+ All Categories
Home > Documents > Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Date post: 11-Dec-2015
Category:
Upload: roger-shurley
View: 222 times
Download: 0 times
Share this document with a friend
Popular Tags:
48
Introduction to Data Assimilation Peter Jan van Leeuwen IMAU
Transcript
Page 1: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Introduction to Data Assimilation

Peter Jan van Leeuwen

IMAU

Page 2: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Basic estimation theory

T0 = T + e0

Tm = T + em

E{e0} = 0E{em} = 0E{e0

2} = s02

E{em2} = sm

2

E{e0em} = 0

Assume a linear best estimate: Tn = a T0 + b Tm

with Tn = T + en

Find a and b such that:

b = 1 - a

a = __________ sm2

s02 + sm

2

E{en} = 0

E{en2} minimal

Page 3: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Solution: Tn = _______ T0 + _______ Tmsm

2 s02

s02 + sm

2 s02 + sm

2

___ = ___ + ___1 1 1

sm2s0

2sn2

and

Note: sn smaller than s0 and sm !

Basic estimation theory

Best Linear Unbiased Estimate BLUE

Just least squares!!!

Page 4: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Can we generalize this?

• More dimensions

• Nonlinear estimates (why linear?)

• Observations that are not directly modeled

• Biases

Page 5: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

P(u)

u (m/s)

1.00.5

The basics: probability density functions

Page 6: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

The model pdfP[u(x1),u(x2),T(x3),..

u(x1)

u(x2) T(x3)

Page 7: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Observations

• In situ observations: e.g. sparse hydrographic observations, irregular in space and time

• Satellite observations: e.g. of the sea-surface

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 8: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

NO INVERSION !!!

Data assimilation: general formulation

Page 9: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Bayes’ Theorem

Conditional pdf:

Similarly:

Combine:

Even better:

Page 10: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Filters and smoothers

Time

Filter: solve 3D problem several times

Smoother: solve 4Dproblem once

Note: the model is (highly) nonlinear!

Page 11: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Model equation:

Pdf evolution: Kolmogorov’s equation(Fokker-Planck equation)

Pdf evolution in time

Page 12: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Only consider mean and covariance

At observation times:

-The mean of the product of 2 Gaussians is equal to linear combination of the 2 means: E{|d} = a E{} + b E{d|}

- Assume p(d|) and p() are Gaussian, and use Bayes

- But we have seen this before in the first example !

(Ensemble) Kalman Filter

Page 13: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

with Kalman gain K = PHT (HPHT + R)-1

Kalman Filter notation: mnew = m

old + K (d - H mold)

Old solution: Tn = _______ T0 + _______ Tmsm

2 s02

s02 + sm

2 s02 + sm

2

But now for covariance matrices:

mnew = R (P+R)-1 m

old + P (P+R)-1d

(Ensemble) Kalman Filter II

Page 14: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

The error covariance:tells us how model variables co-vary

PSSH SSH(x,y) = E{ (SSH(x) - E{SSH(x)}) (SSH(y) - E{SSH(y)}) }

PSSH SST(x,y) = E{ (SSH(x) - E{SSH(x)}) (SST(y) - E{SST(y)}) }

For example SSH at point x with SSH at point y:

Or SSH at point x and SST at point y:

Page 15: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Spatial correlation of

SSHand SST in the Indian

Ocean

x

x

Haugen and Evensen, 2002

Page 16: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Covariancesbetween

modelvariables

Haugen and Evensen, 2002

Page 17: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Summary on Kalman filters:

• Gaussian pdf’s for model and observations• Propagation of error covariance P If N operations for state vector evolution, then N2 operations for P evolution…

Problems:• Nonlinear dynamics, so non-Gaussian statistics• Evolution equation for P not closed• Size of P (> 1,000,000,000,000) ….

