+ All Categories
Home > Documents > Introduction to Protein Structure folding and Dynamics: What can we ...

Introduction to Protein Structure folding and Dynamics: What can we ...

Date post: 14-Feb-2017
Category:
Upload: trinhquynh
View: 218 times
Download: 0 times
Share this document with a friend
68
Introduction to Protein Structure folding and Dynamics: What can we learn from Simulations? Saraswathi Vishveshwara Molecular Biophysics Unit Indian Institute of Science Bangalore JNC, Nov 6, 2007
Transcript
Page 1: Introduction to Protein Structure folding and Dynamics: What can we ...

Introduction to Protein Structure folding and Dynamics: What can we learn from Simulations?

Saraswathi Vishveshwara

Molecular Biophysics Unit

Indian Institute of Science

Bangalore

JNC, Nov 6, 2007

Page 2: Introduction to Protein Structure folding and Dynamics: What can we ...

Dream of Structural Biologists

To Generate the three dimensional structures of proteins, given their sequences

Grand Challenge to Simulation

Page 3: Introduction to Protein Structure folding and Dynamics: What can we ...

Outline

• Protein structure-function relationship

• Classification scheme of protein structures

• Protein folding problem-How is the uniqueness achieved?

• Methods of investigation: Knowledge based versus ab-initio methods

• Dynamics:

• Equilibrium dynamics: flexible and rigid regions

protein-ligand interactions

(with examples)

• non-equilibrium dynamics: Protein folding

examples of Unfolding/folding simulations

Future challenges

Page 4: Introduction to Protein Structure folding and Dynamics: What can we ...

Proteins perform a myriad functionsProteins perform a myriad functions

The function depends crucially upon the folded states The function depends crucially upon the folded states

of the proteinsof the proteins

Biological Functions of Proteins

Page 5: Introduction to Protein Structure folding and Dynamics: What can we ...

Protein Structure to Function

Fold

evolutionary

relationshipsBiological

multimeric

states

Disease states

mutations Active sites, enzyme clefts

Antigenic sites

Surface properties

3D STRUCTURE

Protein-Ligand

Interactions

Page 6: Introduction to Protein Structure folding and Dynamics: What can we ...

Sequence -----> Structure ------> Function

How far have we reached?

Page 7: Introduction to Protein Structure folding and Dynamics: What can we ...

Classification of Protein Architecture

Primary structure Secondary structure

Tertiary structure Quaternary structure

Page 8: Introduction to Protein Structure folding and Dynamics: What can we ...

Classification of Protein Architecture

Primary structure

Describes the chemical sequence (amino acid)

Properties of an amino acid:Chirality is always L.“Length” of an amino acid unit is typically 3.6 Å.

Properties of a polypeptide:Peptide bond is stabilized by resonanceTypically in planar, trans configuration

Page 9: Introduction to Protein Structure folding and Dynamics: What can we ...

Secondary Structures in Proteins

Alpha Helix

Page 10: Introduction to Protein Structure folding and Dynamics: What can we ...

Beta Structures

After the alpha helix, the second most regular and identifiable conformation in polypeptides is the beta sheet.

The basic unit of the beta sheet is the beta strand, which consists of a fully extended polypeptide.

The beta strand is not a stable structure (no interactions between atomsthat are not close in the covalent structure). The beta strand is only stable when incorporated into a beta sheet.

Page 11: Introduction to Protein Structure folding and Dynamics: What can we ...

Hydrogen bonds between peptide groups on adjacent beta strands stabilize structure.

The Beta Sheet

Page 12: Introduction to Protein Structure folding and Dynamics: What can we ...

Classification of Protein Architecture:Hierarchical levels

Page 13: Introduction to Protein Structure folding and Dynamics: What can we ...

Classification of Protein Architecture:Summary

Primary structure: sequence

Secondary structure: helices, sheets

Super-secondary: beta hairpin

Domain: 3 domains αααα1, αααα 2, αααα 3

Tertiary structure: αααα1-3 is a

single folded unit

Quaternary structure: αααα1-3 and

ββββ2M are different

molecules that associate

Page 14: Introduction to Protein Structure folding and Dynamics: What can we ...

