+ All Categories
Home > Documents > Intense Pulsed Terahertz Sources & their...

Intense Pulsed Terahertz Sources & their...

Date post: 19-Oct-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
68
Intense Pulsed Terahertz Sources & their Applications International Research School IMPACT 2016, Cargèse (Corsica), France, 23 August – 2 September 2016 J. A. Fülöp Institute of Physics www.physics.ttk.pte.hu MTA-PTE High-Field THz Research Group, University of Pécs, Pécs, Hungary ELI-ALPS, ELI-Hu Nkft., Szeged, Hungary
Transcript
Page 1: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Intense Pulsed Terahertz Sources & their Applications

International Research School IMPACT 2016, Cargèse (Corsica), France, 23 August – 2 September 2016

J. A. Fülöp

Institute of Physicswww.physics.ttk.pte.hu

MTA-PTE High-Field THz Research Group, University of Pécs, Pécs, HungaryELI-ALPS, ELI-Hu Nkft., Szeged, Hungary

Page 2: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Outline

Introduction

– THz spectral range

– THz control of matter

Technology of intense pulsed THz sources

– Photoconductive antennas

– Optical rectification & difference-frequency generation in:SemiconductorsLiNbO3

Organic crystals

– Laser plasma

Application examples

Summary

Page 3: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

The THz spectral range

12:00

frequency (Hz)

108 109 1010 1011 1012 1013 1014 1015 1016 1017

radio microwave infrared UV X-rayTHz

visible

Frequency 𝜈 0.1 – 30 THz

Wavenumber 𝜆−1 3.3 – 1000 cm–1

Wavelength 𝜆 10 – 3000 μm

Photon energy h𝜈 0.4 – 123 meV

Page 4: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

THz pulse

Generated by a laser-driven table-top source

Single- or nearly-single-cycle waveform

Electric field directly measureable

0 1 2 30.0

0.5

1.0

Spe

ctr

al am

plit

ude (

arb

. u.)

Frequency (THz)

-2 0 2 4

-0.5

0.0

0.5

1.0

Ele

ctr

ic fie

ld (

arb

. u.)

Time (ps)

Page 5: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Applications of THz pulses

Linear THz spectroscopyEmax ≈ 100 V/cm | 10 fJ pulse energySpectroscopy of graphene, nanotubes, molecular magnets, hydrated molecules, etc.

Nonlinear THz spectroscopyEmax ≈ 100 kV/cm | µJ pulse energyTHz pump—THz / optical / X-ray / etc. probe measurements of dynamics

Manipulation and acceleration of charged particlesEmax ≈ 10 – 100 MV/cm | (multi)-mJ pulse energyacceleration of proton & relativistic electron beams, X-ray free electron laser, etc.

Page 6: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Resonant control of matter by THz

Ionic motion

– Molecular rotation & vibration

– Lattice vibration in solids (phonons)

Spin control

– Spin waves

Bound & free electrons

– Internal excitations of electron-hole pairs, Cooper pairs, etc.

Kampfrath et al., Nat. Photon., 2013

F = 𝑞E + 𝑞v × B

T = p × ET = 𝛍 × B

Page 7: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Non-resonant control of matter by THz

Ponderomotive energy:

work of THz field within a half-cycle on an electron

𝑊p =𝑒2𝐸max

2

4𝑚∗𝜔2

Field ionization

Impact ionization

THz-induced phase transitions

Particle acceleration & manipulation

Kampfrath et al., Nat. Photon., 2013

Page 8: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Peak electric field vs. carrier frequency & pulse energy

Assumptions:

Single-cycle pulse

Focusing with F# = 1

Brunner et al., Workshop on High-Field THz Science, 2012, Pécs, Hungary

Page 9: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Cutting-edge pulsed THz sources

Method Peak electricfield

[MV/cm]

Pulse energy

[μJ]

Accelerator-based

440[Wu, 2013]

600[Wu, 2013]

Photoconductiveantenna*

0.14[Ropagnol, 2013]

3.6[Ropagnol, 2013]

Laser plasma* 8[Oh, 2014]

7[Oh, 2013]

Opticalrectification*

40[Vicario, 2014]

900[Vicario, 2014]

*Pumped by femtosecond lasers[Wu, 2013] Wu et al., Rev. Sci. Instrum.,

2013[Ropagnol, 2013] Ropagnol et al., Appl.

