+ All Categories
Home > Documents > Introduction to Gaussian Process Regression

Introduction to Gaussian Process Regression

Date post: 12-Feb-2022
Category:
Upload: others
View: 21 times
Download: 0 times
Share this document with a friend
25
Introduction Introduction to Gaussian Process Regression Hanna M. Wallach [email protected] January 25, 2005 Hanna M. Wallach [email protected] Introduction to Gaussian Process Regression
Transcript

Introduction

Introduction to Gaussian Process Regression

Hanna M. Wallach

[email protected]

January 25, 2005

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Introduction

Outline

Regression: weight-space view

Regression: function-space view (Gaussian processes)

Weight-space and function-space correspondence

Making predictions

Model selection: hyperparameters

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Introduction

Supervised Learning: Regression (1)

−1 −0.5 0 0.5 1−1.5

−1

−0.5

0

0.5

1

1.5

input, x

outp

ut, f

(x)

underlying function and noisy data

training data

Assume an underlying process which generates “clean” data.

Goal: recover underlying process from noisy observed data.

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Introduction

Supervised Learning: Regression (2)

Training data are D = {x(i), y (i) | i = 1, . . . , n}.Each input is a vector x of dimension d .

Each target is a real-valued scalar y = f (x) + noise.

Collect inputs in d × n matrix, X , and targets in vector, y :

D = {X , y}.

Wish to infer f ? for unseen input x?, using P(f ?|x?,D).

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Introduction

Gaussian Process Models: Inference in Function Space

0 0.2 0.4 0.6 0.8 1−1

0

1

2

3samples from the prior

input, x

outp

ut, f

(x)

0 0.2 0.4 0.6 0.8 10.4

0.6

0.8

1

1.2

1.4samples from the posterior

input, x

outp

ut, f

(x)

A Gaussian process defines a distribution over functions.

Inference takes place directly in function space.

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Bayesian Linear Regression

Part I

Regression: The Weight-Space View

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Bayesian Linear Regression

Bayesian Linear Regression (1)

−1 −0.5 0 0.5 1−1.5

−1

−0.5

0

0.5

1

1.5

input, x

outp

ut, f

(x)

training data

Assuming noise ε ∼ N (0, σ2), the linear regression model is:

f (x|w) = x>w, y = f + ε.

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Bayesian Linear Regression

Bayesian Linear Regression (2)

Likelihood of parameters is:

P(y|X ,w) = N (X>w, σ2I ).

Assume a Gaussian prior over parameters:

P(w) = N (0,Σp).

Apply Bayes’ theorem to obtain posterior:

P(w|y,X ) ∝ P(y|X ,w)P(w).

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Bayesian Linear Regression

Bayesian Linear Regression (3)

Posterior distribution over w is:

P(w|y,X ) = N (1

σ2A−1Xy,A−1) where A = Σ−1

p +1

σ2XX>.

Predictive distribution is:

P(f ?|x?,X , y) =

∫f (x?|w)P(w|X , y)dw

= N (1

σ2x?>A−1Xy, x?>A−1x?).

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Bayesian Linear Regression

Increasing Expressiveness

Use a set of basis functions Φ(x) to project a d dimensionalinput x into m dimensional feature space:

e.g. Φ(x) = (1, x , x2, . . . )

P(f ?|x?,X , y) can be expressed in terms of inner products infeature space:

Can now use the kernel trick.

How many basis functions should we use?

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Gaussian Process Regression

Part II

Regression: The Function-Space View

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Gaussian Process Regression

Gaussian Processes: Definition

A Gaussian process is a collection of random variables, anyfinite number of which have a joint Gaussian distribution.

Consistency:

If the GP specifies y (1), y (2) ∼ N (µ,Σ), then it must alsospecify y (1) ∼ N (µ1,Σ11):

A GP is completely specified by a mean function and apositive definite covariance function.

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Gaussian Process Regression

Gaussian Processes: A Distribution over Functions

e.g. Choose mean function zero, and covariance function:

Kp,q = Cov(f (x(p)), f (x(q))) = K (x(p), x(q))

For any set of inputs x(1), . . . , x(n) we may compute K whichdefines a joint distribution over function values:

f (x(1)), . . . , f (x(n)) ∼ N (0,K ).

Therefore a GP specifies a distribution over functions.

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Gaussian Process Regression

Gaussian Processes: Simple Example

Can obtain a GP from the Bayesin linear regression model:

f (x) = x>w with w ∼ N (0,Σp).

Mean function is given by:

E[f (x)] = x>E[w] = 0.

Covariance function is given by:

E[f (x)f (x′)] = x>E[ww>]x′ = x>Σpx′.

