+ All Categories
Home > Documents > Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Date post: 30-Mar-2015
Category:
Upload: tabitha-ratliff
View: 225 times
Download: 1 times
Share this document with a friend
Popular Tags:
38
Introduction to Control Theory COMP417 Instructor: Philippe Giguère
Transcript
Page 1: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Introduction to Control Theory

COMP417

Instructor: Philippe Giguère

Page 2: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Actuators

• Earlier lecture presented actuators– Electrical motor

• Now how do we use them in an intelligent manner?

Electric Motor

Page 3: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Open-loop?• We want to spin a motor at a given angular

velocity. We can apply a fixed voltage to it, and never check to see if it is rotating properly.

• Called open loop.

Power Amplifier

Electric Motor

Computer

Vol

tage

Angular Velocity

Page 4: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Open-loop?• What if there is a changing load on the motor?

– Our output velocity will change!

torque

speed no torque at max speed

stall torque

Page 5: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Closing the loop• Let’s measure the actual angular velocities.• Now we can compensate for changes in load

by feeding back some information.Power

AmplifierElectric Motor

Computer

Vol

tag

e

AngularVelocity

Tachometer

Page 6: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Control Theory• Roots in another science: Cybernetics

Cybernetics is the study of feedback and derived concepts such as communication and control in living organisms, machines and organisations.

• Expression was coined by Norbert Weiner in 1948.

Page 7: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Early Example of Feedback System

• James Watt’s “Centrifugal Governor” in 1788.

• Regulates the steam engine speed.

Page 8: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Other Simple Examples• Body temperature regulation

– If cold, shiver (muscles produce heat)– If hot, sweat (evaporation takes away heat)

• Maintaining social peace– If a crime is found (sensor), the guilty party is

punished (actuator).

• Cruise control in cars– You set a speed, CC will increase fuel intake

uphill, and decrease it downhill.

• Etc…

Page 9: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Why Control Theory• Systematic approach to analysis and design

– Transient response– Consider sampling times, control frequency– Taxonomy of basic controllers (PID, open-loop,

Model-based, Feedforward…)– Select controller based on desired characteristics

• Predict system response to some input– Speed of response (e.g., adjust to workload changes)– Oscillations (variability)

• Assessing stability of system

Page 10: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Characteristics of Feedback System

• Power amplification– Compare neural signal power (W) vs muscle power

output (tens of W)– Means it is an active system, as opposed to passive.

• Actuator• Feedback

– measurement (sensor)

• Error signal• Controller

Page 11: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Classic Feedback Diagram

PowerAmplification

Actuatoror

PlantController

Sensor

Command inputx(t)

Errore(t) System

ouputy(t)

ExternalDisturbance

d(t)Actuatorcommand

u(t)

SensorReading

b(t)

Page 12: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Controller Design Methodology

Block diagram

construction

Model

Ok?

Stop

Start

Transfer function formulation and

validation

Controller Design

Objective

achieved?

Controller Evaluation

Y

Y

N N

System Modeling

Page 13: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Control System Goals

• Regulation– thermostat

• Tracking– robot movement, adjust TCP window to

network bandwidth

• Optimization– best mix of chemicals, minimize response

times

Page 14: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Approaches to System Modeling

• First Principles– Based on known laws.– Physics, Queueing theory.– Difficult to do for complex systems.

• Experimental (System Identification)– Requires collecting data– Is there a good “training set”?

Page 15: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Common Laplace TransfomName f(t) F(s)

Impulse

Step

Ramp

Exponential

Sine

1

s

1

2

1

s

as 1

22 s

1)( tf

ttf )(

atetf )(

)sin()( ttf

00

01)(

t

ttf

Damped Sine 22)(

as)sin()( tetf at

Page 16: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Transfer Function• Definition: H(s) = Y(s) / X(s)

• Relates the output of a linear system to its input.

• Describes how a linear system responds to an impulse… called impulse response– (remember! Convolving with impulse yields the same

thing. Hence probing a system with and impulse is finding its transfer function…)

• All linear operations allowed– Scaling, addition, multiplication

Page 17: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Block Diagram

• Expresses flows and relationships between elements in system.

• Blocks may recursively be systems.• Rules

– Cascaded elements: convolution.

