and direction of the field

•  Scalar mode –  AC field applied. –  Absorption greatest when AC frequency = Larmor

frequency. –  Larmor frequency related to |B| by fundamental constants –  Result is a very accurate measure of absolute field

Smith 1975

Page 69: Instrumentation

69

Fluxgate  MGMs  

Rota*ng  coil  MGMs  

Search  Coil    MGMs  

Induction Magnetometers Faraday  induc*on  law  →       Vi = dΦ / dt

= d(BA) / dt= d(NAµoµr(t)H (t)) / dt

Since B = µoµrHExpanded        

dttHdNAdttHdANdttdHNA rororo /)( /)( /)(Vi µµµµµµ ++=

Page 70: Instrumentation

Search-Coil Magnetometer

•  Core  of  high  magne*c  permeability  wound  with  coil  

•  3  orthogonal  axes  •  Bandwidth  100mHz  to  100’s  kHz  (typical)  

70  

Page 71: Instrumentation

Rotating Coil Magnetometer

•  Imprac*cal  for  space  •  Obsolete  for  Earth-­‐field  measurement   71  

Page 72: Instrumentation

Fluxgate Magnetometer

•  First  developed  by  by  Aschenbrenner  and  Goubau  [1936]  

•  Rapid  development  during  40’s  and  50’s  for  military  and  geophysical  applica*ons  

•  Fluxgate  signal  in  Vind  is  second  harmonic  of  the  excita*on  frequency  Iexc  

72  Ripka  (2003)  

P. Ripka / Sensors and Actuators A 106 (2003) 8–14 9

Fig. 1. Fluxgate principle.

1 ppm/!C. If they work in the feedback mode, the result-ing magnetometer linearity error may be as low as 10"5

[10].If resolution in the nanotesla range is required, fluxgates

are the best selection. Compared to high-temperature su-perconducting quantum interference device they may havesimilar noise level, but the measurement range of fluxgateis much larger. If pT or even smaller fields are measured,a low-temperature SQUID should be used. Magnetoresis-tors, mainly anisotropic magnetoresistance sensors, are themain competitors of fluxgate sensors. Commercially avail-able AMRmagnetoresistors such as Philips KMZ have a res-olution worse than 10 nT, but they are smaller and cheaperand may consume less energy. Linearity of the best presentcompensated AMR sensors is 0.05% [11,12].The mostly used modern low-noise fluxgate sensor is the

“parallel” type with ring-core. “Parallel” type means that theexcitation and the measured field have the same direction.Orthogonal type is rarely used, mostly in thin-film devices.The second harmonic in the induced voltage is extracted bya phase-sensitive detector, and the pick-up coil often servesalso for the feedback. Current-output is also used in somedesigns. Other designs are used for special purposes, suchas rod-type sensors for non-destructive testing or positionsensing [13].

2. Core shapes of fluxgates

The main problem of using the basic single-core designis the large signal on the excitation frequency at the sen-sor output, because the sensor acts as a transformer. Thus,the single-core design is used mainly for simple devicesand special applications. Pulse-position type sensors alsohave single-core [14]. Some simple magnetometers such as[15] are based on autooscillation circuits. These devices aresmall, low-power and cheap; however, they have strong com-petitors in AMR magnetoresistors. Orthogonal single-corefluxgate sensor for defectoscopy was developed by Sasada[16]. For precise fluxgates, double cores (either double-rodor ring-core) are normally used.Moldovanu et al. developed a number of double-rod

(Vacquier—Foerster type) core sensors. They report 120 pTp–p noise and 0.42 nT/K offset in the temperature range of"20 to +70 !C for tensile-stress annealed amorphous core[17,18].

Fig. 2. Race-track fluxgate.