Phys. Lett., 2013

[Oh, 2013] Oh et al., New J. Phys., 2013[Oh, 2014] Oh et al., Appl. Phys. Lett.,

2014[Vicario, 2014] Vicario et al., Opt. Lett.,

2014

Page 10: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Free-electron laser (FEL)

Terahertz radiation is generated by relativistic electrons moving and transversally accelerating inside the undulator

𝐁 =0

𝐵0 sin 𝑘u𝑧0

Page 11: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

THz FEL @ ELBE/HZDR, Dresden

Parameters of the FEL radiation

Wavelength range 18 – 250 μm U100-FEL with undulator U100

Pulse energy 0.01 – 2 μJ depending on wavelength

Pulse length 1 – 25 ps depending on wavelength

Repetition rate 13 MHz 3 modes:• cw• macropulsed > 100 μs, < 25 Hz• single-pulse switched at kHz/Hz www.hzdr.de

Page 12: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Femtosecond-laser driven pulsed THz sources

0.1 1 10 100

1

10

100

1000

OR, LN

PCA

OR, LN

OR, DSTMS

OR, GaAs

LPAOR, LN

DFG, GaSe

plasma

DFG, GaSe

OR, OH1

TH

z p

uls

e e

nerg

y (J)

Frequency (THz)

OR, DAST

OR, ZnTe

plasma

Page 13: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Photoconductive antenna (PCA)

THz pulse

DC bias voltage

Photoconductive switch

fs laser pulse

+

-50 m5-10

m

semiconducting

substrate

lithographically

deposited

metal leads

Ropagnol et al., Appl. Phys. Lett., 2013

Page 14: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Photoconductive antenna (PCA)

Radiated field: Iph: photocurrent td

IdtE

ph

THz

Laser pulse duration→ switch-on time

Photoexcited carrier lifetime → switch-off time

Lee, Principles of terahertzscience and technology, Springer, 2009

Page 15: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Time-domain THz spectroscopy (TDTS)

fs laser pulse

THz pulse

variable delay

Jepsen et al., Laser Photonics Rev., 2011

Page 16: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Linear response

Polarization

Wave equation

Nonlinear response

Polarization

Wave equation

Optical medium with linear / nonlinear response

𝐏 𝐄 = 𝜀0𝜒1 𝐄 = 𝐏 1

𝛻2𝐄 −1

𝑣2

𝜕2𝐄

𝜕𝑡2= 0

𝐏 𝐄

= 𝜀0 𝜒 1 𝐄 + 𝜒 2 𝐄𝐄 + 𝜒 3 𝐄𝐄𝐄 + ⋯

= 𝐏 1 + 𝐏 2 + 𝐏 3 + ⋯

= 𝐏 1 + 𝐏NL

𝛻2𝐄 −1

𝑣2

𝜕2𝐄

𝜕𝑡2=

1

𝜀0𝑐2

𝜕2𝐏NL

𝜕𝑡2

Page 17: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Optical rectification (OR)

Special case of difference-frequency generation (DFG) with𝜔1 ≈ 𝜔2 ⟹ 𝜔3 small

𝜔1: depleted, 𝜔2, 𝜔3: amplified

c(2)w1

w3 = w1 - w2

w2

ħw1

ħw2

ħw3

𝐸 𝑡 =1

2 𝐸1𝑒

𝑖𝜔1𝑡 +1

2 𝐸2𝑒

𝑖𝜔2𝑡 + c.c.

𝑃 2 𝑡 = 𝜀0𝜒2 𝐸𝐸

=1

4𝜀0𝜒

2 𝐸12𝑒𝑖2𝜔1𝑡 + 𝐸2

2𝑒𝑖2𝜔2𝑡 + 2 𝐸1 𝐸2𝑒

𝑖 𝜔1+𝜔2 𝑡

Page 18: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Optical rectification: phase matching

wwwc dEEP

=

0

20NL

0=-= ww kkkk

0g wvv =

-

=

-=

0g

0g

11

ww

vvcnnk

w

==

c

n

vk

g

g

0

0

10

w

ww

w

Velocity matching:

Phase matching:

Nonlinear polarization:

THz frequency optical frequencies

Approximation:

THz refractive index optical group index

=

For a broadband (fs) laser pulse: intra-pulse DFG between all possiblecombinations of spectral components

Page 19: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Optical rectification: efficiency

