+ All Categories
Home > Documents > Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital...

Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital...

Date post: 02-Aug-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
61
Introduction to the X-ray Charge (Electron) Density Modelling Dr. Anatoliy Volkov April 21, 2016 Department of Chemistry & Computational Science Ph.D. Program
Transcript
Page 1: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

Introduction to the X-ray Charge

(Electron) Density Modelling

Dr. Anatoliy Volkov

April 21, 2016

Department of Chemistry &

Computational Science Ph.D. Program

Page 2: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

X-ray diffraction

intensities

Molecular / Crystal

wavefunctions

Electron density

(ED)

•accurate geometries•anisotropic displacement parameters

•simple analysis of intermolecular interactionsetc.

•energies•excited states• reaction pathsetc

•bonding analysis

•atomic/molecular/crystal properties

• intermolecular interactions

Page 3: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

Electron density

(ED)

atomic/molecular charges,

electrostatic moments

electrostatic

interactions

between

molecular

units

intramolecular

energies ????

electrostatic potential

electric field

electric field gradient

empirical analysis of

orbital occupancies

electron static

polarizabilities

non-linear optical

susceptabilities

intermolecular

interaction

energies

chemical bonding analysis:

deformation densities

interaction densities

Bader’s topological analysis

Page 4: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

4

• Electrons are treated as spreading the entire molecule

Molecular orbital (MO) theory

– every electron contributes to the strength of every bond

• Molecular orbital (MO), (r) – one-electron

wavefunction for an electron that spreads throughout

the entire molecule

MO’s spread over the entire molecule, not just the adjacent

atoms of the bond

each i-th MO, i(r), is a linear combination of all AO’s

(LCAO) in the molecule

)()(AO

1

rr j

N

j

iji c

j(r) – j-th AO

NAO – total number of AO’s

cij – MO expansion coefficients

r

Page 5: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

opposite signs of the wavefunctions are represented by

different colors (our convention: positive, negative)

5

• Once MO expansion coefficients are known, MO’s can be

visualized using stylized shapes to represent the basis set, and

then scale their size to indicate the value of the coefficient in

LCAO

E1 -26.3 Eh E2 -1.6 Eh E3 -0.8 Eh E4/5 -0.7 Eh

(degenerate)

z

x

y

Example: H-F molecule (Rexp=0.917 Å)

Hartree-Fock (HF)/cc-pV6Z

only occupied MOs (2 electrons per MO) are shown here

Page 6: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

6

We can also build up a representation of the electron

density (r) (ED) in the molecule

i

iin 2)()( rr

ni - occupation number (1 or 2) of the i-th MO i

only occupied orbitals contribute to ED

electron density is non-negative everywhere

the outcome is commonly represented by an isodensity

surface – surface of constant ED

• Isodensity surface in H-F (contour is 0.1 electron Å-3)

elec.

3)( Nd rr i

inNelec.

Page 7: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

7

Ok, great! But where is bonding in ED ?

atoms

)()( atom spherical freeepromoleculN

i

i rr

promolecule – superposition of free (non-interacting)

spherically-averaged atomic densities

Solution: Compare molecular density with that of promolecule

promolecule electron density must be calculated using the

same formalism as the molecular density

the comparison is expected to reveal redistribution of ED as

atoms form bonds when combined into a molecule

also called the Independent Atom Model (IAM)

elec.

3epromolecul )( Nd rr

Page 8: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

8

Example: H-F molecule

ED calculated at the Hartree-Fock/cc-pV6Z level

FH

HF

Page 9: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

9

Example: H-F molecule

H F H F z

Isocontour 0.1 e Å-3

H F H Fz

Contour levels are 0.008, 0.02, 0.04, 0.08, 0.2,

0.4, 0.8, 2, 4, 8, 20, 40, 80 … e Å-3

)(epromoleculr

)(rmolecular

Page 10: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

10

Deformation electron density, (r)

