+ All Categories
Home > Documents > Introduction to second-generation...

Introduction to second-generation...

Date post: 02-Aug-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
27
Introduction to second-generation sequencing CMSC702 Spring 2014 Many slides courtesy of Ben Langmead (JHU)
Transcript
Page 1: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Introduction to second-generation

sequencingCMSC702 Spring 2014

Many slides courtesy of Ben Langmead (JHU)

Page 2: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

What  Are  We  Measuring?

RNA-­‐seq

Page 3: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Transcrip7on

G T A A T C C T C  

| | | | | | | | |  C A T T A G G A G

DNA

G U A A U C C

RNA  polymerase

mRNA

From  DNA  to  mRNA

Page 4: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Reverse  transcrip7onClone  cDNA  strands,  complementary  to  the  mRNA

G U A A U C C U CReverse  

transcriptase

mRNA

cDNA

C A T T A G G A G C A T T A G G A G C A T T A G G A G C A T T A G G A G

T T A G G A G

C A T T A G G A G C A T T A G G A G C A T T A G G A G C A T T A G G A G

C A T T A G G A G

Page 5: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

!

Corrada Bravo 10/30/09

Sec-gen Sequencing

!5

Page 6: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

!

Corrada Bravo 10/30/09

Sec-gen Sequencing

!6

Fragmentation is random, "i.e., not equal-sized (but hard to draw)

Page 7: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

!

Corrada Bravo 10/30/09

Sec-gen Sequencing

!7

Page 8: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

!

Corrada Bravo 10/30/09

Second-Generation Sequencing

• “Ultra high throughput” DNA sequencing"

• 3 gigabases / day vs."

• 3 gigabases / 13 years (human genome project, more or less)

!8

Page 9: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Platforms

• Millions of short DNA fragments (~100 bp) sequenced in parallel

Page 10: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Source: Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010

Source: Whiteford et al. Swift: primary data analysis for the Illumina Solexa sequencing platform. Bioinformatics. 2009

Source: Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010

namesequencequality scores

x 100s of millions

Page 11: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Sequencing throughput

HiSeq 2000 25 billion bp per day

(2010)

GA IIx 5 billion bp per day

(2009)

GA II 1.6 billion bp per day

(2008)

Images: www.illumina.com/systems

Numbers: www.politigenomics.com/next-generation-sequencing-informatics

Dates: Illumina press releases

Page 12: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Sequencing throughput

HiSeq 2500 60 billion bp per day

(2012)

GA IIx 5 billion bp per day

(2009)

GA II 1.6 billion bp per day

(2008)

Images: www.illumina.com/systems

Numbers: www.politigenomics.com/next-generation-sequencing-informatics

Dates: Illumina press releases

Page 13: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Throughput growth gap

4-5x per year 2x per 2 years

>

Page 14: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

ionTorrent

Page 15: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Oxford Nanopore

• Nanopore technology

• ultralong reads (48kb genome sequenced as one read)

Page 16: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Source: Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010

Source: Whiteford et al. Swift: primary data analysis for the Illumina Solexa sequencing platform. Bioinformatics. 2009

Source: Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010

namesequencequality scores

x 100s of millions

(slide courtesy of Ben Langmead)

Page 17: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

From reads to evidence

Page 18: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

From reads to evidence2. Comparative

Sequence-wise, individuals of a species are nearly identical

Well curated, annotated “reference” genomes exist

D. melanogaster, Science, 2000 H. sapiens, Nature, 2000 M. musculus, Nature, 2002and Science, 2000

Idea: “Map” reads to their point of origin with respect to a reference, then study differences

Page 19: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

RNA-seq differential expression

GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTTCGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT

GTCGCAGTATCTGTCT GTCGCAGTATCTGTCT GTCGCAGTATCTGTCT GTCGCAGTATCTGTCT GTCGCAGTATCTGTCT TGTCGCAGTATCTGTC TATGTCGCAGTATCTG TATATCGCAGTATCTG TATATCGCAGTATCTG TATATCGCAGTATCTG CCCTATATCGCAGTAT AGCACCCTATGTCGCA AGCACCCTATATCGCA AGCACCCTATGTCGCA GAGCACCCTATGTCGC CCGGAGCACCCTATAT CCGGAGCACCCTATAT GCCGGAGCACCCTATG

