+ All Categories
Home > Documents > Introduction to plasma - KIPO

Introduction to plasma - KIPO

Date post: 19-Oct-2021
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
47
Plasma Electronics Lab Hanyang University, SEOUL, KOREA 반도체 공정 플라즈마 기초와 응용 한양대학교 전기공학과 정진욱 http://plasma.hanyang.ac.kr
Transcript
Page 1: Introduction to plasma - KIPO

Plasma Electronics LabHanyang University, SEOUL, KOREA

반도체 공정 플라즈마기초와 응용

한양대학교 전기공학과

정진욱

http://plasma.hanyang.ac.kr

Page 2: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

공정 플라즈마 참고문헌

• 입문서(학부)

– 플라즈마의 세계, 고토 켄이치(전파공학사,blue backs B88)

– 초진공이 여는 세계, 고미야 소지(전파공학사,blue backs B82)

– 플라즈마 전자공학 (청문각)

– 플라즈마 일렉트로닉스 (교학사)

– 플라즈마 식각기술 (미래컴)

• 입문서(대학원)– 플라즈마 물리학과 핵융합, 최덕인, 민음사

– Fundamentals of plasma physics, V. E. Golant

– Introduction to plasma physics and controlled fusion, F.F.Chen– Fundamentals of plasma physics, J.A. Bittencourt

– Principles of plasma physics, N.A. Krall

• 플라즈마 응용– Principles of plasma discharges and material processing– Cold plasma in material fabrication

– Glow discharge processes, B. Chapman

– High Density plasma sources, Popov

– Gas discharge physics, Y.P. Raizer

– Plasma Etching, Manos and D. L. Flamm

– Industrial Plasma Engineering vol.I,II, J.R.Roth

– Applications of plasma processes to VLSI Technology, T. Sugano

Page 3: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

플라즈마?

A fourth state of matter

• Are driven by voltage or current sources

• Charged particle collisions with neutral particles are important

• There are boundaries at which surface losses are important

• Ionization of neutrals sustains the plasma in the steady state

• The electron are not in thermal equilibrium with ions

Schematic view of (a) a plasma and (b) a discharge

Page 4: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

플라즈마 & 쉬스

• 쉬스

– 플라즈마와 reactor가 닿는 표면에 생기는 부분

– The non-neutral region between the plasma and the wall

Page 5: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

플라즈마 & 쉬스

• The characteristic length scale of a plasma

• Low voltages sheaths ~ few Debye lengths

Page 6: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

반도체 공정기술 로드맵

• Intel Technology Roadmap

• Transistor history

Page 7: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

반도체 제조 공정

• 증각, 리소, 식각 등으로 진행

(So

urce

: Ap

plie

d M

ate

rials)

2011

24,000,000 (240M)1999

NumberYearType

Number of TR: 2.2B

Pentium III

2nd Core I 7 2,200,000,000 (2.2B)

Page 8: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

포토 공정

• 패턴 전사 과정

Page 9: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

반도체 식각 공정

Page 10: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

반도체 식각 공정

•Etch Processes

Page 11: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

반도체 식각 공정

• What is plasma etching ?

Another example : Si + 4F SiF4

Page 12: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

반도체 식각 공정

• 화학작용과 물리적 작용의 시너지 효과

– Example of ion-assisted etching

Page 13: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

Plasma Applications – 반도체 식각 공정

• 식각 장비

Page 14: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

반도체 식각 공정

• Etch Gallery

Page 15: Introduction to plasma - KIPO

Plasma Electronics LabHanyang University, SEOUL, KOREA

Plasma Sources

Page 16: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

Plasma Generation

• 중성가스에 에너지를 공급하여 발생

• 벽에서 방출되는 전자나 공간 내의 자유

전자들이 에너지(etc. 전기장)에 의해 가속

• 공간내의 중성가스와 충돌하여 이온화반

응에 의해서 플라즈마 생성

• 플라즈마 내의 하전 입자들은 전자의 경우

양극 판으로, 이온의 경우 음극 판으로 흘

러나가 손실되거나 벽을 구성하는 입자와

충돌하여 recombination 과정을 겪으면서

소멸

– 에너지 공급

• Thermal energy

• Energetic beam (etc. Fusion)

• Electric field (주로 사용)

Principles of plasma generation

Page 17: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

DC discharge

• DC Plasma는 두 개의 평행 판 전극 사이에서 생성.

• DC Power supply는 arc suppression 기능이 요구됨.

DC 방전회로도

Page 18: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

DC 방전의전류-전압특성곡선

DC discharge

Normal glow 방전의특성

Page 19: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

DC Plasma

• DC plasma heating : secondary electron emission

Page 20: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

DC Plasma

• 파센의 법칙

1

2

1 2

log( )

where d= distance between electrodes, C and C =gas constant

b

C pdV

C pd

Page 21: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

Advantages of RF discharges over the DC discharges

RF plasmas can be excited and sustained using either conductive or nonconductive electrodes

RF plasmas can be sustained with internal as well as external electrodes (corrosive gas and contamination)

High ionization efficiency

Lower gas pressure

Ion energy is controlled by the negative bias, which can be adjusted over a wide range of values.