2.1. Ring-core sensors

While the pick-up coil is a straight solenoid with thering-core in its center, the excitation coil is toroidally woundaround it. Ring-core sensors can be regarded as a form ofbalanced double sensor. The closed magnetic circuit is con-sisting of two half-cores. The core is usually made of severalturns of thin tape of soft magnetic material. The ring-coregeometry is advantageous for the low-noise sensors, eventhough that the ring-core sensors have low sensitivity, dueto the large demagnetization. Ring-core sensors also allowfine balancing of the core symmetry by rotating the corewith respect to the sensing coil.

2.2. Race-track sensors

Their sensitivity is higher and the race-track sensor isless sensitive to perpendicular fields, due to the lower de-magnetization factor (Fig. 2). Race-tracks, on the other side,still have the advantages of the closed-type sensors, mainlylow-noise—6 pT/

#Hz@1Hz was reported for sensor hav-

ing 65mm long race-track amorphous core [19]. Sensitivityand noise for smaller sensors is studied in [20]. Modifiedrace-track sensor design allows final adjustment of the sen-sor balance by sliding the pick-up coil along the core [21].

3. The effect of demagnetization

If the constant pick-up coil area in the general inductionsensor equation is assumed, we get:

"Vi = d!dt

= NAµ0µ dH(t)

dt+ NAµ0H dµ(t)

dt

where µ is relative permeability.The basic induction effect (first term) is still present in

fluxgate sensors, and causes interference. But the most im-portant component is the second term caused by fluxgateeffect. The core permeability is periodically changing withthe excitation field. The given formula can be used for longrod-type sensors, but for the more often used ring-cores,the demagnetization effect should be considered. Demag-netization means that H in the core material is lower than

Page 73: Instrumentation

73

Ring-core Fluxgate •  Operating Principle

–  Soft permeable core driven around hysteresis loop at frequency f0

–  Field-proportional voltage at 2f0 induced in sense winding

–  Output signal rectified, integrated and used to drive magnetic feedback

–  Sensor operates as a null-detector –  Closed-loop operation improves linearity

•  Advantages –  Low noise <10pT/ √Hz @1Hz –  Wide dynamic range –  Mature technology and robust –  Relatively inexpensive

•  Disadvantages –  Sensor mass –  Power ~ 1W –  Calibration drift with time and temperature

•  Offset, gain, angles

Page 74: Instrumentation

74

HD Vi 2f0

B

H

C1

C2 HD

B

H

Drive (f0)

Φ CASE  A:  Zero  external  DC  field    Half  cores  saturate  synchronously  –  no  net  change  of  flux  seen  by  sense  winding    CASE  B:  Non-­‐zero  external  DC  field  Half  cores  do  not  saturate  synchronously  –  a  net  change  of  flux  seen  by  sense  winding  

 Change  of  flux  in  sense  winding  at  the  4  crossing  of  the  B-­‐H  infec*on  points  in  each  drive  period    à  induced  voltage  at    2  x  fo  according  to  Faraday  

CASE  A  

CASE  B  

Page 75: Instrumentation

75

Field magnitude determined by 2f magnitude Field direction determined by 2f phase relative to reference

Reference 2f

Measured 2f

Fluxgate Electronics: Open Loop

Page 76: Instrumentation

76

Fluxgate Electronics: Closed Loop

•  Rectified signal is integrated and converted to a current to back-off the ambient field

•  Magnetic negative feedback •  Benefits include improved linearity and temperature stability •  Scale factor depends only on feedback resistor/gain stage and coil constant.