Efficiency of THz generation for phase-matched conditions:R.L. Sutherland, Handbook of nonlinear optics, Marcel Dekker, 1996

2

2

32

0

222

4

4sinh

2exp

2

-=L

L

L

cnn

ILd

THz

THz

THz

THzv

eff

THz

w

THzL << 1

THzL >> 1

32

0

2222

cnn

ILd

THzv

eff

THz

w =

322

0

228

cnn

Id

THzTHzv

eff

THz

w =

THzv

eff

NAnn

LdFOM

2

22

=

22

24

THzTHzv

eff

Ann

dFOM

=

Figure-of-merit (FOM) for optical rectification (including THz absorption THz ):Hebling et al., J. Opt. Soc. Am. B, 2008

Page 20: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Materials for optical rectification: semiconductors

Materialdeff

[pm/V]ng

@ 800 nm (1.55 µm)nTHz

αTHz

[cm-1]

FOMfor L = 2 mm[pm2cm2/V2]

CdTe 81.8 (2.81) 3.24 4.8 11.0

GaAs 65.6 4.18 (3.56) 3.59 0.5 4.21

GaP 24.8 3.67 (3.16) 3.34 0.2 0.72

ZnTe 68.5 3.13 (2.81) 3.17 1.3 7.27

GaSe 28.0 3.13 (2.82) 3.27 0.5 1.18

Velocity matching condition:

Hebling et al., JOSA B, 2008

THzlasergTHzplaserg wwww nnvv ==

Page 21: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Optical rectification: zinc-blende crystals

Lee, Principles of terahertz science and technology, Springer, 2009

Collinear velocitymatching in ZnTe at ~0.8 µm pump

Nagai et al., Appl. Phys. Lett., 2004

𝐿c =𝜋𝑐

Ω𝑛 Ω − 𝑛g 𝜔

Results with ZnTe[Blanchard et al., Opt. Express, 2007]

– THz energy: 1.5 µJ

– THz generation efficiency: 3.1×10-5

Reason for low efficiency: strong two-photon absorption of the 0.8-µm pump

Coherence length for OR:

Page 22: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

THz generation by DFG in GaSe

DFG between two detunedpulses

Birefringent phase matchingabove the phonon frequency

Peak electric fields up to100 MV/cm

Center frequencies continuouslytunable from 10 to 72 THz

DFG: Sell et al., Opt. Lett., 2008

OPA: Junginger et al., Opt. Lett., 2010

Page 23: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Time-domain THz spectroscopy (TDTS)

fs laser pulse

THz pulse

variable delay

Jepsen et al., Laser Photonics Rev., 2011

Page 24: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Time-domain THz spectroscopy (TDTS)

Lee, Principles of terahertz science and technology, Springer, 2009

Page 25: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Materials for optical rectification: LN

Materialdeff

[pm/V]ng

@ 800 nm (1.55 µm)nTHz

αTHz

[cm-1]

FOMfor L = 2 mm[pm2cm2/V2]

CdTe 81.8 (2.81) 3.24 4.8 11.0

GaAs 65.6 4.18 (3.56) 3.59 0.5 4.21

GaP 24.8 3.67 (3.16) 3.34 0.2 0.72

ZnTe 68.5 3.13 (2.81) 3.17 1.3 7.27

GaSe 28.0 3.13 (2.82) 3.27 0.5 1.18

sLiNbO3 @ 300 K@ 100 K

168 2.25 (2.18) 4.96 174.8

18.248.6

Velocity matching condition:

Hebling et al., JOSA B, 2008

THzlasergTHzplaserg wwww nnvv ==

Page 26: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Phase matching by tilting the pump pulse front

Enables velocity matching if n() > ng(w), e.g. in LiNbO3

= vv w cos0g

Hebling et al., Opt. Express, 2002

Page 27: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Optical pulse with tilted intensity front

Intensity / pulse front:loci of intensity maxima at the same time instant

Pulse propagates perpendicular to phase fronts

Pulse-front-tilt angle (𝛾): angle between pulse & phase fronts

Fülöp & Hebling, Applications of tilted-pulse-front excitation, In: Recent optical and photonic technologies, K. Y. Kim (Ed.), INTECH, Croatia, (2010)http://www.intechopen.com/articles/show/title/applications-of-tilted-pulse-front-excitation

Page 28: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Setup for tilted-pulse-front pumping (TPFP)

