+ All Categories
Home > Documents > Introduction to CMOS VLSI Design Introduction

Introduction to CMOS VLSI Design Introduction

Date post: 11-Jan-2016
Category:
Upload: olin
View: 179 times
Download: 5 times
Share this document with a friend
Description:
Introduction to CMOS VLSI Design Introduction. Manoel E. de Lima David Harris - Harvey Mudd College. Introduction. Integrated circuits: many transistors on one chip. Very Large Scale Integration (VLSI): very many Complementary Metal Oxide Semiconductor Fast, cheap, low power transistors - PowerPoint PPT Presentation
41
Introduction to CMOS VLSI Design Introduction Manoel E. de Lima David Harris - Harvey Mudd College
Transcript
Page 1: Introduction to CMOS VLSI Design Introduction

Introduction toCMOS VLSI

Design

Introduction

Manoel E. de Lima

David Harris - Harvey Mudd College

Page 2: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 2

Introduction Integrated circuits: many transistors on one chip. Very Large Scale Integration (VLSI): very many Complementary Metal Oxide Semiconductor

– Fast, cheap, low power transistors Today: How to build your own simple CMOS chip

– CMOS transistors– Building logic gates from transistors– Transistor layout and fabrication

Rest of the course: How to build a good CMOS chip

Page 3: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

WHY VLSI DESIGN?

Money, technology, civilization

Page 4: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

Annual Sales

1018 transistors manufactured in 2003 100 million for every human on the planet

0

50

100

150

200

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

Year

Global S

emiconductor B

illings(B

illions of US

$)

Page 5: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

Digression: Silicon Semiconductors

Modern electronic chips are built mostly on silicon substrates Silicon is a Group IV semiconducting material crystal lattice: covalent bonds hold each atom to four neighbors

Si SiSi

Si SiSi

Si SiSi

http://onlineheavytheory.net/silicon.html

Page 6: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 6

Silicon Lattice Transistors are built on a silicon substrate Silicon is a Group IV material Forms crystal lattice with bonds to four neighbors

Si SiSi

Si SiSi

Si SiSi

Page 7: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 7

Dopants Silicon is a semiconductor Pure silicon has no free carriers and conducts poorly Adding dopants increases the conductivity Group V: extra electron (n-type) Group III: missing electron, called hole (p-type)

As SiSi

Si SiSi

Si SiSi

B SiSi

Si SiSi

Si SiSi

-

+

+

-

Page 8: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 8

p-n Junctions A junction between p-type and n-type semiconductor

forms a diode. Current flows only in one direction

p-type n-type

anode cathode

Page 9: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

A Brief History Invention of the Transistor

Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable

1947: first point contact transistor (3 terminal devices) Shockley, Bardeen and Brattain at Bell Labs

Page 10: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

A Brief History, contd..

1958: First integrated circuit Flip-flop using two transistors Built by Jack Kilby (Nobel Laureate) at Texas Instruments Robert Noyce (Fairchild) is also considered as a co-inventor

smithsonianchips.si.edu/ augarten/

Kilby’s IC

Page 11: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

A Brief History, contd.

First Planer IC built in 1961

2003 Intel Pentium 4 processor (55 million transistors) 512 Mbit DRAM (> 0.5 billion transistors)

53% compound annual growth rate over 45 years No other technology has grown so fast so long

Driven by miniaturization of transistors Smaller is cheaper, faster, lower in power! Revolutionary effects on society

Page 12: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

1970’s processes usually had only nMOS transistors Inexpensive, but consume power while idle

1980s-present: CMOS processes for low idle power

MOS Integrated Circuits

Intel 1101 256-bit SRAM Intel 4004 4-bit Proc

Page 13: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

Moore’s Law

1965: Gordon Moore plotted transistor on each chip Fit straight line on semilog scale Transistor counts have doubled every 26 months