Page 22: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

RF discharges

• 무전극 방전

• FCC 허용 주파수 400 k, 450 k, 2 M, 3 M, 13.56 M, 27.12 M, 40

M, 0.915 G, 2.45 GHz.

• RF power supply의 임피던스와 부하 임피던스를 매칭해야 power의

전달 가능 (출력 impedance matching 50 Ω)

BE

t

Faraday’s Induction Law

Electrodeless Discharges 일반적으로 두 가지 유형의 RF discharge 방법이 개발.

1. Inductive coupling : 유도 전기장에 의해 전자는 에너지를 얻음 (a).

2. Capacitive coupling: 축전 전기장에 의해서 전자가 에너지를 얻음 (b/c).

Page 23: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

RF & Microwave discharges

• Capacitive Coupled Plasma(CCP)

– Voltage coupling

• Inductive Coupled Plasma(ICP)

– Current coupling

– Helicon plasma (magnetic field)

• Microwave plasma(~2.45GHz)

– Surface Wave plasma, Electron Cyclotron Plasma(ECR)

I.M.B

RF

RFBlocking capacitor

전자석

Microwave

2.45GHzQuartz

window

CCP ICPECR

코일(Coil)

RF

전자석

Helicon

Page 24: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

Impedance matching

• Maximum power transfer in DC or RF when RT = RL

R0

RLVdc

R0

ZL = RL + j XL

Vrf

*

0 0

2*

2 2

0

0

2

max

1Averaged transfer power : Re

2

,

1 1Re

2 2

0, 0 0,

1

8

av L rf

rf L Lrf L rf L L rf

L L L L

Lav L rf rf

L L

av avL L

L L

rf

T

P V I

V R jXI V I R jX V

R R jX R R jX

RP V I V

R R jX

P PX R R

X R

VP

R

max

Since is not zero, L D T

av

X R R

P P

LV

Page 25: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

Capacitive Coupled Plasma (CCP)

When the frequency of the electric field increases above a critical ion

frequency, fci, the time taken by the positive ions to move between

electrodes becomes larger than half the period of the electric field.

At such frequencies the ion is partly retained between the two half cycles of AC electric field.

2

(500kHz ~ 100MHz)

idriving ci

driving

f fL

f

ion

L

22

0

2 22

~ ( )

eabs

e

abs

n e EP

m

Maximum P at collision frequency

Page 26: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

Capacitive Coupled Plasma(CCP)

• Self-bias (dc offset voltage ~ averaged ion energy)

1/ 2( )rfP

pressure

Blocking capacitor, CB

VaVe

time

Voltage across the discharge

fast decay

slow decay

Va Ve

Page 27: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

Capacitive Coupled Plasma(CCP)

• Potential(voltage) distribution

1 2 2 1/ ( / ) , 1 2.5pV V S S p

Page 28: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

Capacitive Coupled Plasma(CCP)

• Development of a self-bias with a sinusoidal wave

(a) 비대칭 전극 (b) 같은 면적의 전극

1. Voltage on powered electrode

2. Plasma potential

3. Time-averaged voltage on powered electrode

Page 29: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

Diode Reactors

• 산업적으로 이용하는 대부분의 RF plasma reactor는 diode(또는 parallel plate reactor)

형태

• RF 방전에서 전극이 도체가 아니어도 플라즈마 발생이 가능

• 두 개의 평행 판 내에서 전극의 크기에 의해 전기장이 형성되면 전극의 매질과 반응 가

스의 압력이(비교적 높은 운전 압력) 운전에 중요한 변수로 작용

Diode (Type) Reactors (Parallel Plate Reactor)

Page 30: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

Radial Flow Reactor

• 균일도 향상

• Substrate 아래에서 가스를 넣으면 substrate 위를 통과 중심에서 방전 intensity가가장 높으며 빠른 증착이 진행

• 또한 균일도가 나쁜 경우 substrate를 가열하거나 회전 가능

• 두 반응기의 가스의 방향이 다름

Page 31: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

MERIE (eMAX)

• Magnetically enhanced reactive ion etching (MERIE)– 13.56MHz의 주파수에 의해 plasma 발생

– Chamber 주변에 전자석으로 자기장 인가

– Substrate를 약 0.5Hz의 낮은 속도로 회전을 하여 균일 도 향상

– 낮은 이온 에너지의 높은 flux를 가지므로 processing rate가 증가하고 substrate에 손상이 적음

균일한플라즈마

Page 32: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

Dual Frequency CCP

Decoupled plasmas.• 27 MHz should change plasma density more than 2 MHz.• 2MHz should change ion energy more than 27 MHz.

Page 33: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

High VS Low Density Plasmas

• Electron/Ion densities (cm-3)

• Positive Ion Flux to Surfaces( )

108 109 1010 1011 1012 1013 1014

Low densityplasmas

High densityplasmas

0.1 1.0 10 100

Low densityplasmas

High density plasmas

mA/cm2

Page 34: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

Why High Density Plasmas ?