molecular ED minus promolecule ED

)()()( epromoleculrrr

promolecule ED must be calculated using the same formalism

as the molecular density

deformation density (r) is expected to reveal redistribution

of ED as atoms form bonds when combined into a molecule

perhaps, we can say that (r) reveals bonding density

non-bonding density (i.e. lone pairs) is also revealed

positive (r) – accumulation of charge (electrons) in

molecule as compared to a promolecule

negative (r) – reduction of charge (electrons) …

0)( 3 rr d

Page 11: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

11

Deformation electron density (r) in the H-F molecule

F

contour levels are at 0.1 e Å-3

positive density - accumulation of charge

negative density – reduction of charge

dotted black line ( ) → zero contour

positive density isocontour 0.1 e Å-3

negative density isocontour -0.1 e Å-3

FH

z

z

H

)()()( epromoleculrrr

F

H

Page 12: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

12

Core electron density is polarized

E1 -26.3 Eh

contour levels are at 0.1 e Å-3

positive density - accumulation of charge

negative density – reduction of charge

core MO (AO) of fluorine

positive density

isocontour 0.1 e Å-3

negative density

isocontour -0.1 e Å-3

)(core r

)(corer

)(core r

H F

Core polarization is small

Page 13: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

13

Core electron density polarization is also predicted by

the Density-Functional calculations

Core electron polarization effects are significantly smaller than

the deformation density

frozen-core approximation: unperturbed spherical atom

electron core

)(core r

Page 14: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

Electron density at each point in space r, (r), is

described by a sum of contributing nuclei-centered

pseudoatoms pseudoatom(r):

atoms

1

pseudoatom)()(

N

i

i rr x

y

z

(r1) ?

H(r1) F(r1)

r1

(r1) =F(r1) + H(r1)

Pseudoatom model of the electron density

H

F

Page 15: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

Each pseudoatom is expanded as :

spherical core

density

spherical

valence density

aspherical

deformation density

pseudoatom(r) = CORE(r) + VALENCE(r) + DEFORMATION(r)

nucleus

of the i-th

pseudoatom

The Hansen-Coppens pseudoatom model of the

electron density

atoms

1

pseudoatom)()(

N

i

i rr

Page 16: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

b) superposition of deformation

pseudoatomsa) individual deformation

pseudoatoms in the molecule

Example: superposition of the deformation density of

pseudoatoms in the plane of the water molecule

Contour levels are 0.1 eÅ-3; positive - red, negative – blue

atoms

1

pseudoatom)(

N

i

i r

Page 17: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

Pseudoatom parameters

max

0

33pseudoatom ),()'(')()()(l

l

l

lm

lmlmlvvcc dPrRrPrP r

aspherical deformation part is refined: populations Plm account

for the shift of density between regions of opposite sign of

angular functions dlm(,)

parameters describe the expansion-contraction of radial

density functions Rl( r)

spherical core is fixed at that from a free-atom ab initio

calculation at Hartree-Fock/DFT level ( electron population Pc

is not refined, i.e. the “frozen-core approximation” )

spherical valence ED is refined: electron population Pv

accounts for charge transfer, and parameter allows

contraction-expansion of the spherical valence shell

CORE(r) VALENCE(r) DEFORMATION(r)

Page 18: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

Bunge, Barrientos & Bunge (BBB, 1993)

Core and Valence: STO-based atomic wavefunctions

Clementi & Roetti (1974)

n l

orbital

exponents

rn

i

n

in

ii

i

ier

nrR

1

2/1

2/1

)!2(

2)( ),()(),( 0

0 YrRrninii

(1s)

expansion

coefficients

(2s)

expansion

coefficients

description of orbitals of s symmetry

description of orbitals of

p symmetry

n lorbital

exponents

(2p)

expansion

coefficients

),( i

i

m

lY

wavefunction-

normalized spherical

harmonics

radial

function

total i-th Slater function

angular function

8

9

10

11

12

1

2

3

4

5

6

7

for a spherical

atom, l = m = 0

2

1),(0

0 Y

Page 19: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

19

1s

2s

2p

1s radial wavefunction :

