+ All Categories
Home > Documents > INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

Date post: 03-Feb-2022
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
20
INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS Malak Alyousef Dimitris Spyropoulos Mohammad Alyaman Omar Sabir
Transcript
Page 1: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

INTEGRATED SECURITY OF

WIRELESS SENSOR NETWORKS•Malak Alyousef

•Dimitris Spyropoulos

•Mohammad Alyaman

•Omar Sabir

Page 2: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

OUTLINE

Project overview

Structure

Behavior Use Case

Activity Diagram

Sequence Diagram

Requirements

Trade off analysis

Page 3: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

PROJECT OVERVIEW

Our mission is to provide a secure, efficient and

cost effective sensor network for the tracking of

vehicles in a military base.

This will be done by

Having cameras on the main gate and parking

lots

Having acoustic and laser sensors on the side

of the road

Page 4: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

STRUCTURE

base_sensor_networkSensor Network[Package] bdd [ ]

Cost_check : Check cost

Propagation Constraint : Sensor Network::Propagation constraint

constraints

Cost : Real

values

«block»

Sensor network

Report_Status()

values

height : Real

neighbor_X : Real

neighbor_Y : Real

position_X : Real

position_Y : Real

state : String = "off"

«block»

Node

constraints

Response Time : Sensor Network::CCS response time

parts

CCS : Central Control System

Channel : Channel

values

CPU : Real

RAM : Integer

Response_time

Check_Status()

Turn_on()

Turn_off()

Encrypt()

Decrypt()

Operate_honeypots()

Send_message()

Process_message()

«block»

Central Control System

parameters

P_trans : Real

P_recv : Real

freq : Real

distance : Real

constraints

{P_trans= P_recv*((2*pi*freq*distance)/3*10^8)^2}

«constraint»

Propagation constraint

values

BER : Real

capacity : Real

length : Real

message_time : Real

noise : Real

obstacle : Boolean

weather : Integer

Transmit_message()

«block»

Channel

values

Directivity : Real

frequency : Real

gain : Real

modulation : Integer

position_X : Real

position_Y : Real

Reiceiving_Power : Real

Transmitting Power : Real

type : Integer

Transmit()

Receive()

Modulate()

Demodulate()

«block»

Antenna

values

frequency : Real

gain : Real

modulation : Integer

Receiving_Power

Transmitting_Power : Real

type : Integer

Transmit()

Receive()

Modulate()

Demodulate()

«block»

CCS_Antenna

values

frequency : Real

gain : Real

modulation : Integer

Receiving_Power : Real

Trasmitting_Power : Real

type : Integer

Transmit()

Receive()

Modulate()

Demodulate()

«block»

LCS_Antenna

constraints

{1/2*erfc(sqrt(E_b/N_o)) < 0.01}

parameters

modulation : Integer

N_o : Real

E_b : Real

«constraint»

BER check

values

cpu : Real

ram : Integer

Encrypt()

Decrypt()

Process_message()

Send_message()

Turn_on()

Turn_off()

«block»

S_CPU

values

CPU : Real

RAM : Integer

Turn_on()

Turn_off()

Send_message()

Process_message()

Encrypt()

Decrypt()

«block»

Local Control System

constraints

{time < distance/50}

parameters

time : Real

distance : Real

«constraint»

Message traveling time

constraints

{Cost < 400000}

parameters

Cost : Real

«constraint»

Check cost

constraints

{modulation = weather}

parameters

modulation

weather

«constraint»

weather constraint

constraints

{time < distance/20}

parameters

time : Real

distance : Real

«constraint»

CCS response time

values

accuracy : Real

Sensing()

«block»

Sensor

values

distance : Real

height : Real

«block»

Obstacle

values

range

Take_pictures()

«block»

Camera«block»

Acoustic

«block»

Laser

Channel 11Channel 14Channel 6 Channel 19Channel 12Channel 2 Channel 15Channel 5Channel 9Channel 13Channel 8Channel 10Channel 3 Channel 20Channel 7 Channel 18Channel 1 Channel 16Channel 4 Channel 17

CCSNode 10Node 2 Node 20Node 18 Node 26Node 8 Node 22Node 6 Node 24Node 17 Node 21Node 12Node 7 Node 13 Node 28Node 9Node 1 Node 5Node 3 Node 14Node 15 Node 27Node 16 Node 25Node 23Node 11Node 4 Node 19

Page 5: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

PARAMETRIC DIAGRAMS

Sensor network Untitled1[Block] par [ ]

«constraint»

Cost_check : Check cost

{Cost < 400000}

Cost : Real

Cost : Real

Central Control System parametric_1[Block] par [ ]

«constraint»

Response Time : CCS response time

{time < distance/20}

distance : Real time : Real

Response_time

CCS : Central Control System

length : Real

Channel : Channel

Page 6: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

PARAMETRIC DIAGRAM (CONT.)

Sensor network Untitled2[Block] par [ ]

«constraint»

Propagation Constraint : Propagation constraint

{P_trans= P_recv*((2*pi*freq*distance)/3*10^8)^2}

distance : Realfreq : Real P_recv : RealP_trans : Real

Transmitting Power : Real frequency : Real

: Antenna

Node 1 : Node

Receiving_Power

: CCS_Antenna

CCS : Central Control System

length : Real

Channel 1 : Channel

Page 7: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

BEHAVIOR

Use cases

Main gate access

Single Vehicle Tracking

Intersection

Straight line-Acoustic sensors communication

Exit from a parking lot-camera acoustic sensor communication

Entry in a parking lot.

Acoustic sensor battery low

Page 8: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

USE CASE: EXAMPLE

Use Case3. IntersectionPre-conditions:.Vehicle(s) moves and arrives at an intersection.Actors: Vehicle, HumanFlow of Events:1. Vehicle approaches an intersection.

2. Last acoustic sensor on the straight road segment identifies vehicle

and activates laser sensor.

3. Laser sensor informs local control system.

4. The control system activates sensors at the three possible directions.

5 .Vehicle crosses laser sensor.

6. Laser sensor identifies movement and sends message to the local control system.

7. Acoustic sensor identifies the direction of vehicle.

8. Control system turns off sensors that did not detect movement.

9. Tracking continues in a straight segment.

Post-conditions: Basic Flow: Moving direction.

Page 9: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

USE CASE: EXAMPLE

USE CASE DIAGRAM

Page 10: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

USE CASE: EXAMPLE

ACTIVITY DIAGRAM

Page 11: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

USE CASE: EXAMPLE

SEQUENCE DIAGRAM

Page 12: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS
Page 13: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

REQUIREMENTS DIAGRAMS

Page 14: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS
Page 15: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

REQUIREMENTS

Page 16: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

TRADE OFF ANALYSIS

Performance Metrics

Accuracy, Cost, and energy consumption

Decision Variables:

-Sensors: Acoustic, Laser, and Camera

-Control Systems: Local and Central

Page 17: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

TRADE OFF SCENARIOS

Page 18: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

TRADE OFF SCENARIOS

-60 -50 -40 -30 -20 -10 00.8

1

1.2

1.4

1.6x 10

4 performance vs cost

45 50 55 60 65 70 750.8

1

1.2

1.4

1.6x 10

4 energy vs cost

-60 -50 -40 -30 -20 -10 045

50

55

60

65

70

75performance vs energy

Page 19: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

TRADE OFF RESULTS

Points of Interest

Best Point

Page 20: INTEGRATED SECURITY OF WIRELESS SENSOR NETWORKS

QUESTIONS ?


Recommended