• The driving force is a need for lower ion bombardment energies in order to improve selectivity and reduce ion bombardment-induced physical damage to the wafer.

• Lower ion energies, however, result in lower etch rates and reduced anisotropy.

• The etch rate can be restored by using the much higher ion fluxes which can be obtained with high density plasmas.

• The anisotropy can be restored by operating at lower pressures.

Page 35: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

High Density Plasmas

• Inductively coupled plasmas

– Planar

– Cylindrical

– Helical resonator

• Wave-heated plasmas

– Microwave

– Electron cyclotron resonance(ECR)

– Helicon

Page 36: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

ICP Source

Characteristics of ICP.

• Prf = ~ 1 kW, p = 0.5 ~ 500 mTorr

• ne = 1011/cm3, Te = 2~5 eV, Vp = 20 ~ 30 V

• Spatially Uniform Plasma with high electron density, ne

• Independent RF Substrate Bias

• No External Magnetic Field

• Simple Hardware and Easily Expandable

Currently used in Etching Processes.

• Excellent Source for Poly-Si Etching

• Metal Etching : Al, Cu

Page 37: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

ICP Source

1. Cylindrical type– Electromagnetic induction에 기초

– 생성 mechanism

• Dielectric 원통형 반응기 주위에 안테나설치

• 안테나에 RF power 인가

• Faraday’s law에 의해 안테나에 전류가 흐르면 자장이 형성

• 왼쪽 그림과 같은 전기장 형성 -> 전자가속 -> 고밀도 플라즈마 형성

Page 38: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

ICP Source

2. Planer type– 플라즈마 발생은 cylindrical type과 유사함

– 안테나의 구조에 따라 플라즈마 균일도가 조절됨

– Spiral 안테나 보다 one-loop planar type이 균일도가 높음

– 오른쪽 그림의 경우 직경 200 mm에서 약 ± 10 %의 균일 도를 가짐

• 2 kW power source -> 폭 2 mm 리본형 안테나 사용 (밀도:1E-11cm-3)

Page 39: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

High antenna Voltage (high inductance)

Radial Uniformity

Azimuthal symmetry

Dielectric window damage (sputtering)

ICP Source

E

Page 40: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

Azumuthal Symmetry

Page 41: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

(B) Applied Material(A) TCP (LAM Research)

Problems in enlarging ICP

Page 42: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

I.M.B

rfP

1Z 2Z 3Z4Z 5Z

6Z

vZ

AI 6B II I.M.B

rfP

Schematic diagram of new parallel resonance antenna and its equivalent circuit

[ S.S. Kim et. al., Appl. Phys. Lett. Vol. 77. 492(2000) ]

Parallel Resonance ICP source

Page 43: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

-15 -10 -5 0 5 10 15

1.0x1017

1.2x1017

1.4x1017

2.7

2.8

2.9

3.0

Ele

ctr

on

Tem

peratu

re [

eV

]

Io

n D

en

sit

y (

/m3)

Position (cm)

C86 C96 C105 C114 C120 C130

C86(pF) C96 C105 C114 C120 C130

Parallel Resonance ICP source

Uniformity along the vertical axis

•Uniformity near resonance 3%

•Electron temperature 2.9 eV

Page 44: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

Helicon Source

• Inductively coupled된 Glass plasma

source와 metallic reaction chamber, 외

부 자장으로 구성

• Axial 자장은 입자의 radial 운동을 제한

(Wall로 loss되는 것을 감소시킴)

• 생성된 plasma는 자장에 의해 reaction

chamber로 확산

– 사용 주파수 범위 ; 2 ~ 70 MHz

– Tube diameter; 15 cm -> ~ 100 Gauss

– 작동 압력 ; 1E-4 ~ 1E-2 Torr

– 길이 22cm, dia 15cm helicon source

• 길이 30cm, dia 30cm reaction chamber 작동Helicon plasma source

(use helicon wave)

Page 45: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

Helicon Source

M=0 antennaE – H - W Transition

Page 46: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

MORI Source

• Source 반응기에서다른고밀도플라즈마 source보다더높은밀도의플라즈

마발생 (1E13cm-3)

• 이경우에는 downstream 형태의플라즈마가생성

– Source 반응기에서형성된고밀도플라즈마가공정반응기로확산

• 각모드에서균일한플라즈마를만들기위해서 magnet cusp을이용

Page 47: Introduction to plasma - KIPO

Plasma Electronics Lab, Hanyang University, KOREAhttp://plasma.hanyang.ac.kr

MORI Source

• Magnet cusp이없는경우왼쪽그림에서와같이모드에따라서균일도가나쁨– M = 1 인경우중앙에서의이온밀도가높으며 M = 0 인경우에는다른경향을보임

• Magnet cusp을사용하면이것을사용하지않았을때보다플라즈마의균일도향상

• 직경 250mm의 diffusion 반응기에서약±4%의균일도를가짐


Recommended