1s total wavefunction (spherical) :

Spherical core density

Spherical core electron density :

)(),,( 2

1 rPrP ccsc

Pc = 2 electrons

CORE(r)

Page 20: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

2020

1s

2s

2p

2s total spherical wavefunction:

Unperturbed spherical valence electron density :

2

22

2

22 )()( rPrP ppss

P2s = 2 electrons, P2p = 5 electrons

Spherical valence density

2p total spherical wavefunction :

VALENCE(r)

Page 21: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

21

Valence density parameters

Unperturbed spherical valence electron density of F-atom :

P2s = 2 electrons, P2p = 5 electrons

Refined spherical valence electron density of F-atom:

)()()( 2

22

2

2

22

233 rPP

Pr

PP

PPrP p

ps

p

s

ps

svvalencev

)()()()( 2222

2

22

2

22 rPrPrPrP ppssppss VALENCE(r)

electron population parameter Pv accounts for charge transfer

parameter accounts for contraction-expansion of the

spherical valence shell relative to that of a free atom

VALENCE(r)

max

0

33pseudoatom ),()'(')()()(l

l

l

lm

lmlmlvvcc dPrRrPrP r

VALENCE(r)

Page 22: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

22

Valence density parameters: kappa ()

parameter accounts for contraction-expansion of the

spherical valence shell relative to that of a free atom

= 1: free spherical atom valence density

> 1: contraction relative to free atom

< 1: expansion relative to free atom

Note: all three densities

integrate to 7 electrons

0

23 )(4 drrkrP valencev

max

0

33pseudoatom ),()'(')()()(l

l

l

lm

lmlmlvvcc dPrRrPrP r

Page 23: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

max

0

33pseudoatom ),()'(')()()(l

l

l

lm

lmlmlvvcc dPrRrPrP r

23

Aspherical deformation density parameters

Basic quantum mechanics:

Example: hydrogenic wavefunctions

),()(),,( ,,,, ll mllnmln YrRr n, l, ml –

quantum numbers

),()'('max

0

3

l

l

l

lm

lmlml dPrR Pseudoatom model:

populations Plm account for the shift of density between

regions of opposite sign of angular functions dlm(,)

parameters describe the expansion-contraction of radial

density functions Rl( r)

Atomic orbitals can be written as a product of radial and angular

functions

DEFORMATION(r)

Page 24: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

24

Deformation density:

Each function in the expansion has the form

),( )'( ' 3 lmllm drRP

- radial function)'( rRl - angular function

),()'('max

0

3

l

l

l

lm

lmlml dPrR

),( lmd

population Plm (refined) accounts for the shift of density

between regions of opposite sign of angular function dlm(,)

parameter (refined) describes the expansion-contraction of

radial density function Rl( r)

usually, the same parameter is applied to all Rl( r) of

a given atom

parameter Plm is refined separately for each dlm(,)

Page 25: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

25

),( )'( ' 3 lmllm drRP

- radial function)'( rRl - angular function),( lmd

Radial function, - nodeless density-normalized Slater-

type function

)'exp('

!2')'(

33 rr

nrR l

n

l

n

ll

l

l

l – energy-optimized orbital exponents of single-Slater

representations of the electron subshells of isolated atoms

Clementi & Raimondi (1963)

multiplied by 2 (density functions, not orbitals)

nl – coefficients that allow density functions reproduce orbital

products

rule: nl l

first-row atoms: n1=n2=2, n3=3, n4=4

1)'(0

2

rrRl

)'( rRl

Page 26: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

26

nl for first-row atoms: n1=n2=2, n3=3, n4=4

2s = 2.5638 (Bohr-1), P2s = 2 electrons

2p = 2.5500 (Bohr-1), P2p = 5 electrons

values (Clementi & Raimondi,1963):

l for density functions (assumed to be the same for all l) is

the weighted average

1-1- Å 6525.9Bohr 1079.527

55500.225638.2

l

)'exp('