Proteins are HETERO polymer chains made up of: Proteins are HETERO polymer chains made up of:

An alphabet of 20 AMINO ACIDSAn alphabet of 20 AMINO ACIDS

The amino acids have The amino acids have different sizes and shapesdifferent sizes and shapes

and posses properties such as:and posses properties such as:

AcidicAcidic

BasicBasic

PolarPolar

AromaticAromatic

HydrophobicHydrophobic

Where does chemistry come into picture?

Page 15: Introduction to Protein Structure folding and Dynamics: What can we ...

Amino acids in different

sizes

shapes

chemical properties

Page 16: Introduction to Protein Structure folding and Dynamics: What can we ...

Hydrogen bonding capabilities of side chains

Page 17: Introduction to Protein Structure folding and Dynamics: What can we ...

Types of interactions :

• Covalent

• Non-covalent

• Hydrogen bond

R1

H R2

H Rn

H

2N C

1α C ’ N C

1 α C’ N -------------------------- Cα C’ O H

Hα O Hα O H

αO

Primary

Types of Neighbours :

• Sequence

• Spatial

Secondary

Tertiary

Levels of Interactions in Proteins

Quaternary

Page 18: Introduction to Protein Structure folding and Dynamics: What can we ...

Can we understand the rules of protein structure, folding and function?

Page 19: Introduction to Protein Structure folding and Dynamics: What can we ...

Protein Folding Problem

Amino acid sequence –coded by genetic code

Folding of Proteins to unique three dimensional

structure-Code?

Incorporated in the sequence:

Landmarks in protein Folding :

Folded structure of a Protein-determined by

thermodynamics- Anfinsen-1973

Levinthal paradox- How is the speed of folding

matched with enormous number of conformational

search? (1968)

Nature selects sequences which have ability to fold

rapidly-Levinthal (1987)

Page 20: Introduction to Protein Structure folding and Dynamics: What can we ...

Folding of the protein

Chain from random

to the native state

Energy Landscape View

Wolynes and coworkers

Protein Folding Problem

The information for folding of protein to unique three

dimensional structure is encoded in its sequence -Anfinsen

Page 21: Introduction to Protein Structure folding and Dynamics: What can we ...

Geometry Optimization View: The super-secondary structure of proteins are

optimally packed

Maritan, Banavar, and co-workers

Page 22: Introduction to Protein Structure folding and Dynamics: What can we ...

Development of Theoretical/Computational Methods

•Geometrical concepts G.N. Ramachandran

….and his Φ-ψ Map

•Energy considerations: Force field parameters, optimization,

Molecular Mechanics

Molecular Dynamics

•Difficulties in evaluating conformational entropy, Free-Energy

•Understanding the rules of structure and folding through

Protein-structure data analysis

Page 23: Introduction to Protein Structure folding and Dynamics: What can we ...

Optimization involves

A wide range of interaction energy scales

Types of interactions order of energy

(Kcal/mole)

Covalent 100-150

Electrostatics 20-40

Hydrogen Bond 3-20

Van der Waals 0.1- 2

Hydrophobic Interaction (conformational

entropy)

Page 24: Introduction to Protein Structure folding and Dynamics: What can we ...

Geometry of Side Chains:

Wide variation in Shapes and Sizes

Close packing should involve a subtle balance of

shape complimentarity and the energy of interactions

First principles to Protein structure

OR

Derive rules from the observed data

Page 25: Introduction to Protein Structure folding and Dynamics: What can we ...

A few references

Conformational Analysis of proteins

1963 Ramachandran G.N., Ramakrishnan C. and Sasisekharan V. J Mol Biol., 7, 95-9.

1969 Scheraga, Calculation of polypeptide conformation. Harvey Lect. 63:99-138

Protein Structure Prediction

1974 Chou and Fasman, Prediction of protein conformation, Biochemistry;13:222-245

1975 Levitt and Warshal, Computer simulation of protein folding, Nature 253, 694

1977 McCammon.. Karplus, Dynamics of folded proteins, Nature, 267, 585

1999, Liwo, & Scheraga, Protein structure prediction by global optimization, PNAS, 96, 5482-5485

2001, Hassinen & Peräkylä, New energy terms for reduced protein modelsJ. Comput Chem

Page 26: Introduction to Protein Structure folding and Dynamics: What can we ...