Page 77: Instrumentation

77

Measured signal

Feedback signal

(Magnes 1999)

Page 78: Instrumentation

78

Equating terms and re-arranging

And if kSFLG2G1 >> 1

Two conclusions

Measurement range only set by feedback circuit

Output noise is dominated by input amplifier and sensor noise only

(Very low noise analogue pre-amps available)

Page 79: Instrumentation

79

Fluxgate Electronics: ‘Digital’    

–  Analogue  signal  processing  moved  to  the  digital  domain    –  ADC  and  DAC  within  sensor  control  loop    –  Offers  increased  flexibility  -­‐  programmable  –  First  Missions  late  90s  -­‐  ROMAP,  VEX,  Astrid,  Oersted  –  First  Imperial  digital  design  will  fly  on  Solar  Orbiter  

Sensor core

Serial link to PC 22Hz

V to I converter

Sense winding

Drive winding

48kHzf (12kHz)

¸ 4Drive circuitry

ADC48/96kHz(AD1835)

DAC6kHz

(AD1835)

ΣIntegrator

Field Correlation

(ADSP-21262)

ADSP 21262 Ex-Kit Eval. Board

A digital fluxgate control loop

Page 80: Instrumentation

80

Fluxgate Electronics: Delta-Sigma Design

O’Brien (2007)

Replace

+ + with

Page 81: Instrumentation

81

Fluxgate Noise    

•  Best expressed as a Noise Spectral Density (NSD) often at1Hz •  Characteristic 1/f fall off

•  1/f  dominant  •  Calculate  RMS  noise  in  any  

band  fL…fH    

•  Fluxgate  ‘minimum’  noise  spectral  density  at  1Hz  

Ripka (2003)

NRMS =

sZ fH

fL

P (f)df =

s

P (1) ln

✓fHfL

NSD ⇡ 5pTpHz

10 P. Ripka / Sensors and Actuators A 106 (2003) 8–14

the measured field H0 in the open air. Thus, the flux densitywithin the core must be written:

B = µ0µH0

[1+ D(µ ! 1)]= µ0µaH0

where D is the effective demagnetization factor and µa isthe apparent permeability, µa = µ/[1+D(µ!1)], for veryhigh µ, µa " 1/D.If demagnetization is considered, the equation for fluxgate

output voltages becomes more complex:

Vi = NAdBdt

= NAµ0H01! D

{1+ Dµ(t) ! 1}2dµ(t)

dt

Demagnetisation of ring-cores was studied by Clarke [22],study of the ring-core internal field was also performed byPrimdahl et al. [23].From this equation, and also from practical experience,

general practical rules for achieving high sensitivity can bededuced:

1. Voltage sensitivity increases with number of turns N (ifN is very high, other factors, such as coil parasitic capac-itance, limits the sensitivity).

2. Sensitivity decreases with demagnetization factor D.3. The sensitivity is high for materials having rectangularshape of the hysteresis loop, as they have a steep changeof permeability dµ/dt, when the core is coming into sat-uration. But these materials cannot be used because oftheir high noise level.

4. Until eddy currents (which change the shape of the hys-teresis loop) become important, voltage sensitivity in-creases with excitation frequency (because (dHexc/dt) #f ).

The voltage output is often tuned. Tuning may be inten-tional by parallel capacitance to utilize parametric amplifi-cation or unintentional (by parasitic coil capacitance).

4. Core materials

High permeability and low coercivity, but non-rectangularshape of the magnetization curve is preferred for the corematerial. The material should have low number of structuralimperfections, low internal stresses, uniform cross-section,smooth surface and high homogeneity of the parameters.Low saturation magnetization (for low-power) and high elec-trical resistivity (for low eddy current losses) are advanta-geous. The minimum noise is achieved for alloys possessingvery low magnetostriction. Materials suitable for fluxgatecores are permalloys (with 78–81% of nickel) and amor-phous alloys. Ferrites are used only exceptionally, as theygive low sensor sensitivity.Amorphous magnetic materials, whose use for fluxgate

cores started from the early 1980s, are magnetic “metallicglasses” produced by rapid quenching. Cobalt-based amor-phous alloys with low magnetostriction are particularly suit-

Fig. 3. Noise of Billingsley Magnetics fluxgate sensor. The sensor coreis 17mm diameter amorphous ring (from [32]).