!2')'(

33 rr

nrR l

n

l

n

ll

l

l

1)'(0

2

rrRl

Radial function, - nodeless density-normalized Slater-

type function

)'( rRl

Example: Fluorine atom

density

function

Page 27: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

27

l = 9.6525 Å for all l

Here, functions

for l=1 and l=2

are the same

)'exp('

!2')'(

33 rr

nrR l

n

l

n

ll

l

l

1)'(0

2

rrRl

Radial function, - nodeless density-normalized Slater-

type function

)'( rRl

nl for first-row atoms: n1=n2=2, n3=3, n4=4

Example: Fluorine atom

Page 28: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

28

parameter describes the expansion-contraction of the

radial density function Rl( r)

Same n and ,

but different

)'exp('

!2')'(

33 rr

nrR l

n

l

n

ll

l

l

1)'(0

2

rrRl

Radial function, - nodeless density-normalized Slater-

type function

)'( rRl

Example: Fluorine atom

Page 29: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

29

Angular function, - real density-normalized Cartesian

spherical harmonics

),( )'( ' 3 lmllm drRP

),( lmd

spherical harmonics, ),( m

lY

angular part of the solutions for the Laplace equation

0sin

1sin

sin

11),,(

2

2

222

2

2

2

f

r

f

rr

fr

rrrf

normalization (“wavefunction-based”)

mmll

m

l

m

l ddYY

2

0 0

* sin),(),(

- complex-conjugate (most functions are complex)

ji

jiij

if 1

if 0 ij - Kronecker delta:

rule: l = 0…., m = -l,...,0,…,+l

),( m

lY

Page 30: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

30

spherical harmonics, ),( m

lY

Angular function, - real density-normalized Cartesian

spherical harmonics

),( )'( ' 3 lmllm drRP

),( lmd

imm

l

m

l ePml

mllY )(cos

)!(

)!(

4

)12(),(

2/1

general form:

- associated Legendre polynomial of x

solutions to the associated Legendre differential equation

)(xPm

l

0)(1

)1()(

2)(

)1(2

2

2

22

xf

x

mll

dx

xdfx

dx

xfdx

definition: m

l

mmmm

ldx

xPdxxP

)()1()1()( 2/2

- Legendre polynomials:)(xPl

n

n

n

nn xdx

d

nxP )1(

!2

1)( 2

0)()1()(

2)(

)1(2

22 xfll

dx

xdfx

dx

xfdxLegendre differential equation

Page 31: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

31

real spherical harmonics,

Angular function, - real density-normalized Cartesian

spherical harmonics

),( )'( ' 3 lmllm drRP

),( lmd

),( m

ly

linear combinations of complex spherical harmonics,

0 if ),()1(),(2

1

0 if ),(

0 if ),()1(),(2

),( 0

||

mY-Y

mY

mY-Yi

y

m

l

mm

l

l

m

l

mm

l

m

l

),( m

lY

normalization

(“wavefunction-based”)

mmll

m

l

m

l ddyy

2

0 0

sin),(),( alternatively,

)cos()(cos|)!|(

|)!|(

2

)12( ),(

)(cos4

)12(),(

)sin()(cos|)!|(

|)!|(

2

)12(),(

||

2/1

||

0

2/1

0

||

2/1

||

mPml

mlly

Pl

y

mPml

mlly

m

l

m

l

ll

m

l

m

l

definitions in terms of the

associated Legendre

polynomials

Page 32: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

32

Angular function, - real density-normalized Cartesian

spherical harmonics

),( )'( ' 3 lmllm drRP

),( lmd

real density-normalized spherical harmonics, ),( lmd

real spherical harmonics, , renormalized as:),( m

ly

0 for 2sin),(

2

0 0

ldddlm

0 for 1sin),(

2

0 0

ldddlm

rarely used (have spherical core and valence densities)

population of 1 electron of the spherically-symmetric ),(00 d

aspherical functions (l>0) represent a shift of density

between regions (lobes) of opposite sign

normalization allows the shift of 1 electron from the

negative to the positive region

Page 33: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

33

Angular function, - real density-normalized Cartesian

spherical harmonics

),( )'( ' 3 lmllm drRP

),( lmd

real density-normalized Cartesian spherical harmonics, ),,( zyxdlm

switching from the spherical to Cartesian representation

),,(),( zyxdd lmlm

yx

rz

zyxr

/arctan

/arccos

222

expressing spherical coordinates

(,) in terms of Cartesian

coordinates (x,y,z)