Year

Transistors

40048008

8080

8086

80286Intel386

Intel486Pentium

Pentium ProPentium II

Pentium IIIPentium 4

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

1970 1975 1980 1985 1990 1995 2000

Integration Levels

SSI: 10 gates

MSI: 1000 gates

LSI: 10,000 gates

VLSI: > 10k gates

http://www.intel.com/technology/silicon/mooreslaw/

Page 14: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

Transistor Types Bipolar transistors

npn or pnp silicon structure Small current into very thin base layer controls large

currents between emitter and collector Base currents limit integration density

Metal Oxide Semiconductor Field Effect Transistors nMOS and pMOS MOSFETS Voltage applied to insulated gate controls current

between source and drain Low power allows very high integration First patent in the ’20s in USA and Germany Not widely used until the ’60s or ’70s

Page 15: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 15

nMOS Transistor Four terminals: gate, source, drain, body Gate – oxide – body stack looks like a capacitor

– Gate and body are conductors

– SiO2 (oxide) is a very good insulator

– Called metal – oxide – semiconductor (MOS) capacitor

– Even though gate is

no longer made of metal

n+

p

GateSource Drain

bulk Si

SiO2

Polysilicon

n+

Page 16: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 16

nMOS Operation Body is commonly tied to ground (0 V) When the gate is at a low voltage:

– P-type body is at low voltage– Source-body and drain-body diodes are OFF– No current flows, transistor is OFF

n+

p

GateSource Drain

bulk Si

SiO2

Polysilicon

n+D

0

S

Page 17: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 17

nMOS Operation Cont. When the gate is at a high voltage:

– Positive charge on gate of MOS capacitor– Negative charge attracted to body– Inverts a channel under gate to n-type– Now current can flow through n-type silicon from

source through channel to drain, transistor is ON

n+

p

GateSource Drain

bulk Si

SiO2

Polysilicon

n+D

1

S

Page 18: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 18

pMOS Transistor Similar, but doping and voltages reversed

– Body tied to high voltage (VDD)

– Gate low: transistor ON– Gate high: transistor OFF– Bubble indicates inverted behavior

SiO2

n

GateSource Drain

bulk Si

Polysilicon

p+ p+

Page 19: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 19

Power Supply Voltage GND = 0 V In 1980’s, VDD = 5V

VDD has decreased in modern processes

– High VDD would damage modern tiny transistors

– Lower VDD saves power

VDD = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, …

Page 20: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 20

Transistors as Switches We can view MOS transistors as electrically

controlled switches Voltage at gate controls path from source to drain

g

s

d

g = 0

s

d

g = 1

s

d

g

s

d

s

d

s

d

nMOS

pMOS

OFF ON

ON OFF

Page 21: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

TransistorsLevel Symbol Switch Conditions

Strong 1 1 P-switch gate=0, source=Vdd

Weak 1 1 N-switch gate=1, source=Vdd

Strong 0 0 N-switch gate=1, source=Vss

Weak 0 0 P-switch gate=0, source=Vss

High impedance Z N-switch gate=0, or P-switch gate=1

0: Introduction Slide 21

Input 0

OutputGood 0

Input 1

Outputpoor 1

Input 0

Outputpoor 0

Input 1

Outputgood 1

Page 22: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 22

Input 0

OutputGood 0

Input 1

Outputpoor 1

Input 0

Outputpoor 0

Input 1

Outputgood 1

Page 23: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 23

CMOS Inverter

A Y

0

1

VDD

A Y

GNDA Y

Page 24: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 24

CMOS Inverter

A Y

0

1 0

VDD

A=1 Y=0

GND

ON

OFF

A Y

Page 25: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 25

CMOS Inverter

A Y

0 1

1 0

VDD

A=0 Y=1

GND

OFF

ON

A Y

Page 26: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

CMOS Inverter

VinVin VoutVout

VddVdd

VssVss

CCloadload

Q1Q1

Q2Q2

IIdd1- 1- Vin = VddVin = Vdd

Análise do circuito:Análise do circuito:

Vdd=+5VVdd=+5V

0V0V

VoutVout

Roff Roff

RonRon

Cálculo de VoutVdd = Ids(Roff+Ron) =>Vdd = Ids.Roff+Ids.Ron =>Vdd = Ids.Roff+Vout =>Vout = Vdd-Ids.Roff 0V

IdsIds

Ron < 1 KohmsRoff 1010KohmsIds é pequeno, mas Roff é bastante grande

Page 27: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

CMOS Inverter

• Note que Vh = 5V, VL = 0V, e que Ids = 0A.• Isto significa que não existe praticamente dissipação de potência.