Fülöp et al., Opt. Express, 2010

d

dtan

gn

n-= Pulse-front-tilt (𝛾) is linked to angular

dispersion ( d𝜀 d𝜆):

→ Imaging required to restore pulseduration & intensity

Page 29: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

THz generation with a (line) focused beam

Cherenkov geometry

Low efficiency

Emission geometry disadvantageous for applications

Page 30: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Cherenkov geometry & TPFP

Stepanov et al., Opt. Express, 2005 Hoffmann & Fülöp, J. Phys. D, 2011

Page 31: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Dispersion curve of phonon-polariton and NIR light in LN

J. Hebling et al., Appl. Phys. B 78, 593 (2004)

Phonon-polariton: mixed EM and lattice excitation in crystals

Effective light velocity can be changed by changing the tilt angle

Angle 1: low frequency, broadband THz generation

Angle 2: higher frequency narrower band THz pulse generation

Tunable THz generation by TPFP

Page 32: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Frequency tuning by the tilt angleJ. Hebling et al., Appl. Phys. B 78, 593 (2004)

Tunable THz pulse generation by TPFP

Measured spectra at T=10 KPeak frequency and THz

energy vs. tilt angle

Larger tuning range and narrower spectra can be expected fromless absorpbing materials with higher phonon frequency (e.g. GaSe, GaP, etc.)

Page 33: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Tunable THz pulse generation by two-beam excitation

A. G. Stepanov et al., Opt. Express 12, 4650 (2004)

𝛼 = 1.9°

𝛼 = 1.3°

𝛼 = 0.35°

Page 34: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Tunable THz pulse generationby two-beam excitation

A. G. Stepanov et al., Opt. Express 12, 4650 (2004)

Page 35: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Shaped THz waveform generation by TPFP

Optical pulse sequence THz pulse sequence

K.-L. Yeh et al., Opt. Commun. 281, 3567 (2008)Pump Laser

HRPR

Page 36: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Grating

Liquid crystal mask filter amplitude and/or phase of each frequency component

Grating

Input: Single beam,Single fs pulse

Output: Single beamwith specified waveform

T. Feurer et al., Science 299, 374 (2003)

Shaped THz waveform generation by TPFP

Page 37: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Pulse front tilt & angular dispersion

-

==

-

2

221

d

nd

d

dn

cd

vdD

g

-5 0 50

2

4

(b) Leff

THz propagation distance, z [mm]

TH

z g

en

era

tio

n e

ffic

ien

cy [%

]

0

1

2

-20 -10 0 10 20

0 = 50 fs

0 = 350 fs

0 = 600 fs

Pump propagation distance, [mm]

Pu

mp

pu

lse

du

ratio

n,

[ps]

2Ld

(a)

GVD parameter:

Martínez et al., J. Opt. Soc. Am. A, 1984Hebling, Opt. Quantum Electron., 1996Fülöp et al., Opt. Express, 2010

materialdispersion

angular dispersion

d

dtan

gn

n-=

Pulse front tilt:

LiNbO3

λp = 800 nm

Fp = 5.1 mJ/cm2

Ωpm = 1 THz

Page 38: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Limitations in TPFP

Limiting effect Possible solution

Change of pump pulse duration insidethe medium owing to pulse-front tilt

Use longer Fourier-limited pump pulses

Use materials requiring smaller pulse-front tilt

Absorption at THz frequencies

Absorption coefficient α

Multi-photon absorption (MPA) of the pump

Cool the crystal to reduce α

Use longer pump wavelength tosuppress low-order MPA

Walk-off

Use materials requiring smaller pulse-front tilt

Use large pump beam (and energy):

→ Optimized imiganig system

→ Contatc grating (no imaging)

Page 39: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

τp = 500 fs

Ep = 200 mJ

Ip, max = 40 GW/cm2

THz energy ≈ 25 mJ

THz field = 2.8 MV/cm (unfocused)

10 MV/cm level using imaging

100 MV/cm level using focusing

0 500 1000 15000

5

10

effic

ien

cy [%

]

pump pulse duration [fs]

300 K

100 K

10 K

2.0%

Optimization of the pump pulse duration (LiNbO3)

0 200 400 600 800 1000

0,5

1,0

1,5

300 K

100 K

10 K

pump pulse duration [fs]

pe

ak f

req

ue

ncy,

0

[T

Hz]

Phase matchingadjusted to thespectral peak

absorption coefficientof LiNbO3:

T [K] α [1/cm]

10 0.35

100 2.1

300 16Fülöp et al., Opt. Express, 2011

Page 40: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Enhancement of THz generation at low temperature

RT: 300 K CT: 23 K

Calculation: ηCT/ηRT ≈ 3 to 4 for785-fs pump pulses

Pump parameters:

pulse duration: 785 fs wavelength: 1030 nm

1 100.1

1

10

100

CT, large A, lens ( EOS)

RT, large A, lens

y = ax1.75

y = ax1.51

y = ax1.79

y = ax1.25

TH

z e

ne

rgy [J]

pump energy [mJ]

186 J

68.3 J

1 10

pump intensity [GW/cm2]

0 10 20 300

2

4

6

CT, large A, lens

RT, large A, lens

effic

ien

cy [x10

-3]

pump energy [mJ]

0.62%

0.23%

0 5 10 15 20 25

pump intensity [GW/cm2]

2.4

2.6

2.8

CT

/RT

en

ha

nce

men

t fa

cto

r

Fülöp et al., Opt. Express, 2014

Pump spot size: 1.0 cm2

Page 41: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

>0.4-mJ THz pulses efficiently generated (room T)

Pump parameters:

pulse duration: 785 fs wavelength: 1030 nm

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

p = 1.3 ps

(Fülöp et al., Opt. Lett., 2012)

RT, small A, telescope 0.77%

effic

ien

cy [%

]

pump fluence [mJ/cm2]

0.26%

0 50 100 150 200 250

pump intensity [GW/cm2]

1 10 100

1E-3

0.01

0.1

1

p = 1.3 ps

(Fülöp et al., Opt. Lett., 2012)

RT, small A, telescope

y = ax1.53

y = ax1.40

y = ax1.67

436 J

TH

z e

ne

rgy [m

J]

pump energy [mJ]

10 100

pump intensity [GW/cm2]

Fülöp et al., Opt. Express, 2014

Pump spot size: 0.3 cm2

Page 42: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Characterization of high-energy THz pulses (low T)

-10 -5 0 5 10-0.2

0.0

0.2

0.4

0.6 WTHz

= 26 J

WTHz

= 77 J

WTHz

= 163 J

ele

ctr

ic fie

ld [M

V/c

m]

time [ps]

0.45 MV/cm

0.65 MV/cm

0.26 MV/cm

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.00.46 THz0.14 THz

0.19 THz

am

plit

ud

e [arb

. u.]

frequency [THz]

0.25 THz

WTHz

= 26 J

WTHz

= 77 J

WTHz

= 163 J

calculated

Fülöp et al., Opt. Express, 2014

Page 43: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

THz energy vs. pump energy (LiNbO3)

10-2

10-1

100

101

102

10-4

10-3

10-2

10-1

100

101

102

103

0.1% short pump pulses

LN (Stepanov, 2005)

LN (Yeh, 2008)

LN (Yeh, 2007)

LN (Stepanov, 2008)

TH

z e

ne

rgy [J]

pump energy [mJ]

room temp.

10-2

10-1

100

101

102

10-4

10-3

10-2

10-1

100

101

102

103

Long pump pulses

LN (Fülöp, 2012)

LN (Huang, 2013)

LN (Vicario, 2013)

LN (Fülöp, 2014)

0.1% Short pump pulses

LN (Stepanov, 2005)

LN (Yeh, 2008)

LN (Yeh, 2007)

LN (Stepanov, 2008)

785 fs

0.77%

0.62%

1.3 ps

0.25%

TH

z e

nerg

y [J]

pump energy [mJ]

680 fs

3.8%

1.2%

room temp.

cryog. temp.

1%

Page 44: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Requires index-matching Difficult manufacturing:

trapezoidal instead of binary profile →

Directly on crystalOllmann et al., Appl. Phys. B, 2012

With dielectric multilayersTsubouchi et al., Opt. Lett., 2014

LN

LiNbO3 based contact gratings

500 nm

350 nm • Al2O3 + Ta2O5 multilayers on

LiNbO3

• 71% diffraction efficiency• 0.41 µJ THz pulse energy• 1.5x10-4 conversion efficiency

Scitech Precision Ltd. (UK)

Page 45: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Limitations of tilted-pulse-front pumping in LiNbO3

Imaging errors at large spot sizes

Fülöp et al., Opt. Express, 2010

Limited interaction length due to large angular dispersion (γ≈63°)