able for fluxgate applications. Annealing may further de-crease the noise level of a tape for fluxgate core. Using amor-phous 17mm ring-core, Nielsen et al. reached noise levelof 4.2 pT/vHz@1Hz, which corresponds to 11.1 nT rms inthe frequency range of 60mHz–10Hz [24]. It was recentlyshown that also the tape surface treatment such as chemicaletching may improve the core properties [25]. Fig. 3 showsthe typical noise spectrum and time plot measured on flux-gate sensor manufactured by Billingsley Magnetics.Single-domain fluxgates proposed by Koch are theoret-

ically free of magnetic noise [26]. Noise level achievedso far was 1.4 pT/vHz@1Hz for 25mm ring-core and3.5 pT/vHz@1Hz for 13 cm long rod-core, but predictedvalues are even lower.

5. Principles of fluxgate magnetometers

The most frequently used principle of fluxgate magne-tometers is second-harmonic detection of the output volt-age. The other principles also appeared, but until now theywere not fully proved to bring substantial advantages exceptsimplification of the circuitry. We give only three recentexamples of these devices. Robertson presented a 1mmlong single-core sensor. Using differential peak detection, asimilar sensor excited at 40MHz had 250 pT/

$Hz@10Hz

noise [27,28]. The relaxating-type magnetometer uses asingle-core saturated by unipolar pulses and measures thelength of the relaxation pulse after the excitation field isswitched-off. The instrument has +/!200mT range, 5%linearity error and about 0.5 nT p–p noise [29]. Dimitropou-los suggests a new sensor principle combining fluxgate withMateucci effect [30]. The amorphous 6 cm long wire isexcited by flat coil pair. Although the precision of the firstprototype is reported to be 60 nT, the device can be scaleddown to 5mm and further optimised.

Page 82: Instrumentation

Quantization Noise

82

   

–  Use  oversampling  plus  digital  filtering  to  reduce  Quan*sa*on  Noise    –  Quan*sa*on  noise  should  be  matched  to  intrinsic  sensor  noise  

 

Page 83: Instrumentation

83

Ultra Electronics Ltd

–  Industrial  partner  -­‐  Ultra  Electronics  –  Cassini/Double  Star  Heritage  –  Two  core  sensor  –  Tuned  second  harmonic  detec*on  –  Combined  sense  and  feedback  windings  –  Offset  stability  <  0.05  nT/°C    –  Scale  factor  dri`  <  40  ppm/°C      –  Noise  density  <  8pT/root  Hz  @1Hz    –  Opera*ng  range    

•  -­‐80oC  to  70oC  (opera*onal)  •  -­‐130oC  to  90oC  (non-­‐opera*onal)    

Page 84: Instrumentation

84

Anisotropic Magnetoresistance

•  Magneto Resistance Effect –  Field-dependent resistance –  Thin permalloy layer (Ni/Fe) –  ΔR/R of order 1- 2% –  AMR offers lowest noise –  Thermal noise limited

•  Barber Poles –  Max sensitivity & linearity

at M v H 45o –  Conductive strips for

linear operation

•  AMR Sensors –  Thin film solid state devices –  Implemented as Wheatstone

bridge –  Mass <1g, Ceramic package

( )( )Hθ2cos0ΔR0RR +=

Philips

Page 85: Instrumentation

85

Integrated ‘coils’ •  Set - Reset Coils

–  Planar ‘coil’ acts on each bridge resistor –  Parallel to Easy axis –  Used to re-align the magnetisation –  Large current spike needed –  Can extract sensor offset (unlike fluxgate) –  Compensates for offset and offset drift