Protein potentials of mean force

1971,Pohl, Nature, 234, 277 1976,Tanaka and Scheraga, Macromolecules, 9, 142-159 1978,Warme and Morgan, J. Mol. Biol 118, 273-2871985, Miyazawa & Jernigan, Macromolecules, 18, 534 1990, Sippl, J. Mol. Biol. 213, 8191992, Jones et al

Books

1989,Fasman "Prediction of Protein Structure " 1994, Merz and le Grand "Protein Folding Problem & Tertiary Structure Prediction"1996,Sternberg "Protein structure prediction: A practical approach"2000, Webster "Protein structure prediction: Methods" 2001,Friesner "Protein Folding Problem & Tertiary Structure Prediction" 2002, Tsigelny "Protein structure prediction: A bioinformatic ...”

Page 27: Introduction to Protein Structure folding and Dynamics: What can we ...

G. N. Ramachandran

….and his Φ-ψ Map

Geometrical Concept-reduction in conformational space

Page 28: Introduction to Protein Structure folding and Dynamics: What can we ...

molecular mechanics force fieldmolecular mechanics force field

bonded interactionsbonded interactions

( ) ( )2

021 rrkrv bb −=

( ) ( )2

021 rrkrv bb −= ( ) ( )2

021 θθθ −= aa kv ( ) ( )( )0φφcos1φ −+= nkv dd

nonnon--bonded interactionsbonded interactions

( ) ( ) ( )

6

6

12

12

ij

ij

ij

ij

r

C

r

C

ijlj rv −= ( )ij

ji

r

qq

ijc rv0πε4

=

Page 29: Introduction to Protein Structure folding and Dynamics: What can we ...

Molecular Dynamics Simulations

�Starting point: The coordinates of all the atoms

�Define the classical equations of motion

�Set the parameters using force fields

�Raising the system to the selected temperature

�Time dependent integration

�Length of simulation

�Generation of the equilibrium trajectories

(coordinates of the final state)

�Analysis of the trajectory for properties

Page 30: Introduction to Protein Structure folding and Dynamics: What can we ...

Equilibrium Simulations of proteins

Page 31: Introduction to Protein Structure folding and Dynamics: What can we ...

Analysis of parameters

Time averaged structure and fluctuations

Root Mean square deviation (RMSD)

Residue-wise RMSD

Backbone, Side chains, Secondary structures, Surface residues, ….

Time dependent motions

(in terms of internal parameters- phi, psi, chi torsional angles)

Page 32: Introduction to Protein Structure folding and Dynamics: What can we ...

Global motionsLoop movementsInter-domain movementsHinge bending

Correlated fluctuations

Between loops, between residues

Interaction with ligands, solvents

Protein-ligand Interactions: Hydrogen bondsHydrophobic pocketsInteractions

mediated through solvent molecules (water)

Page 33: Introduction to Protein Structure folding and Dynamics: What can we ...

Biologically relevant information from simulations :

A case study of Ribonuclease family proteins

Page 34: Introduction to Protein Structure folding and Dynamics: What can we ...

Functional Diversity of Ribonuclease-A Superfamily

(Common function: Cleavage of RNA )Protein Specificity Other Functions

Ribonuclease A Single stranded RNA (Pancreatic)BS-Rnase A Single and Double Stranded RNA Aspermatogenicity(Seminal fluid) DNA:RNA Hybrid Immunosuppression

Antiviral,Antitumor

Angiogenin Weaker than Rnase A Angiogenesis(Plasma, Tumor cells)

Eosinophil Proteins:Eosinophil-Derived-Neurotoxin Weaker than Rnase A Helminthotoxicity(EDN) & (not active on small substrates) (toxic to parasites)Eosinophil Cationic Protein Neurotoxicity(ECP) Cytotoxicity

Page 35: Introduction to Protein Structure folding and Dynamics: What can we ...