GTCGCAGTANCTGTCT ||||||||| |||||| GTCGCAGTATCTGTCT !GGATCTGCGATATACC |||||| ||||||||| GGATCT-CGATATACC !AATCTGATCTTATTTT |||||||||||||||| AATCTGATCTTATTTT !ATATATATATATATAT |||||||||||||||| ATATATATATATATAT !TCTCTCCCANNAGAGC ||||||||| ||||| TCTCTCCCAGGAGAGC

Align Aggregate

Statistics

Gene 1 differentially expressed?: YES !p-value: 0.0012

TGTCGCAGTATCTGTC AGCACCCTATGTCGCA GCCGGAGCACCCTATGGTCGCAGTANCTGTCT

||||||||| |||||| GTCGCAGTATCTGTCT !GGATCTGCGATATACC |||||| ||||||||| GGATCT-CGATATACC !AATCTGATCTTATTTT |||||||||||||||| AATCTGATCTTATTTT !ATATATATATATATAT |||||||||||||||| ATATATATATATATAT !TCTCTCCCANNAGAGC ||||||||| |||||

Align Aggregate

Gene 1

Sample A

Sample B

Page 20: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Mapping

CTCAAACTCCTGACCTTTGGTGATCCACCCGCCTNGGCCTTC Take a read:

And a reference sequence:>MT dna:chromosome chromosome:GRCh37:MT:1:16569:1 GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC GCAGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT ACAGGCGAACATACTTACTAAAGTGTGTTAATTAATTAATGCTTGTAGGACATAATAATA ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA AACCCCCCCTCCCCCGCTTCTGGCCACAGCACTTAAACACATCTCTGCCAAACCCCAAAA ACAAAGAACCCTAACACCAGCCTAACCAGATTTCAAATTTTATCTTTTGGCGGTATGCAC TTTTAACAGTCACCCCCCAACTAACACATTATTTTCCCCTCCCACTCCCATACTACTAAT CTCATCAATACAACCCCCGCCCATCCTACCCAGCACACACACACCGCTGCTAACCCCATA CCCCGAACCAACCAAACCCCAAAGACACCCCCCACAGTTTATGTAGCTTACCTCCTCAAA GCAATACACTGACCCGCTCAAACTCCTGGATTTTGGATCCACCCAGCGCCTTGGCCTAAA CTAGCCTTTCTATTAGCTCTTAGTAAGATTACACATGCAAGCATCCCCGTTCCAGTGAGT TCACCCTCTAAATCACCACGATCAAAAGGAACAAGCATCAAGCACGCAGCAATGCAGCTC AAAACGCTTAGCCTAGCCACACCCCCACGGGAAACAGCAGTGATTAACCTTTAGCAATAA ACGAAAGTTTAACTAAGCTATACTAACCCCAGGGTTGGTCAATTTCGTGCCAGCCACCGC GGTCACACGATTAACCCAAGTCAATAGAAGCCGGCGTAAAGAGTGTTTTAGATCACCCCC TCCCCAATAAAGCTAAAACTCACCTGAGTTGTAAAAAACTCCAGTTGACACAAAATAGAC TACGAAAGTGGCTTTAACATATCTGAACACACAATAGCTAAGACCCAAACTGGGATTAGA TACCCCACTATGCTTAGCCCTAAACCTCAACAGTTAAATCAACAAAACTGCTCGCCAGAA CACTACGAGCCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCATATCCCTCTAGAGG AGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCACCACCTCTTGCTCAGCCTATATA CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAGTACCCACGTAAAG ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTTTCTACCCCAG AAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGTAAACTAAG AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGTCACCCTCCTC AAGTATACTTCAAAGGACATTTAACTAAAACCCCTACGCATTTATATAGAGGAGACAAGT CGTAACCTCAAACTCCTGCCTTTGGTGATCCACCCGCCTTGGCCTACCTGCATAATGAAG AAGCACCCAACTTACACTTAGGAGATTTCAACTTAACTTGACCGCTCTGAGCTAAACCTA GCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAA AGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA TTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACGAGCT ACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGATTTATA

How do we determine the read’s point of origin with respect to the reference?