Page 34: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

34

Angular function, - real density-normalized Cartesian

spherical harmonics

),( )'( ' 3 lmllm drRP

),( lmd

Aspherical functions are named as follows:

l = 0 : monopole → ml = 0

l = 1 : dipole(s) → ml = -1, 0, 1

l = 2 : quadrupole(s) → ml = -2, -1, 0, 1, 2

l = 3 : octupole(s) → ml = -3, -2, -1, 0, 1, 2, 3

l = 4 : haxadecapole(s) → ml = -4, -3, -2, -1, 0, 1, 2, 3, 4

Altogether, these functions are called “multipoles” or

“multipolar” functions

Page 35: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

35

Angular function, - real density-normalized Cartesian

spherical harmonics

),( )'( ' 3 lmllm drRP

),( lmd

Example: function (quadrupole)),,(1,2 zyxd

check

check

this is “your very own” dxz function!

Page 36: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

Angular functions in the pseudoatom model are represented by

real density-normalized Cartesian spherical harmonics

dipolequadrupole quadrupole

octupole octupole hexadecapole

Page 37: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

Spherical harmonic functions for each atom are defined

in the atomic local coordinate systems

Convenient :

some Plm are zero due to local symmetry

chemical-equivalency constraints can be easily applied

(atoms share the same set of pseudoatom parameters)

L, R – left- and right-handed coordinate systems

chemically

equivalent

Page 38: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

Independent Atom Model (IAM)

max

0

33pseudoatom ),()'(')()()(l

l

l

lm

lmlmlvvcc dPrRrPrP r

aspherical deformation part = 0

unperturbed core of a free (non-interacting) spherical atom electron population Pc = number of core electrons in a free

atom

unperturbed valence density of a free spherical atom electron population Pv = number of valence electrons in a free

atom

expansion-contraction parameter = 1

CORE(r) VALENCE(r) DEFORMATION(r)

IAM is used in a “standard”/”conventional” refinement of

crystal structures (i.e., SHELX etc.)

Page 39: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

39

In a three-dimensional periodic system (crystal), the

generalized structure factor F(hkl) is given by the Fourier

transform of the electron density distribution function (xfyfzf)

Vc – volume of unit cell

{xf,yf,zf} - fractional coordinates defined w.r.t. the lengths of

unit cell axes a, b and c

Structure factor

1

0

1

0

1

0

fff

)(2

ffffff)()( dzdydxezyxVhklF

lzkyhxi

c

cz

by

ax

z

y

x

/

/

/

f

f

f

fx

l

k

h

S

1

0

f

32

ff)()( xxS

xSdeVF

i

c

Fourier transform

SSx

xS 32

ff)(

1)( deF

V

i

c

inverse Fourier transform

(back-transform)

max

min

max

min

max

min

fff )(2

f )(1

)(h

hh

k

kk

l

ll

lzkyhxi

c

ehklFV

xFourier synthesis

Page 40: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

40

“The Procedure”

Quantum Mechanics Pseudoatom model

rrr

rrr

3*

3*

)()(

)(ˆ)(

d

dHE

...)()()( 2211 rrr fcfc

0

ic

E

Variational principle

trial wavefunction

energy

minimize E w.r.t. linear

coefficients ci

exponents in primitive

functions fi(r) are fixed

Least-squares fit to observed

thermally-corrected X-ray

structure factors,

i

ii

i

iii

hklFhklw

hklFhklFhklwS

2

2calcobs

)()(

)()()(

)(obs hklFi

i = 1..Nhkl

minimize error function S

wi(hkl) – weight of i-th observation

)(calc hklFi – Fourier transform of

the model (pseudoatom) density

adjust parameters Pv, , Plm, and

for each pseudoatom

Page 41: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

41

The accuracy of a determined structure is given by the “R-

factor”, RF :