Similarities among the Rnase-A Family Proteins

1.Sequence Homology:

2. 3-D Structure 3. Biological Function: Ribonuclease activity:

cleaves 3’-5’ Phosphodiester bond

1DYT_A RPPQFTRAQWFAIQHISLN------PPRCTIAMRAINNYRWRCKNQNTFLRTTFANVVNVCGN 57

1HI2_A KPPQFTWAQWFETQHINMT------SQQCTNAMQVINNYQRRCKNQNTFLLTTFANVVNVCGN 58

7RSA__ ---KETAAAKFERQHMDSSTSAASSSNYCNQMMKSRNLTKDRCKPVNTFVHESLADVQAVCSQ 60

2ANG_A --QDNSRYTHFLTQHYDAKPQGR-DDRYCESIMRRRGLTSP-CKDINTFIHGNKRSIKAICEN 59

. : * .** . * *: . ** ***: . .: :* :

1DYT_A QSIRCPHNRTLNNCHRSRFRVPLLHCDLINPGAQNISNCRYADRPGRRFYVVACDNRDPR-DSPRYPVVPVHLDTTI---- 133

1HI2_A PNMTCPSNKTRKNCHHSGSQVPLIHCNLTTPSPQNISNCRYAQTPANMFYIVACDNRDQRRDPPQYPVVPVHLDRII---- 135

7RSA__ KNVACKNGQT--NCYQSYSTMSITDCRETGSS--KYPNCAYKTTQANKHIIVACEG-------- NPYVPVHFDASV---- 124

2ANG_A K----NGNPHRENLRISKSSFQVTTCKLHGGS--PWPPCQYRATAGFRNVVVACENG--------- -LPVHLDQSIFRRP 123

. * * . : * . . * * . :***:. . :***:* :

1DYT- Eosinophil cationic Protein

1HI2- Eosinophil Derived Neurotoxin

7RSA- Ribonuclease A

2ANG- Angiogenin

Page 36: Introduction to Protein Structure folding and Dynamics: What can we ...

Simulations and Analysis

Page 37: Introduction to Protein Structure folding and Dynamics: What can we ...

RMSD Trajectories

RMSD as a function of simulation time

continuous line: w.r.t <MD>

broken line: w.r.t crystal structure

RMSD as a function of residue number

Page 38: Introduction to Protein Structure folding and Dynamics: What can we ...

Features of Hydrogen Bonds

•Donor/Acceptor

•Secondary Structures

•Non-secondary structural hydrogen bonds

•Side-chain hydrogen bonds

•Dynamically stable

•Rearrangement during dynamics

Page 39: Introduction to Protein Structure folding and Dynamics: What can we ...

Mapping of Intra-protein dynamically stable hydrogen bonds

d( D….A) < 3.2 A

Angle (H-D…..A) between 0 to +(-) 60deg

Sanjeev, Vishveshwara, JBSD, 2005

Page 40: Introduction to Protein Structure folding and Dynamics: What can we ...

MRT as a function of Residue number

Maximum Residence Time (MRT)

A measure of the capacity to interact with water molecules

Page 41: Introduction to Protein Structure folding and Dynamics: What can we ...

Bridging Water

Internal Water

Active-site Water

Different Types of Protein-Water Interactions

( From ECP Simulation)

Page 42: Introduction to Protein Structure folding and Dynamics: What can we ...

OPEN FORMCC CLOSED FORM

Eosinophil Cationic Protein (ECP)

Alternate conformations found during the simulation. Different

patterns of Water molecules (grey) are seen

Page 43: Introduction to Protein Structure folding and Dynamics: What can we ...

Comparison of invariant water positions in Rnase-A Family Proteins

Angiogenin

Ribonuclease-A EDNECP-A

ECP-B

• backbone N-H

• backbone =O

Side chain on the cartoon

MRT > 1000

Page 44: Introduction to Protein Structure folding and Dynamics: What can we ...

A schematic representation of the network of hydrogen bonds (including the protein-ligand atoms and the water molecule) obtained from the simulation of Eosinophil Cationic Protein-CpG complex.

Page 45: Introduction to Protein Structure folding and Dynamics: What can we ...

Simulations to understand protein folding and unfolding processes

Unfolding simulations are less time consuming than the folding ones

Page 46: Introduction to Protein Structure folding and Dynamics: What can we ...

Unfolding simulations

The measured parameters in protein unfolding studies are

♦ RMSD of intermediate states from the native state

♦ transition states

♦ Ф values

♦ the structure of final state.

Page 47: Introduction to Protein Structure folding and Dynamics: What can we ...