CTCAAAGACCTGACCTTTGGTGATCCACCC-----GCCTNGGCCTTC |||||| |||| |||| ||||||||| |||| ||||| CTCAAACTCCTGGATTTTG--GATCCACCCAGCTGGCCTTGGCCTAA

Hypothesis 1:

Hypothesis 2:

CTCAAACTCCTGACCTTTGGTGATCCACCCGCCTNGGCCTTC |||||||||||| ||||||||||||||||||||| ||||| | CTCAAACTCCTG-CCTTTGGTGATCCACCCGCCTTGGCCTAC

Answer: sequence similarity

Read

Reference

Read

Reference

Say hypothesis 2 is correct. Why are there still mismatches and gaps?

Which hypothesis is better?

Page 21: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Mapping

CTCAAACTCCTGACCTTTGGTGATCCACCCGCCTNGGCCTTC

>MT dna:chromosome chromosome:GRCh37:MT:1:16569:1 GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC GCAGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT ACAGGCGAACATACTTACTAAAGTGTGTTAATTAATTAATGCTTGTAGGACATAATAATA ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA AACCCCCCCTCCCCCGCTTCTGGCCACAGCACTTAAACACATCTCTGCCAAACCCCAAAA ACAAAGAACCCTAACACCAGCCTAACCAGATTTCAAATTTTATCTTTTGGCGGTATGCAC TTTTAACAGTCACCCCCCAACTAACACATTATTTTCCCCTCCCACTCCCATACTACTAAT CTCATCAATACAACCCCCGCCCATCCTACCCAGCACACACACACCGCTGCTAACCCCATA CCCCGAACCAACCAAACCCCAAAGACACCCCCCACAGTTTATGTAGCTTACCTCCTCAAA GCAATACACTGACCCGCTCAAACTCCTGGATTTTGTGATCCACCCAGCGCCTTGGCCTAA CTAGCCTTTCTATTAGCTCTTAGTAAGATTACACATGCAAGCATCCCCGTTCCAGTGAGT TCACCCTCTAAATCACCACGATCAAAAGGAACAAGCATCAAGCACGCAGCAATGCAGCTC AAAACGCTTAGCCTAGCCACACCCCCACGGGAAACAGCAGTGATTAACCTTTAGCAATAA ACGAAAGTTTAACTAAGCTATACTAACCCCAGGGTTGGTCAATTTCGTGCCAGCCACCGC GGTCACACGATTAACCCAAGTCAATAGAAGCCGGCGTAAAGAGTGTTTTAGATCACCCCC TCCCCAATAAAGCTAAAACTCACCTGAGTTGTAAAAAACTCCAGTTGACACAAAATAGAC TACGAAAGTGGCTTTAACATATCTGAACACACAATAGCTAAGACCCAAACTGGGATTAGA TACCCCACTATGCTTAGCCCTAAACCTCAACAGTTAAATCAACAAAACTGCTCGCCAGAA CACTACGAGCCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCATATCCCTCTAGAGG AGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCACCACCTCTTGCTCAGCCTATATA CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAGTACCCACGTAAAG ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTTTCTACCCCAG AAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGTAAACTAAG AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGTCACCCTCCTC AAGTATACTTCAAAGGACATTTAACTAAAACCCCTACGCATTTATATAGAGGAGACAAGT CGTAACCTCAAACTCCTGGCCTTTGGTGATCCACCCGCCTTGGCCTACCTGCATAATGAA AAGCACCCAACTTACACTTAGGAGATTTCAACTTAACTTGACCGCTCTGAGCTAAACCTA GCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAA AGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA TTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACGAGCT ACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGATTTATA GGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCAAGATAGAATCTTAG TTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTAAATTTAACTGTTAGTC

This is an alignment: !!!!!!Software programs that compare reads to references and find alignments are aligners.

Read

Reference

Read

Reference

Alignment is computationally difficult because references (e.g. human) are very long (more than 1M times longer than what’s shown to the left) and sequencers produce data very rapidly, e.g. up to 25 billion bases per day in 2010.

Sequencing throughput increases by ~5x per year, whereas computers get faster at a rate closer to ~2x every 2 years.