Fülöp et al., Opt. Express, 2011

Nonlinear interaction between pump & THz

Ravi et al., Opt. Express, 2014Lombosi et al., New J. Phys., 2015

→ It is challenging to increase the THz energy & field strength further

→ Noncollinear geometry leads to THz pulse & beam distortions, disadvantageous for applications

Conventional tilted-pulse-frontpumping (TPFP)Hebling et al., Opt. Express, 2002

PumpTHz

LNgrating

Page 46: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Reconsidering semiconductors for THz generation

Collinear phase matching atcommon pump laser wavelengths

Small nonlinear coefficient

Strong two-photon absorption(2PA) at such pumpwavelengths

→Free carrier absorptionof THz

→Limited useful pumpintensity

→Low efficiency for THz generation

0.01 0.1 1 10 100

1 pJ

1 nJ

1 mJ

10-6

10-5

10-4

LN (TPFP)

Stepanov, 2005

Yeh, 2007

Stepanov, 2008

Yeh, 2008

Fülöp, 2012

Huang, 2013

Vicario, 2013

Fülöp, 2014

0.1%

ZnTe (collinear, 0.8 m)

Löffler, 2005

Blanchard, 2007

TH

z e

nerg

y

Pump energy [mJ]

1%

2PA

1 J

Solution: longer pump wavelength

→Allows for higher pump intensity and more efficient THz generation

→Requires tilted-pulse-front pumping

Fülöp et al., Opt. Express, 2010 Blanchard et al., Appl. Phys. Lett., 2014

Material ZnTe GaP GaAs LN

deff [pm/V] 68.5 24.8 65.6 168

Page 47: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Tilted-pulse-front pumping of semiconductors

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 100

1

2

3

Pump propagation distance, z (mm)

Pum

p p

uls

e d

ura

tion, F

WH

M (

ps)

LN, = 1 m

ZnTe, = 1.7 m

GaP, = 1.7 m

100 fs pump

Phase matching @ 1 THz

Effic

iency,

(%

)

THz propagation distance, z cos() (mm)

Small tilt angle for semiconductors (𝜸 ≲ 𝟑𝟎°)

Large interaction length for THz generationcompensates for smaller nonlinear coefficient

More uniform crystal length across thepumped area

Advantageous for the implementation of a contact grating [Fülöp et al., Optica, 2016]

ZnTe contact-grating THz source

[Polónyi et al., Opt. Express, 2016]

Page 48: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

PumpTHz

Conventional TPFP (with imaging)

Hebling et al., Opt. Express, 2002

ZnTe contact-gating THz source

TPFP with contact grating (no imaging)

Pálfalvi et al., Appl. Phys. Lett., 2008

Collinear geometry possible(with symmetrically propagating diffraction orders m = ±1)

Bakunov et al., J. Opt. Soc. Am. B, 2014

THz energy easily increased byusing larger pumped area

Excellent THz beam quality

LiNbO3grating imaging

Fülöp et al., Optica, 2016

Page 49: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Design aspects

Large interaction length forefficient THz generation

→ 1.7 µm pump wavelength (no 3PA)

→ Phase matching at 1 THz (smallabsorption coefficient α ≲ 5 cm-1)

High diffraction efficiency forefficient pumpingOllmann et al., Opt. Commun., 2014

→ Binary grating profile with ~50% filling factor

→ Period: 1.275 μm, profile depth: 0.4 μm

Manufacturing

Electron-beam lithography+ reactive ion etchingScitech Precision Ltd. (UK)

Closely fitting the design profile

Substrate quality critical

ZnTe contact grating THz source: design & fabrication

0 1 2 3 4

3.2

3.4

3.6

Re

fractive

index, n

Frequency (THz)

0

5

10

15

20

Absorp

tion

coe

ffic

ient,

(1/c

m)ZnTe

Fülöp et al., Optica, 2016

Page 50: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

THz sourceZnTe

Blanchard, et al., Opt. Express, 2007

GaAsBlanchard, et al., Appl. Phys. Lett.,

2014

ZnTe contact grating

Fülöp et al., Optica, 2016

Multi-photonabsorption

2PA 3PA 2PA 3PA 2PA 3PA

THz gen. efficiency 3.1×10-5 5×10-4 3×10-3

THz energy 1.5 µJ 0.6 µJ 3.9 µJ

ZnTe contact grating THz source: Experimental results

Page 51: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

ZnTe contact grating THz source: Experimental results

Fülöp et al., Optica, 2016

Page 52: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

THz energy vs. pump energy: semiconductors & LN

10-2

10-1

100

101

102

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

10-6

10-5

10-4

LN (TPFP)