Identification of the unfolding transition state of CI 2 by MD simulation

• Chymotrypsin inhibitor 2 (CI 2) is a 83 residue protein

• Extensively studied

• A pseudo wild type protein (pwt) with E14→A and E15→A and 1.7Å resolution

Aijun Li and V. Daggett ,JMB 257 (1996) 412-429

Page 48: Introduction to Protein Structure folding and Dynamics: What can we ...

Five simulations

♦ 298K (crystal structure)♦ 498K-(crystal structure) (2.2ns)

-(NMR-derived solution structure(3) (>1ns)

Analysis:

• RMSD value vs. simulation timeIdentification of transition state by

these plots

♦ Relative accessible surface area vs. simulation time

♦ Percentage of secondary and tertiary contacts vs. simulation time

♦ The H-bonds vs. simulation time

Page 49: Introduction to Protein Structure folding and Dynamics: What can we ...

413.8165-701.0NMR3MD4(TS4)

234.2495-1001.2NMR3MD3(TS3)

413.74330-3351.0NMR1MD2(TS2)

433.35220-2252.2XTALMD1(TS1)

%Native H – bonds

RMSD (Å)

TS (ps)

SimulationTime (ns)

Startingstructure

Simulation

Summary of all the four different unfolding simulations at 498K and their transitions states

Page 50: Introduction to Protein Structure folding and Dynamics: What can we ...

● By the analysis of these curves and observed changes in the structure of protein transition states were identified

● The transition state is partially structured● α-helix is weakened but partially intact and the β-sheet is totally

disrupted in transition state

RMSD Plots

Page 51: Introduction to Protein Structure folding and Dynamics: What can we ...

The percentage of secondary and tertiary structure as a function of simulation time at 498K

Page 52: Introduction to Protein Structure folding and Dynamics: What can we ...

Ф value Analysis

The experimental parameter for identifying the transition state is Ф value

ФF = ∆GT-U- ∆G’T-U / ∆GF-U- ∆G’F-U

= ∆ ∆GT-U / ∆ ∆G’ F-U

Where ∆GT-U → the free energy difference betweenthe transition and unfolded state,

∆GF-U → the free energy difference betweennative and unfolded state,

and ∆G’→ represent the mutated state.

Page 53: Introduction to Protein Structure folding and Dynamics: What can we ...

The Ф value by the MD simulation is given by:

ФMD = NTS,wt – NTS,mut / NN,wt – NN,mut= ∆NTS / ∆NN

where NTS,wt = no. of van der Waals contacts in transition state in wild type

and NTS,mut = no. of van der Waals contacts in transition state in the mutated

proteinsimilarly NN represents the native state

Page 54: Introduction to Protein Structure folding and Dynamics: What can we ...

To Summarize………

� The transition states in all four simulations are similar

� The calculated Ф values by MD agree with the experimentally measured Ф values(R = 0.94)

� The disruption of hydrophobic core and associated secondary structure is the rate determining step of the unfolding process V. Daggett et. al., JMB 257 (1996) 430-440

Page 55: Introduction to Protein Structure folding and Dynamics: What can we ...

The effect of temperature on the pathway of unfolding of CI2

• Seven simulations at different temperatures for different time were carried out

(1) 298K (50ns), (2) 348K (80ns),(3) 373K (94ns), (4) 398K (40ns), (5) 448K (40ns), (6) 473K (20ns), (7) 498K (20ns)

Ryan Day et. al., JMB 322 (2002) 189-203,

Page 56: Introduction to Protein Structure folding and Dynamics: What can we ...

The change in Cα RMSD (Å) values with simulation time

Page 57: Introduction to Protein Structure folding and Dynamics: What can we ...
Page 58: Introduction to Protein Structure folding and Dynamics: What can we ...

Lessons from multiple temperature simulations

� The unfolding pathway of CI2 is independent of temperature

� The global unfolding events are same in all simulations

� The average number of tertiary contacts in the unfolding transition state remain same (~172)

� The thermal denaturation of proteins is an activated process taking place on an energy landscape that is not grossly changed by elevated temperature. A. Fersht &V. Daggett Mol Cell Bio. 4(2003) 497-502

Page 59: Introduction to Protein Structure folding and Dynamics: What can we ...