CTCAAAGACCTGACCTTTGGTGATCCACCC-----GCCTNGGCCTTC |||||| |||| |||| ||||||||| |||| ||||| CTCAAACTCCTGGATTTTG--GATCCACCCAGCTGGCCTTGGCCTAA

Page 22: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Mapping

CTCAAACTCCTGACCTTTGGTGATCCA Take a read:

And a reference sequence:>MT dna:chromosome chromosome:GRCh37:MT:1:16569:1 GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC GCAGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT ACAGGCGAACATACTTACTAAAGTGTGTTAATTAATTAATGCTTGTAGGACATAATAATA ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA AACCCCCCCTCCCCCGCTTCTGGCCACAGCACTTAAACACATCTCTGCCAAACCCCAAAA ACAAAGAACCCTAACACCAGCCTAACCAGATTTCAAATTTTATCTTTTGGCGGTATGCAC TTTTAACAGTCACCCCCCAACTAACACATTATTTTCCCCTCCCACTCCCATACTACTAAT CTCATCAATACAACCCCCGCCCATCCTACCCAGCACACACACACCGCTGCTAACCCCATA CCCCGAACCAACCAAACCCCAAAGACACCCCCCACAGTTTATGTAGCTTACCTCCTCAAA GCAATACACTGACCCGCTCAAACTCCTGGATTTTGTGATCCACCCAGCGCCTTGGCCTAA CTAGCCTTTCTATTAGCTCTTAGTAAGATTACACATGCAAGCATCCCCGTTCCAGTGAGT TCACCCTCTAAATCACCACGATCAAAAGGAACAAGCATCAAGCACGCAGCAATGCAGCTC AAAACGCTTAGCCTAGCCACACCCCCACGGGAAACAGCAGTGATTAACCTTTAGCAATAA ACGAAAGTTTAACTAAGCTATACTAACCCCAGGGTTGGTCAATTTCGTGCCAGCCACCGC GGTCACACGATTAACCCAAGTCAATAGAAGCCGGCGTAAAGAGTGTTTTAGATCACCCCC TCCCCAATAAAGCTAAAACTCACCTGAGTTGTAAAAAACTCCAGTTGACACAAAATAGAC TACGAAAGTGGCTTTAACATATCTGAACACACAATAGCTAAGACCCAAACTGGGATTAGA TACCCCACTATGCTTAGCCCTAAACCTCAACAGTTAAATCAACAAAACTGCTCGCCAGAA CACTACGAGCCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCATATCCCTCTAGAGG AGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCACCACCTCTTGCTCAGCCTATATA CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAGTACCCACGTAAAG ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTTTCTACCCCAG AAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGTAAACTAAG AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGTCACCCTCCTC AAGTATACTTCAAAGGACATTTAACTAAAACCCCTACGCATTTATATAGAGGAGACAAGT CGTAACCTCAAACTCCTGGCCTTTGGTGATCCACCCGCCTTGGCCTACCTGCATAATGAA AAGCACCCAACTTACACTTAGGAGATTTCAACTTAACTTGACCGCTCTGAGCTAAACCTA GCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAA AGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA TTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACGAGCT ACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGATTTATA

CTCAAACTCCTGACCTTTGGTGATCCA |||||||||||| |||||||||||||| CTCAAACTCCTGCCCTTTGGTGATCCA

Hypothesis 1:

Hypothesis 2:

Read

Reference

Read

Reference

Is there any way to break the tie?

Which hypothesis is better?

CTCAAACTCCTGACCTTTGGTGATCCA |||||||||||||||||| |||||||| CTCAAACTCCTGACCTTTCGTGATCCA

Page 23: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Mapping

Recall that reads come with per-cycle quality values (in red) !In FASTQ format (left), qualities are encoded as ASCII characters like B, = or %, but really they’re integers [0, 40]

A quality value Q is a function of the probability P that the sequencing machine called the wrong base:

Q = 10: 1 in 10 chance that base was miscalled Q = 20: 1 in 100 chance Q = 30: 1 in 1000 chance !Higher is “better.”