Page 18: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Propagation of pdf in time:ensemble or particle methods

Page 19: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Example of Ensemble Kalman Filter (EnKF)

MICOM model with1.3 million model variablesObservations:Altimetry, infra-red

Validated with hydrographicobservations

Page 20: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

SST (-2K to +2K)

Page 21: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

SSH (-10 cm to +10 cm)

Page 22: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

RMS difference with XBT-data

Page 23: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

?

Spurious covariances

Page 24: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Local updating: restrict update using only local covariances:

EnKF:

with Kalman gain

Schurproduct, or direct cut-off

Localization in EnKF-like methods

Page 25: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Ensemble Kalman Smoother (EnKS)

Basic idea: use covariances over time.

Efficient implementation: 1) run EnKF, store ensemble at observation times2) add influence of data back in time using covariances at different times

Page 26: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

0

2

4

6

8

10

408 412 416 420 424 428 432 436 440 444 448 452 456

Probability densityfunction of layer thicknessof first layer at day 41during data-assimilation

No Kalman filterNo variational methods

Nonlinear filters

Page 27: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

The particle filter(Sequential Importance Resampling SIR)

Ensemble

with

Page 28: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Particle filter

Page 29: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

SIR-results for a quasi-geostrophic ocean model around South Africa with 512 members

Page 30: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Smoothers: formulation

Model error

Initial error

Observation error

Boundary errors etc. etc.

Page 31: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Smoothers: prior pdf

Page 32: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Smoothers: posterior pdf

Assume all errors are Gaussian:

model initial observation

Page 33: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Assume Gaussian pdf for model errors and observations:

in which

Find min J from variational derivative:J is costfunction or penalty function

model dynamics initial condition model-obs misfit

Smoothers in practice: Variational methods

Page 34: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Gradient descent methods

J

model variable

123 4 561’

Page 35: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Forward integrations

Backward integrations

Nonlinear two-point boundary value problemsolved by linearization and iteration

The Euler-Lagrange equations

Page 36: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

4D-VAR strong constraintAssume model errors negligible:

In practice only a few linear and one or two nonlinear iterations are done….

No error estimate (Hessian too expensive and unwanted…)

Page 37: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Example 4D-VAR: GECCO

• 1952 through 2001 on a 1º global grid with 23 layers in the vertical, using the ECCO/MIT adjoint technology.

• Model started from Levitus and NCEP forcing and uses state of the art physics modules (GM, KPP).

• Control parameters: initial temperature and salinity fields

and the time varying surface forcing,

Page 38: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

The Mean Ocean Circulation, global

Residual values can reveal inconsistencies in data sets (here geoid).

Page 39: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

MOC at 25N

Bryden et al. (2005)

Page 40: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Error estimates

J

Local curvature fromsecond derivative of J,the HessianX

Page 41: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Other smoothers

Representers, PSAS, Ensemble Kalman smoother, ….

Simulated annealing (Metropolis Hastings), …

Page 42: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Relations between model variables

• Covariance gives linear correlations between variables

• Adjoint gives linear correlation between variables along a nonlinear model run (linear sensitivity)

• Pdf gives full nonlinear relation between variables (nonlinear sensitivity)

Page 43: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Parameter estimation

Bayes:

Looks simple, but we don’t observe model parameters….

We observe model fields, so:

in which Hhas to be found from model integrations

Page 44: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Example: ecosystem modeling

29 parametersof which15 were estimatedand 14 were keptFixed.

Page 45: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Estimated parametersfrom particle filter (SIR)

All other methods thatwere tried, including4D-VAR and EnKF failed.

Losa et al, 2001

Page 46: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Estimate size of model error

Brasseur et al, 2006

Page 47: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Why data assimilation?

• Forecasts• Process studies• Model improvements - model parameters - parameterizations• ‘Intelligent monitoring’

Page 48: Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.

Conclusions

• Evolution of pdf with time is essential ingredient

• Filters: dominated by Kalman-like methods, but moving towards nonlinear methods (SIR etc.)

• Smoothers: dominated by 4D-VAR,

New ideas needed!


Recommended