The protein folding problem can be viewed as three different problems:

1. defining the thermodynamic folding code

2. devising a good computational structure prediction algorithm

3. folding speed (Levinthal’s paradox) — the kineticquestion of how a protein can fold so fast

The protein folding problem: when will it be solved?Ken A Dill, S Banu Ozkan, Thomas R Weikl, John D Chodera andVincent A VoelzCurrent Opinion in Structural Biology 2007, 17:342–346

Page 60: Introduction to Protein Structure folding and Dynamics: What can we ...

2 Computational protein structure prediction:

Bioinformatics based (Knowledge based) - more successful

Physics based:- only a few attempts

1. The first milestone :Duan Y, Kollman PA: Pathways to a protein folding intermediateobserved in a 1-microsecond simulation in aqueous solution.Science 1998, 282:740-744.

2. IBM Blue Gene group folded the 20-residue Trp-cage peptide within 1 A using 92 ns of molecular dynamics.

Pitera JW, Swope W: Understanding folding and design:replica-exchange simulations of ‘‘Trp-cage’’ miniproteins.Proc Natl Acad Sci USA 2003, 100:7587-7592.

3. Folding@Home, a distributed grid computing system, folded the protein villin

Zagrovic B, Snow CD, Shirts MR, Pande VS: Simulation of folding of a small alpha-helical protein in atomistic detail using worldwide-distributed computing. J Mol Biol 2002, 323:927-937

Page 61: Introduction to Protein Structure folding and Dynamics: What can we ...

Details of Folding simulations designed mini-protein BBA5-

Vijay Pande et.al

• System: 23 residue designed mini, soluble, monomeric protein BBA5

• Ac-YRVPSYDFSRSDELAKLLRQHAG-NH2

• It contains all the three elementary units of secondary structure

• It folds in the absence of disulphide bonds or metal-binding centers

• Two mutants F8-W and V3-Y

Vijay Pande et. al., Nature 420 (2002): 102-106;

Page 62: Introduction to Protein Structure folding and Dynamics: What can we ...

Structure of 23 residues designed mini protein BBA5

Page 63: Introduction to Protein Structure folding and Dynamics: What can we ...

Simulation details

• Starting structure: fully extended conformer (φ = -135 and ψ = 135)

● Simulation time: Total 15,000 single-mutant folding simulations (20ns) at 278K and 298K

● Similarly 9000 and 8500 double-mutant folding simulations at 278K (20ns) and 338K (10ns)

● Computer used: 30,000 volunteer computers aroundthe world for several months (106 CPU days)

● The folding rate constant is given by : k = Nfolded / t* Ntotal

where Nfolded → no. of simulations that reached the folded state in time t out of Ntotal

Page 64: Introduction to Protein Structure folding and Dynamics: What can we ...

Findings from the folding simulations

� In total 32,500 folding trajectories: β hairpin was observed in 1100 and α-helix was in 21,000

� In 9000 double mutant folding trajectories at 278K, 16 were folded after 20ns simulation

� The two state assumption is valid by thermodynamic data

� Following experimental data are in agreement with simulation:

♦ The helical structure in unfolded state, ♦ Fragment secondary structure propensity, ♦ Rate formation of helix, hairpin and ♦ Rate of folding

Page 65: Introduction to Protein Structure folding and Dynamics: What can we ...

3. Folding speed and mechanism:

Robert L Baldwin, " understanding the mechanism of protein folding might lead to fast computational algorithms for predicting native structures from their amino acid sequences”

This has been a central challenge. To instruct a computer program to find a native state more efficiently than Monte Carlo or molecular dynamics, we need more. We need to know the microscopic folding routes.

Page 66: Introduction to Protein Structure folding and Dynamics: What can we ...

To summarize the status of protein Simulations..

Problems addressedReliable force fields

Simulation time- Good enough for equilibrium properties of small proteins

Demonstration of folding in a few small peptides/proteins

Challenges aheadComfortable simulation of large proteins, assembles like ribosome, membrane proteins

Ab-initio folding simulations on a routine basis

Better understanding of the basic principles, which will enable reliable folding simulations

Combined QM/MD studies to investigate the processes involving changes in the covalent states

Page 67: Introduction to Protein Structure folding and Dynamics: What can we ...
Page 68: Introduction to Protein Structure folding and Dynamics: What can we ...

Comparison between the calculated Ф values for transition state by MD simulations (for 3different native states)and experimentally measured ФF values for 11 mutated residues


Recommended