RF is often reported in %

RF < 5% → very accurate structure

5% < RF < 10% → relatively accurate structure (not bad)

for macromolecules RF can be as large as 20% or even

higher

Crystallographic R-factor

For conventional structures only,

i

i

i

i

i

i

i

ii

FhklF

hklF

hklF

hklFhklF

R)(

)(

)(

)()(

obsobs

calcobs

Page 42: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

42

Example: Pseudoatom model fit to the theoretical

(quantum mechanical) density of the H-F molecule

H-F molecule (Rexp=0.917 Å)

theory: Hartree-Fock (HF) / cc-pV6Z

molecule enclosed in a tetragonal cell

c = 5 Å

a=

4 Å

H

F

15,531 structure factors

generated up to

-1

maxÅ 8.1sin

“static” structure factors –

no thermal motion (signal

is only due to the electron

density)

unit weights

Page 43: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

43

Theoretical wavefunction calculated using Gaussian-type

functions via the cc-pV6Z basis set (Wilson, Mourik &

Dunning, 1999; Peterson, Woon, Dunning, Unpublished)

Pseudoatom model uses Slater-type functions (Bunge,

Barrientos & Bunge,1993)

The Good:

The theoretical model, and the pseudoatom core and

valence densities are based on the Hartree-Fock

calculations

Theoretical model vs Pseudoatom model

The Bad:

Is that a problem ?

Page 44: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

44

Gaussian-type functions (GTF, GF)

GTFs are widely used in quantum chemistry (Gaussian9x/0x,

GAMESS, Molpro, NWChem etc.)

2

),,()( rcba ezyxNzyxg

r

2/1

4/)3222()(4/3

!)!12(!)!12(!)!12(

22

cbaN

cbacba

a, b, and c - integer numbers

l = a + b + c : orbital angular momentum quantum number

- orbital exponent

N - normalization factor

Page 45: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

45

Gaussian-type functions (GF, GTF) are less accurate than Slater-

type orbitals (STO), i.e. wrong cusp and wrong radial decay, but

integrals are much easier to evaluate

many “bad” Gaussians one “good” Slater

STO-nG basis sets - 'n' primitive Gaussian-type function are

fitted to a single Slater-type orbital (STO)

Page 46: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

46

Hydrogen atom (Hartree-Fock calculations)

Total atomic energy (Eh). Exact wavefunction: -0.5 Eh

STO-1G -0.42441 STO-6G -0.49986

STO-2G -0.48315 6-311++g(2df,2pd) -0.49982

STO-3G -0.49574 cc-pV6Z -0.4999992

Energy is well-

recovered when

using extended

GTF basis sets

Electron density is well-recovered when using extended GTF basis

sets, …. … except at r 0 (nuclear cusp)

Page 47: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

47

Fluorine atom (Hartree-Fock calculations)

Total atomic energy (Eh)

STO/BBB -99.40935

GTF/6-311++g(2df,2pd) -99.40173

GTF/cc-pV6Z -99.41627

Energy is well-recovered when

using extended GTF basis sets

Electron density is well-recovered when using extended GTF basis

sets, ….