Page 28: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

CMOS Inverter

+5V

GNDGND

Vih=´1´

R

+5V

GNDGND

OutIolIil

In

Vol(max) Vil(max)

Tempo (seg)

Tensão(V)

Vil(max)Nível ´0´

Capacitor carregado (´1´)Transistor conduz

Ron 1 K

Transistor não conduz

Ron 1 K

Page 29: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

CMOS Inverter

VinVin VoutVout

VddVdd

VssVss

CCloadload

Q1Q1

Q2Q2

IIdd2- 2- Vin = 0VVin = 0V

Análise do circuito:Análise do circuito:

Vdd=+5VVdd=+5V

0V0V

VoutVout

Ron Ron

RoffRoff

Cálculo de VoutVdd = Ids(Roff+Ron) =>Vdd = Ids.Roff+Ids.Ron =>Vdd = Vout+Ids.Ron =>Vout = Vdd-Ids.Ron Vdd=5V

IdsIds

Ron < 1 KohmsRoff 1010KohmsIds é muito pequeno

Page 30: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

CMOS Inverter

• Note que Vh = 5V, VL = 0V, e que Ids = 0A.• Isto significa que não existe praticamente dissipação de potência.

Page 31: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

CMOS Inverter

+5V

GNDGND

Vil=0

R

+5V

GNDGND

OutIohIih

In

Voh(min) Vih(min)

Tempo (seg)

Tensão(V)Vih(min)

Nível ´1´

Capacitor

X

Transistor não conduz

Roff 1010

Transistor conduz

Ron 1 K

Page 32: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 32

CMOS NAND Gate

A B Y

0 0

0 1

1 0

1 1

A

B

Y

Page 33: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 33

CMOS NAND Gate

A B Y

0 0 1

0 1

1 0

1 1

A=0

B=0

Y=1

OFF

ON ON

OFF

Page 34: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 34

CMOS NAND Gate

A B Y

0 0 1

0 1 1

1 0

1 1

A=0

B=1

Y=1

OFF

OFF ON

ON

Page 35: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 35

CMOS NAND Gate

A B Y

0 0 1

0 1 1

1 0 1

1 1

A=1

B=0

Y=1

ON

ON OFF

OFF

Page 36: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 36

CMOS NAND Gate

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

A=1

B=1

Y=0

ON

OFF OFF

ON

Page 37: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

Lógica Combinacional Porta NAND saídasaída A A

00 11 00 11 11BB 11 1 01 0

AA BB

P P

N

N

Vcc (‘1’)

GND (‘0’)

saída

Vcc

GND

A

B

Saída Saída

GND

A

B

C

n

A B C n

Vcc

Porta NAND de n-entradas

(A+B)

(A B)

Dual LógicoDual Lógico

Page 38: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 38

CMOS NOR Gate

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

A

BY

Page 39: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design

Lógica Combinacional Porta NOR

AA BB

N N

P

Vcc (‘1’)

GND (‘0’)

saída

P

Vcc

GND

A

B

saída

Saída

Vcc

n

A

B

C

A B C n

GND

saídasaída A A00 11

00 11 00BB 11 0 00 0

(A B)

(A+B)

Dual LógicoDual Lógico

Page 40: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 40

3-input NAND Gate Y pulls low if ALL inputs are 1 Y pulls high if ANY input is 0

A

B

Y

C

Page 41: Introduction to CMOS VLSI Design Introduction

CMOS VLSI Design0: Introduction Slide 41

Summary MOS Transistors are stack of gate, oxide, silicon Can be viewed as electrically controlled switches Build logic gates out of switches


Recommended