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Gaussian Process Regression

Weight-Space and Function Space Correspondence

For any set of m basis functions, Φ(x), the correspondingcovariance function is:

K (x(p), x(q)) = Φ(x(p))>ΣpΦ(x(q)).

Conversely, for every covariance function k, there is a possiblyinfinite expansion in terms of basis functions:

K (x(p), x(q)) =∞∑i=1

λiΦi (x(p))Φi (x

(q)).

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Gaussian Process Regression

The Covariance Function

Specifies the covariance between pairs of random variables.

e.g. Squared exponential covariance function:

Cov(f (x(p)), f (x(q))) = K (x(p), x(q)) = exp (−1

2|x(p) − x(q)|2).

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1K(x(p) = 5, x(q)) as a function of x(q)

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Gaussian Process Regression

Gaussian Process Prior

Given a set of inputs x(1), . . . , x(n) we may draw samplesf (x(1)), . . . , f (x(n)) from the GP prior:

f (x(1)), . . . , f (x(n)) ∼ N (0,K ).

Four samples:

0 0.2 0.4 0.6 0.8 1−1

0

1

2

3samples from the prior

input, x

outp

ut, f

(x)

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Gaussian Process Regression

Posterior: Noise-Free Observations (1)

Given noise-free training data:

D = {x(i), f (i) | i = 1, . . . , n} = {X , f}.

Want to make predictions f? at test points X ?.

According to GP prior, joint distribution of f and f? is:[ff?

]∼ N

(0,

[K (X ,X ) K (X ,X ?)K (X ?,X ) K (X ?,X ?)

]).

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Gaussian Process Regression

Posterior: Noise-Free Observations (2)

Condition {X ?, f?} on D = {X , f} obtain the posterior.

Restrict prior to contain only functions which agree with D.

The posterior, P(f?|X ?,X , f), is Gaussian with:

µ = K (X ,X ?)K (X ,X )−1f, and

Σ = K (X ?,X ?)− K (X ,X ?)K (X ,X )−1K (X ?,X ).

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Gaussian Process Regression

Posterior: Noise-Free Observations (3)

0 0.2 0.4 0.6 0.8 10.4

0.6

0.8

1

1.2

1.4samples from the posterior

input, x

outp

ut, f

(x)

Samples all agree with the observations D = {X , f}.Greatest variance is in regions with few training points.

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Gaussian Process Regression

Prediction: Noisy Observations

Typically we have noisy observations:

D = {X , y}, where y = f + ε

Assume additive noise ε ∼ N (0, σ2I ).

Conditioning on D = {X , y} gives a Gaussian with:

µ = K (X ,X ?)[K (X ,X ) + σ2I ]−1y, and

Σ = K (X ?,X ?)− K (X ,X ?)[K (X ,X ) + σ2I ]−1K (X ?,X ).

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Gaussian Process Regression

Model Selection: Hyperparameters

e.g. the ARD covariance function:

k(x (p), x (q)) = exp (− 1

2θ2(x (p) − x (q))2).

How best to choose θ?

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1.5

−1

−0.5

0

0.5

1

1.5

samples from the posterior, θ = 0.1

input, x

outp

ut, f

(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

samples from the posterior, θ = 0.3

input, x

outp

ut, f

(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

samples from the posterior, θ = 0.5

input, x

outp

ut, f

(x)

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Gaussian Process Regression

Model Selection: Optimizing Marginal Likelihood (1)

In absence of a strong prior P(θ), the posterior forhyperparameter θ is proportional to the marginal likelihood:

P(θ|X , y) ∝ P(y|X , θ)

Choose θ to optimize the marginal log-likelihood:

log P(y|X , θ) = −1

2log |K (X ,X ) + σ2I |−

1

2y>(K (X ,X ) + σ2I )−1y − n

2log 2π.

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Gaussian Process Regression

Model Selection: Optimizing Marginal Likelihood (2)

θML = 0.3255:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

samples from the posterior, θ = 0.3255

input, x

outp

ut, f

(x)

Using θML is an approximation to the true Bayesian method ofintegrating over all θ values weighted by their posterior.

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression

Gaussian Process Regression

References

1 Carl Edward Rasmussen. Gaussian Processes in Machinelearning. Machine Learning Summer School, T ubingen, 2003.http://www.kyb.tuebingen.mpg.de/~carl/mlss03/

2 Carl Edward Rasmussen and Chris Williams. GaussianProcesses for Machine Learning. Forthcoming.

3 Carl Edward Rasmussen. The Gaussian Process Website.http://www.gatsby.ucl.ac.uk/~edward/gp/

Hanna M. Wallach [email protected]

Introduction to Gaussian Process Regression


Recommended