•  Offset coils

–  Planar ‘coil’ parallel to Hard (sensitive) axis

–  Permits magnetic feedback –  Used in closed loop back off measured

field –  Improves linearity and variation of

gain with temperature –  Suppresses Barkhausen noise

Page 86: Instrumentation

COIL

FByo ARHV ×=

86

Single axis AMR magnetometer

Page 87: Instrumentation

87

Fluxgate vs AMR •  Three  layer  Mu-­‐Metal  shield  •  3Hz  sine  wave  –  5nT  ptp  •  Op*mal  AMR  configura*on  •  Closed  loop,  RFB=9kΩ  •  Bridge  voltage  12V  •  Offset  compensa*on  •  Flip  frequency,  1.1kHz  •  Sensi*vity  ~  11mV/nT  •  Sensi*vity  not  linear  with  

increasing  RFB  •  Some  residual  offset  in  closed  

lop  •  Temperature  measurement  

outstanding    

DSP (20mV/div)

AMR (20mV/div)

Page 88: Instrumentation

Calibra*on  •  Each  instrument  

–  3  sensors  •  Offset  •  Gain  •  2  angles  

•  12  parameters  to  find  –  All  measured  pre-­‐launch  –  Evolu*on  in  10  can  be  inferred    

from  in-­‐flight  data  

88  

⎟⎟⎟

⎜⎜⎜

+⎟⎟⎟

⎜⎜⎜

⎟⎟⎟

⎜⎜⎜

=⎟⎟⎟

⎜⎜⎜

3

2

1

31333333

21222222

11111111

3

2

1

sinsincossincossinsincossincossinsincossincos

OOO

BBB

GGGGGGGGG

BBB

z

y

x

S

S

S

φθφθθ

φθφθθ

φθφθθ

Page 89: Instrumentation

89

Imperial’s Magnetic Test Facility

3 axis Helmholtz Coils

Sensor thermal chamber

Pit for long terms offset and noise measurement

Page 90: Instrumentation

90

Sensor under test

•  Facility  dynamically  backs  of  Earth’s  field  using  two  Earth  Field  Reference  Magnetometers  (EFR)  located  either  side  of  the  hut  

 •  EFR  located  in  pits  either  side  of  hut  •  Sum  (average)  of  EFRs  used  to  cancel  Earths  

field  inside  coil  system  •  Difference  (gradient)  of  EFRs  used  for  

monitoring  

Page 91: Instrumentation

In-­‐flight  Calibra*on  Analysis  Complete  Data  Set  at  highest  resolu*on  and  quality  

February  2001  –  April  2012  

91  

Calibra*on  Team:    Leah-­‐nani  Alconcel,  Patrick  Brown  (TM),  Peter  Fox,  Chris  Carr  (PI),  Tim  Oddy,  Barry  Whiteside      

Page 92: Instrumentation

92

Spacecraft Magnetic Cleanliness: Cluster

•  Cluster had a very rigorous (and expensive) magnetic cleanliness programme

•  A residual magnetic field of <0.25nT is atypical

•  Rosetta ~50nT

•  Solar Orbiter ~20nT

Page 93: Instrumentation

93

Mod.dip. field

Obs. field

Real ambient field

Dual Magnetometer Method for Determining Spacecraft Field

•  Used  in  cases  where  S/C  field  is  variable  and  contaminates  measurement  

•  IB  and  OB  sensor  used  as  a  gradiometer  

•  Ambient  field  same  at  both  IB  &  OB  

•  S/C  field  NOT  same  at  IB  &  OB  

•  Two  sensors  limit  model  to  a  dipole  of  fixed  posi*on  

•  Example  missions:  Double  Star,  Venus  Express  

Figure courtesy M. Delva

Page 94: Instrumentation

94

Example: Double Star magnetometer •  OB  sensor  5m,  IB  sensor  3.5m  from  satellite  centre  •  Spin  synchronised  disturbance  due  to  unbalanced  solar  array  current  •  Amplitude  varies  with  power  demand  •  Data  cleaned  using  gradiometer  mode    •  Resul*ng  data  set  is  spin  averaged  resolu*on  (0.25Hz)  compared  to  11Hz  on-­‐board  

Un-cleaned data and shunting modes Un-cleaned and cleaned data

Carr (2005)


Recommended