… except at r 0 (nuclear cusp)

Page 48: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

48

Core structure factors only

Parameters( sin / )max

0.7 Å-1 1.2 Å-1 1.8 Å-1

Nhkl 909 4,651 15,531

RF (%) 3.410-3 7.510-3 1.110-2

Theoretical structure factors: GTF cc-pV6Z wavefunction

Model structure factors: Independent Atom Model using STO

BBB wavefunction

contour levels are at 0.01 e Å-3

red - positive density, blue - negative density

dotted black line ( ) – zero contour

HF

residual Fourier (Fobs-Fcalc) core

density for (sin / )max = 1.8 Å-1

Core polarization is not

observed

“Frozen-core”

approximation is valid

Page 49: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

49

Total vs Valence-only structure factors

Parameters( sin / )max

0.7 Å-1 1.2 Å-1 1.8 Å-1

Nhkl 909 4,651 15,531

RF (%) TOTAL 1.5 1.6 1.1

RF (%) VALENCE 3.8 9.5 13.7

Theoretical structure factors: GTF cc-pV6Z wavefunction

H F H F H F

contour levels are at 0.1 e Å-3; red - positive density, blue - negative density

residual Fourier (Fobs-Fcalc) valence density (Fourier deformation density)

(sin / )max = 0.7 Å-1 (sin / )max = 1.2 Å-1 (sin / )max = 1.8 Å-1

original (theoretical)

deformation density

H F

Model structure factors: Independent Atom Model using STO

BBB wavefunction

Page 50: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

50

Valence-only structure factors. Kappa refinement

Parameters( sin / )max

0.7 Å-1 1.2 Å-1 1.8 Å-1

Nreflections 909 4,651 15,531

RF (%) IAM 3.8 9.5 13.7

RF (%) Kappa ref. 1.6 7.0 12.2

parameter Pv F / H 7.55 / 0.45 7.54 / 0.46 7.51 / 0.49

parameter F / H 0.97 / 1.55 0.97 / 1.56 0.97 / 1.52

max

0

33pseudoatom ),()'(')()()(l

l

l

lm

lmlmlvvcc dPrRrPrP r

refine parameters Pv and for each atom

CORE(r) VALENCE(r) DEFORMATION(r)

Page 51: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

51

Valence-only structure factors. Kappa refinement

contour levels are at 0.05 e Å-3; red - positive density, blue - negative density

Residual Fourier (Fobs-Fcalc) density

(sin / )max

= 0.7 Å-1

(sin / )max

= 1.2 Å-1

(sin / )max

= 1.8 Å-1

IAM Kappa refinementRF = 3.8% RF = 1.6%

RF = 9.5% RF = 7.0%

RF = 13.7% RF = 12.2%

H F H F

Page 52: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

52

Full aspherical pseudoatom (multipolar) refinement

Which aspherical deformation density parameters should be

refined?

Option 1: let Least Squares (LSQ) decide will likely work for the H-F example (theoretical data)

may (and often does!) yield unphysical results when refining

experimental data

Option 2: manually select functions to be refined take into account the so-called atomic “local” symmetries

max

0

33pseudoatom ),()'(')()()(l

l

l

lm

lmlmlvvcc dPrRrPrP r

CORE(r) VALENCE(r) DEFORMATION(r)

Page 53: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

53

Deformation density functions are defined in local framesxF

zF

H

F

Flashback: population Plm accounts for the

shift of density between regions of opposite

sign of angular function dlm(,)

monopole d00 is not

needed (already have

spherical valence)

dipoles d1,-1 and d1,+1 violate local

symmetry

bond-directed dipole

d1,0 is Ok

!

quadrupoles d2,-2 , d2,-1 , d2,+1 and d2,+2 violate local symmetry

!

bond-directed

quadrupole d2,0 is Ok

bond-directed

octupole d3,0 is Ok

!

bond-directed

hexadecapole

d4,0 is Ok

!All other multipoles also violate

local symmetries of H and F !