Stepanov, 2005

Yeh, 2007

Stepanov, 2008

Yeh, 2008

Fülöp, 2012

Huang, 2013

Vicario, 2013

Fülöp, 2014

0.1%

Semiconductors (TPFP) ZnTe (collinear, 0.8 m)

/ ZnTe, 1.45 m / 1.7 m Löffler, 2005

GaP, 1.7 m Blanchard, 2007

GaAs (Blanchard, 2014), 1.8 mT

Hz e

nerg

y [J]

Pump energy [mJ]

1%

2PA

3PA

4PA

IR-pumped semiconductors can deliver efficiencies similar to LN

Page 53: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Prospects of increasing the efficiency

1 mJ THz pulse energy is feasible from a 5-cm size contact grating with 200 mJ pump energy, efficiently delivered by novel 1.7-2.5 µm infrared sources …

… such as a Holmium laser [Malevich et al., Opt. Lett., 2013]

0 2 4 6 80

1

2

Eff

icie

ncy, (

%)

Crystal length, L (mm)

1 THz, RT, ZnTe, = 28.2°

1 THz, CT, ZnTe, = 26.6°

2 THz, RT, ZnTe, = 29.6°

2 THz, CT, ZnTe, = 28.2°

2 THz, RT, GaP, = 21.4°

0.32% 0.72% 1.17%

0 2 4 6 80

1

2

Pe

ak e

lectr

ic f

ield

(a

rb.

u.)

Crystal length, L (mm)

ZnTe, RT, 1 THz

ZnTe, CT, 1 THz

ZnTe, RT, 2 THz

ZnTe, CT, 2 THz

GaP, RT, 2 THz

Fülöp et al., Optica, 2016Polónyi et al., Opt. Express, 2016

Page 54: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Materials for optical rectification: organic crystals

Materialdeff

[pm/V]ng

@ 800 nm (1.55 µm)nTHz

αTHz

[cm-1]

FOMfor L = 2 mm[pm2cm2/V2]

CdTe 81.8 (2.81) 3.24 4.8 11.0

GaAs 65.6 4.18 (3.56) 3.59 0.5 4.21

GaP 24.8 3.67 (3.16) 3.34 0.2 0.72

ZnTe 68.5 3.13 (2.81) 3.17 1.3 7.27

GaSe 28.0 3.13 (2.82) 3.27 0.5 1.18

sLiNbO3 @ 300 K@ 100 K

168 2.25 (2.18) 4.96 174.8

18.248.6

DAST 615 3.39 (2.25) 2.58 50 41.5

Velocity matching condition:

Hebling et al., JOSA B, 2008

THzlasergTHzplaserg wwww nnvv ==

Page 55: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Organic materials

Collinear phase matching for 1.2 –1.6 µm pump wavelength

Best suited for the 1 – 20 THz range

Extremely large nonlinearcoefficient

High efficiency up to 3% possible

Pumped by OPA or Cr:forsteritelaser

Often complicated THz spectrumbecause of phonon absorptionbands

Limited crystal size (~1 cm)

Chemicalstructure of DAST (4-N, N-dimethylamino-4’-N’-methyl-stilbazoliumtosylate)Walther et al., Opt. Lett., 2000

Page 56: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Organic materials: phase matching

Vicario et al., Opt. Express, 2015

www.rainbowphotonics.com

Page 57: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Organic materials: bandwidth

Tuning curve ofa 1-mm DSTMSTHz generator

www.rainbowphotonics.com

Page 58: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Coherence length for HMQ-TMS

THz spectra for different pumpwavelengths in HMQ-TMS

Organic materials: tuning

Vicario et al., Sci. Rep., 2015

Page 59: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Organic materials: scaling up the energy

Partitioned crystal (DSTMS)

0.9 mJ pulse energy

Peak field up to40 MV/cm and 14 T

Up to 3% conversion efficiency

Pumped by Cr:forsterite laser(1.25 μm wavelength)

Vicario et al., Opt. Lett., 2014Vicario et al., Phys. Rev. Lett., 2014

Page 60: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

THz generation in gas plasma

THz radiation by asymmetric photocurrent Sensitive to the relative phase (φ) between