– Summation and difference elements

b(t)a(t) )()( tbta

Page 18: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Laplace Transform of Classic Feedback Sysem

ActuatorA(s)

ControllerC(s)

SensorS(s)

Command inputX(s)

ErrorE(s) System

ouputY(s)

ExternalDisturbance

D(s)Actuator

commandU(s)

SensorReading

B(s)

Page 19: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Key Transfer Functions

FeedbackFeedforward

ActuatorA(s)

ControllerC(s)

SensorS(s)

Command inputX(s)

ErrorE(s) System

ouputY(s)

ExternalDisturbance

D(s)

Actuatorcommand

U(s)

SensorReading

B(s)

)()()(1

)()(

X(s)

)( :Feedback

sHsAsC

sAsCsY

)()(

)(

)( :dFeedforwar sAsC

sE

sY

Page 20: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

First Order System

sTK

K

sX

sY

1)(

)(

K

1

Command inputX(s) sT1

1 Systemoutput

X(s)

1

1

1

11

11 iserror stateSteady

Theorem) Value (Final 0 is valuestateSteady

0KKK

K-

sTKK

s

s

Page 21: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Response of System

• Impulse

• Step

sTK

K

1Exponential

=

t

t

“step” function

TsK

K

1s

1x

sT

K

K

Ks

K

TsKs

K

1)1()1()1(

t-

t

Tim

e D

omai

nLa

plac

e D

omai

n

Page 22: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Steady-State vs. Transient

t

• Step Response illustrates how a system response can be decomposed into two components:– Steady-state part:

– Transient

t

Page 23: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Second Order System

:frequency natural Undamped

2 where :ratio Damping

)04 (ie,part imaginary zero-non have poles if Oscillates

2)(

)( :response Impulse

2

22

2

2

J

K

JKBB

B

JKB

ssKBsJs

K

sX

sY

N

cc

NN

N

Page 24: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Second Order Response

• Typical response to step input is:

t-

t t+

overshoot -- % of final value exceeded at first oscillation

rise time -- time to span from 10% to 90% of the final value

settling time -- time to reach within 2% or 5% of the final value

2% or 5%

settling time

overshoot

rise time

90%

Page 25: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Basic Controller Function

)(

)()()(:control alDifferenti

)(

)()()(:control Integral

)(

)()()(:control alProportion

0

sKsE

sUte

dt

dKtu

s

K

sE

sUdtteKtu

KsE

sUteKtu

dd

it

i

pp

Page 26: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Effect of Controller Functions

• Proportional Action– Simplest Controller Function

• Integral Action– Eliminates steady-state error– Can cause oscillations

• Derivative Action (“rate control”)– Effective in transient periods– Provides faster response (higher sensitivity)– Never used alone

Page 27: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Control Performance (2nd O), P-type

Kp = 20

Kp = 200

Kp = 50

Kp = 500

Page 28: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Steady-state Errors, P-type

Kp = 200 Kp = 50

Page 29: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Control Performance, PI - type

Kp = 100

Ki = 50 Ki = 200

Page 30: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

You’ve been integrated...

Kp = 100

instability & oscillation

Page 31: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Control Performance, PID-typeKp = 100 Ki = 200 Kd = 2

Kd = 10 Kd = 20

Kd = 5

Page 32: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

PID final control

Page 33: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

PID Tuning

How to get the PID parameter values ?

(1) If we know the transfer function, analytical methods can be used (e.g., root-locus method) to meet the transient and steady-state specs. (2) When the system dynamics are not precisely known, we must resort to experimental approaches.

Using only Proportional control, turn up the gain until the system oscillates w/o dying down, i.e., is marginally stable. Assume that K and P are the resulting gain and oscillation period, respectively.

Then, use

Ziegler-Nichols Tuning for second or higher order systems

for P control for PI control for PID control

Kp = 0.6 K

Ki = 2.0 / P

Kd = P / 8.0

Kp = 0.45 K

Ki = 1.2 / P

Kp = 0.5 K

Ziegler-Nichols Rules for Tuning PID Controller:

Page 34: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Layered Approach to Control

• Robotic systems often have a layered approach to control:

Planner

Autopilot

AttitudeController

FlipperPositionController

Motor

movie

Page 35: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Multiple Loops

Angle

Motor

PositionEncoder

PID

Back-EMFcomp

d/dt

DCMotor module

Velocity PID

Robotd/dt

UnderwaterSwimmer

GaitGeneration

Rate

IMU

Autopilot

Controller

Camera

Vision Tracker

TargetDetection

TargetLocation

DesiredTarget

Location

Target

Inner loops are generally “faster” that outer loop.

Page 36: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

Advanced Control Topics

• Adaptive Control– Controller changes over time (adapts).

• MIMO Control– Multiple inputs and/or outputs.

• Predictive Control– You measure disturbance and react before measuring

change in system output.• Optimal Control

– Controller minimizes a cost function of error and control energy.

• Nonlinear systems– Neuro-fuzzy control.– Challenging to derive analytic results.

Page 37: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

RC Servo• Is a controller + actuator in a small

package.

• Not expensive 10$-100$.

• Those in 417 will use some of these.

Page 38: Introduction to Control Theory COMP417 Instructor: Philippe Giguère.

PWM• PWM -- “pulse width modulation

• Duty cycle:– The ratio of the “On time” and the “Off time” in one cycle.– Determines the fractional amount of full power delivered to

the motor.

• Why:– Transistor acts as a resistor when partially on.– Leads to energy being wasted heat.


Recommended