yF

zH

xH

yH

Page 54: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

54

Final refined parameters and statistics

refine parameters Pv , , Plm and (one for all Rl’s) for

each atom

Parameters( sin / )max

0.7 Å-1 1.2 Å-1 1.8 Å-1

Nreflections 909 4,651 15,531

RF (%) IAM 3.8 9.5 13.7

RF (%) Kappa ref. 1.6 7.0 12.2

RF (%) Full 0.2 1.0 2.2

Pv F / H 7.45 / 0.55 7.08 / 0.92 7.03 / 0.97

F / H 0.97 / 1.42 0.99 / 1.08 1.00 / 1.06

F / H 1.01 / 1.39 1.28 / 1.22 1.30 / 1.17

P10 F / H 0.42 / 0.04 -0.04 / 0.23 -0.02 / 0.26

P20 F / H 0.02 / -0.01 -0.10 / 0.11 -0.10 / 0.14

P30 F / H -0.07 / ‒ 0.01 / ‒ 0.01 / ‒

P40 F / H -0.01 / ‒ 0.02 / ‒ 0.02 / ‒

Page 55: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

55

Residual Fourier (Fobs-Fcalc) densitycontour levels are at 0.05 e Å-3; red - positive density, blue - negative density

(sin / )max

= 0.7 Å-1

(sin / )max

= 1.2 Å-1

(sin / )max

= 1.8 Å-1

Kappa refinement

RF = 1.6%

RF = 7.0%

RF = 12.2%

H F

Full multipolar refinement

H F

RF = 0.2%

RF = 1.0%

RF = 2.2%

Page 56: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

56

Fluorine multipoles in H-F from the (sin/)max = 1.2 Å-1

refinement (=1.28)

2D contour levels are at 0.02, 0.04,

0.0,8 0.2, 0.4, 0.8, 2., 4., 8.,… e Å-3;

red - positive density, blue - negative

density

F

04.010 P 10.020 P 01.030 P 02.040 P

superposition, F(r)

3D isocontours: +0.02 e Å-3 , -0.02 e Å-3

FF

F FH H H H

H

Page 57: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

57

Hydrogen multipoles in H-F from the (sin/)max = 1.2 Å-1

refinement (=1.22)

2D contour levels are at 0.02, 0.04, 0.0,8 0.2, 0.4, 0.8, 2., 4.,

8.,… e Å-3; red - positive density, blue - negative density

23.010 P

3D isocontours: +0.02 e Å-3 , -0.02 e Å-3 superposition, H(r)

11.020 P

H H HFF F

FH

Page 58: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

58

contour levels are at 0.1 e Å-3; red - positive density, blue - negative density

theory (original)

H

(sin / )max = 1.8 Å-1

(sin / )max = 1.2 Å-1

H

H

Low-resolution dataset is

“no good” !

High-resolution datasets

are OK

Deformation electron density (r) in the H-F molecule

(sin / )max = 0.7 Å-1

Page 59: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

59

Deformation electron density (r) in the H-F molecule

positive density isocontour 0.1 e Å-3, negative density isocontour -0.1 e Å-3

FH

theory (original)

(sin / )max = 1.2 Å-1

High-resolution datasets

are OK

(sin / )max = 0.7 Å-1

FH

F

H FH

(sin / )max = 1.8 Å-1

Low-resolution dataset is “no

good” !

Page 60: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

60

Dataset

Net atomic charge, q = qH = -qF

(electrons)

Molecular

dipole moment

z-component, z

(Debye)Mulliken Pseudoatom Hirshfeld QTAM

theory 0.31 — 0.23 0.78 -1.93

(sin/)max= 0.7Å-1 — 0.45 0.19 0.63 -0.77

(sin/)max= 1.2Å-1 — 0.08 0.22 0.73 -1.74

( sin/)max= 1.8Å-1 — 0.03 0.22 0.74 -1.70

Selected atomic and molecular properties

calculated from model densitiesx

y

zH

F comparing Mulliken and Pseudoatom

charges is like comparing and

Comparison of properties makes sense

only if the same definition is used

no problem if using the same definition, for example,

Hirshfeld, QTAM (Bader), ESP etc.

Page 61: Introduction to the X-ray Charge (Electron ... - Chemistry · empirical analysis of orbital occupancies electron static polarizabilities non-linear optical ... Core electron polarization

Questions ?

Comments ?

Suggestions ?


Recommended