Qs are estimated by the sequencer’s software and aren’t necessarily accurate

Q = −10 · log10(P )

Page 24: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Mapping

CTCAAACTCCTGACCTTTGGTGATCCA Take a read:

And a reference sequence:>MT dna:chromosome chromosome:GRCh37:MT:1:16569:1 GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC GCAGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT ACAGGCGAACATACTTACTAAAGTGTGTTAATTAATTAATGCTTGTAGGACATAATAATA ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA AACCCCCCCTCCCCCGCTTCTGGCCACAGCACTTAAACACATCTCTGCCAAACCCCAAAA ACAAAGAACCCTAACACCAGCCTAACCAGATTTCAAATTTTATCTTTTGGCGGTATGCAC TTTTAACAGTCACCCCCCAACTAACACATTATTTTCCCCTCCCACTCCCATACTACTAAT CTCATCAATACAACCCCCGCCCATCCTACCCAGCACACACACACCGCTGCTAACCCCATA CCCCGAACCAACCAAACCCCAAAGACACCCCCCACAGTTTATGTAGCTTACCTCCTCAAA GCAATACACTGACCCGCTCAAACTCCTGGATTTTGTGATCCACCCAGCGCCTTGGCCTAA CTAGCCTTTCTATTAGCTCTTAGTAAGATTACACATGCAAGCATCCCCGTTCCAGTGAGT TCACCCTCTAAATCACCACGATCAAAAGGAACAAGCATCAAGCACGCAGCAATGCAGCTC AAAACGCTTAGCCTAGCCACACCCCCACGGGAAACAGCAGTGATTAACCTTTAGCAATAA ACGAAAGTTTAACTAAGCTATACTAACCCCAGGGTTGGTCAATTTCGTGCCAGCCACCGC GGTCACACGATTAACCCAAGTCAATAGAAGCCGGCGTAAAGAGTGTTTTAGATCACCCCC TCCCCAATAAAGCTAAAACTCACCTGAGTTGTAAAAAACTCCAGTTGACACAAAATAGAC TACGAAAGTGGCTTTAACATATCTGAACACACAATAGCTAAGACCCAAACTGGGATTAGA TACCCCACTATGCTTAGCCCTAAACCTCAACAGTTAAATCAACAAAACTGCTCGCCAGAA CACTACGAGCCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCATATCCCTCTAGAGG AGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCACCACCTCTTGCTCAGCCTATATA CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAGTACCCACGTAAAG ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTTTCTACCCCAG AAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGTAAACTAAG AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGTCACCCTCCTC AAGTATACTTCAAAGGACATTTAACTAAAACCCCTACGCATTTATATAGAGGAGACAAGT CGTAACCTCAAACTCCTGGCCTTTGGTGATCCACCCGCCTTGGCCTACCTGCATAATGAA AAGCACCCAACTTACACTTAGGAGATTTCAACTTAACTTGACCGCTCTGAGCTAAACCTA GCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAA AGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA TTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACGAGCT ACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGATTTATA

CTCAAACTCCTGACCTTTGGTGATCCA |||||||||||| |||||||||||||| CTCAAACTCCTGCCCTTTGGTGATCCA

Hypothesis 1:

Hypothesis 2:

Read

Reference

Read

Reference

Which hypothesis is better?

CTCAAACTCCTGACCTTTGGTGATCCA |||||||||||||||||| |||||||| CTCAAACTCCTGACCTTTCGTGATCCA

Q=30

Q=10

Page 25: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Mapping

CTCAAACTCCTGACCTTTGGTGATCCA Take a read:

And a reference sequence:>MT dna:chromosome chromosome:GRCh37:MT:1:16569:1 GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC GCAGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT ACAGGCGAACATACTTACTAAAGTGTGTTAATTAATTAATGCTTGTAGGACATAATAATA ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA AACCCCCCCTCCCCCGCTTCTGGCCACAGCACTTAAACACATCTCTGCCAAACCCCAAAA ACAAAGAACCCTAACACCAGCCTAACCAGATTTCAAATTTTATCTTTTGGCGGTATGCAC TTTTAACAGTCACCCCCCAACTAACACATTATTTTCCCCTCCCACTCCCATACTACTAAT CTCATCAATACAACCCCCGCCCATCCTACCCAGCACACACACACCGCTGCTAACCCCATA CCCCGAACCAACCAAACCCCAAAGACACCCCCCACAGTTTATGTAGCTTACCTCCTCAAA GCAATACACTGACCCGCTCAAACTCCTGGATTTTGTGATCCACCCAGCGCCTTGGCCTAA CTAGCCTTTCTATTAGCTCTTAGTAAGATTACACATGCAAGCATCCCCGTTCCAGTGAGT TCACCCTCTAAATCACCACGATCAAAAGGAACAAGCATCAAGCACGCAGCAATGCAGCTC AAAACGCTTAGCCTAGCCACACCCCCACGGGAAACAGCAGTGATTAACCTTTAGCAATAA ACGAAAGTTTAACTAAGCTATACTAACCCCAGGGTTGGTCAATTTCGTGCCAGCCACCGC GGTCACACGATTAACCCAAGTCAATAGAAGCCGGCGTAAAGAGTGTTTTAGATCACCCCC TCCCCAATAAAGCTAAAACTCACCTGAGTTGTAAAAAACTCCAGTTGACACAAAATAGAC TACGAAAGTGGCTTTAACATATCTGAACACACAATAGCTAAGACCCAAACTGGGATTAGA TACCCCACTATGCTTAGCCCTAAACCTCAACAGTTAAATCAACAAAACTGCTCGCCAGAA CACTACGAGCCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCATATCCCTCTAGAGG AGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCACCACCTCTTGCTCAGCCTATATA CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAGTACCCACGTAAAG ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTTTCTACCCCAG AAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGTAAACTAAG AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGTCACCCTCCTC AAGTATACTTCAAAGGACATTTAACTAAAACCCCTACGCATTTATATAGAGGAGACAAGT CGTAACCTCAAACTCCTGGCCTTTGGTGATCCACCCGCCTTGGCCTACCTGCATAATGAA AAGCACCCAACTTACACTTAGGAGATTTCAACTTAACTTGACCGCTCTGAGCTAAACCTA GCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAA AGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA TTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACGAGCT ACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGATTTATA

CTCAAACTCCTGACCTTTGGTGATCCA |||||||||||| |||||||||||||| CTCAAACTCCTG-CCTTTGGTGATCCA

Hypothesis 1:

Hypothesis 2:

Read

Reference

Read

Reference

Is there any way to break the tie? !Hint: In Illumina sequencing, sequencing errors almost never manifest as gaps

Which hypothesis is better?

CTCAAACTCCTGACCTTTGGTGATCCA |||||||||||||||||| |||||||| CTCAAACTCCTGACCTTTCGTGATCCA

Page 26: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

Mapping

CTCAAACTCCTGACCTTTGGTGATCCA |||||||||||| |||||||||||||| CTCAAACTCCTG-CCTTTGGTGATCCA

Read

Reference

Aligners can employ penalties to account for the relative probability of seeing different dissimilarities

Estimates vary, but small gaps (“indels”) occur in humans at 1 in ~10-100K positions.

SNPs occur in humans at 1 in ~1K positions, but depending on Q, sequencing error may be more likely

Penalty = 45

CTCAAACTCCTGACCTTTGGTGATCCA ||||| |||||||||||||| |||||| CTCAA-CTCCTGACCTTTGGCGATCCA

Read

Reference

Penalty = 55

Q=10

CTCAAACTCCTGACCTTTGGTGATCCA |||||||||||||||||||||| |||| CTCAAACTCCTGACCTTTGGTGCTCCA

Read

Reference

Penalty = 30

Q=40

Pengap ≡ −10 log10(Pgap)

= −10 log10(0.00005)

≈ 45

Penmm ≡ argmin(−10 log10(Pmiscall),−10 log10(PSNP))

= argmin(Q,−10 log10(0.001))

= argmin(Q, 30)

Page 27: Introduction to second-generation sequencingusers.umiacs.umd.edu/.../lect22_seqIntro/seqIntro.pdfCorrada Bravo 10/30/09 Second-Generation Sequencing • “Ultra high throughput”

State of the Art• Bowtie: ultra-fast mapping of short reads to

reference genome

!

!

!

!

• http://bowtie-bio.sourceforge.net


Recommended