ω and 2ω fieldsKarpowicz et al., J. Mod. Opt., 2009

Kim et al., IEEE J. Quantum Electron, 2012

Hoffmann & Fülöp, J. Phys. D, 2011

800 nm

800 nm + 400 nm

Page 61: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

THz generation in gas plasma

Extremely broad spectra up to ~100 THz

Up to 7 μJ pulse energy, 8 MV/cm peakelectric field

Energy scaling

– Longer pump wavelength[Clerici et al., Phys. Rev. Lett., 2013]

– Longer filament→ off-axis phase matching[Oh et al., New J. Phys., 2013]

– Plasma sheet by cylindrical focusing[Oh et al., New J. Phys., 2013]

Page 62: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Broadband THz detection in gas

THzAC

232 EEII ww c

Karpowicz et al., Appl. Phys. Lett., 2008

Page 63: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Applications of THz pulses

Linear THz spectroscopyEmax ≈ 100 V/cm | 10 fJ pulse energySpectroscopy of graphene, nanotubes, molecular magnets, hydrated molecules, etc.

Nonlinear THz spectroscopyEmax ≈ 100 kV/cm | µJ pulse energyTHz pump—THz / optical / X-ray / etc. probe measurements of dynamics

Manipulation and acceleration of charged particlesEmax ≈ 10 – 100 MV/cm | (multi)-mJ pulse energyacceleration of proton & relativistic electron beams, X-ray free electron laser, etc.

Page 64: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

THz pump – THz probe spectroscopy

Commercial-grade nonlinear THz spectroscopy systemdeveloped at University of Pécs

Page 65: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Manipulation and acceleration of charged particlesup to 10 mJ pulse energy, Epeak ≈ 100 MV/cm

• Enhancement of high-harmonic generation (HHG)E. Balogh et al., Phys. Rev. B, 2011K. Kovács et al., Phys. Rev. Lett., 2012

• Electron undulationHebling et al., arXiv:1109.6852

• Longitudinal compression and acceleration of relativistic electron bunches→ single-cycle MIR…X-ray pulse generationHebling et al., arXiv:1109.6852Wong et al., Opt. Express, 2013Nanni et al., Nat. Commun., 2015

• Proton acceleration→ hadron therapy40 MeV to 100 MeV accel. requires 30 mJ THz energyPálfalvi et al., Phys. Rev. ST Accel. Beams, 2014Sharma et al., Phys. Plasmas, 2016

Applications of high-energy THz pulses

Page 66: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

1 GV/m = 10 MV/cm peak field strength is needed

THz beam

AccelerationPlettner et al., Phys. Rev. ST Accel. Beams 9, 111301 (2006)

Beam deflection, focusingPlettner et al., Phys. Rev. ST Accel. Beams 12, 101302 (2009)

Electron acceleration

Page 67: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Possibility of a THz proton postaccelerator

By THz evanescentwave:Pálfalvi et al., Phys. Rev. ST Accel. Beams, 2014

… for laser-generated proton beams

0 20 40 60 80 10040

45

50

55 E0 = 0.7 MV/cm

w/2 = 0.25 THz

d = 100 m

outp

ut

energ

y (

MeV

)

ordinal number of the proton (i)

1.stage

2.stage

3.stage

4.stage

5.stage

Suitable THz source:

More than 0.4 mJ THz pulse energyby tilted-pulse-front pumping of LiNbO3

Fülöp et al., Opt. Express, 2014

Page 68: Intense Pulsed Terahertz Sources & their Applicationslptms.u-psud.fr/impact2016/files/2016/09/Fulop-IMPACT2016.pdf · Liquid crystal mask filter amplitude and/or phase of each frequency

Summary

Intense THz sources now cover the entire THz spectral rangefrom 0.1 to 100 THz and beyond

Perspectives by optical rectification:

– LiNbO3: ~10 MV/cm, multi-mJ, low frequency

– Semiconductors: ~20 MV/cm, multi-mJ, low & medium frequency,extremely compact & robust contact-grating technology

– Organic crystals: ~100 MV/cm, multi-mJ, higher frequency

Intense THz sources and nonlinear (pump-probe) spectroscopic tools enabled resonant and non-resonantcontrol of matter

New range of applications: charged-particle maipulation and acceleration


Recommended