+ All Categories
Home > Documents > Inverse of a Function Section 5.6 Beginning on Page 276.

Inverse of a Function Section 5.6 Beginning on Page 276.

Date post: 12-Jan-2016
Category:
Upload: rolf-miles
View: 224 times
Download: 0 times
Share this document with a friend
Popular Tags:
16
Inverse of a Function Section 5.6 Beginning on Page 276
Transcript
Page 1: Inverse of a Function Section 5.6 Beginning on Page 276.

Inverse of a Function

Section 5.6 Beginning on Page 276

Page 2: Inverse of a Function Section 5.6 Beginning on Page 276.

What is the Inverse of a Function?The inverse of a function is a generic equation to find the input of the original function when given the output [finding x when given y]. Inverse functions undo each other.

To find the inverse of a function we switch x and y and solve for y. We can then write a rule for the inverse function.

If we are given (or find) a set of coordinate pairs for a function, we can swap the values of x and the values of y and we will have a set of coordinate pairs for the inverse of the function.

You can verify if one function is the inverse of the other by composing the functions.

The inverse of a function might not also be a function.

If the graph of a function passes the horizontal line test, its inverse is also a function.

Page 3: Inverse of a Function Section 5.6 Beginning on Page 276.

Writing a Formula for the Input of a Function

Example 1: Let (a) Solve for . (b) Find the input when the output is -7

βˆ’3βˆ’3

22

π‘¦βˆ’32

=π‘₯

π‘₯=π‘¦βˆ’32

π‘₯=(βˆ’7)βˆ’32

π‘₯=βˆ’102

π‘₯=βˆ’5 The input is -5 when the output is -7

Page 4: Inverse of a Function Section 5.6 Beginning on Page 276.

Inverse Functions

Page 5: Inverse of a Function Section 5.6 Beginning on Page 276.

Inverse Functions

Page 6: Inverse of a Function Section 5.6 Beginning on Page 276.

Finding the Inverse of a Linear Function

Example 2: Find the inverse of

**Set equal to . Switch the roles of and and solve for .

𝑦= 𝑓 (π‘₯ )=3 π‘₯βˆ’1𝑦=3 π‘₯βˆ’1

π‘₯+1=3 𝑦π‘₯+13

=𝑦

π‘₯=3 π‘¦βˆ’1

𝑔 (π‘₯ )= π‘₯+13

Or

𝑔 (π‘₯ )=13π‘₯+13

Page 7: Inverse of a Function Section 5.6 Beginning on Page 276.

Inverses of Nonlinear Functions

Page 8: Inverse of a Function Section 5.6 Beginning on Page 276.

Finding the Inverse of a Quadratic Function

Example 3: Find the inverse of . Then graph the function and its inverse.

𝑓 (π‘₯ )=π‘₯2

𝑦=π‘₯2

π‘₯=𝑦 2

√π‘₯=βˆšπ‘¦ 2±√π‘₯=𝑦𝑔 (π‘₯ )=Β± √π‘₯

Since the domain ofis restricted to nonnegative values of x, the range of the inverse has to be restricted to nonnegative values of y.

The inverse of is

Page 9: Inverse of a Function Section 5.6 Beginning on Page 276.

The Horizontal Line Test

Page 10: Inverse of a Function Section 5.6 Beginning on Page 276.

Finding the Inverse of a Cubic FunctionExample 4: Consider the function Determine whether the inverse ofis a function. Then find the inverse.

First, sketch the graph of the function and perform the horizontal line test.

Since no horizontal line intersects the graph more than once,the inverse of f is a function.

𝑦=2 π‘₯3+1 π‘₯=2 𝑦 3+1

π‘₯βˆ’1=2 𝑦3

π‘₯βˆ’12

=𝑦3

3√ π‘₯βˆ’12 =3βˆšπ‘¦ 3 3√ π‘₯βˆ’12 =𝑦 g (π‘₯ )=3√ π‘₯βˆ’12

Page 11: Inverse of a Function Section 5.6 Beginning on Page 276.

Finding the Inverse of a Radical Function

Example 5: Consider the function . Determine whether the inverse of f is a function. Then find the inverse.

π‘₯=2βˆšπ‘¦βˆ’3π‘₯2=√ π‘¦βˆ’3

( π‘₯2 )2

=(βˆšπ‘¦βˆ’3)2

π‘₯2

4=π‘¦βˆ’3

π‘₯2

4+3=𝑦 𝑔 (π‘₯ )= 1

4π‘₯2+3

Page 12: Inverse of a Function Section 5.6 Beginning on Page 276.

Verifying Functions are Inverses

𝑓 (𝑔 (π‘₯ ) )= 𝑓 ( π‘₯+13 )ΒΏ3 (π‘₯+1

3 )βˆ’1 ΒΏ π‘₯+1βˆ’1 ΒΏ π‘₯

𝑔 ( 𝑓 (π‘₯ ) )=𝑔 (3 π‘₯βˆ’1 )ΒΏ(3 π‘₯βˆ’1 )+1

3ΒΏ3 π‘₯3 ΒΏ π‘₯

Page 13: Inverse of a Function Section 5.6 Beginning on Page 276.

Step 1: Find the inverse. Step 2: Evaluate the inverse when

𝑆=4πœ‹π‘Ÿ 2𝑆4πœ‹

=π‘Ÿ 2

√ 𝑆4πœ‹

=π‘Ÿ

π‘Ÿ=√ 𝑆4πœ‹

π‘Ÿ=√ 100πœ‹4πœ‹

π‘Ÿ=√25π‘Ÿ=5The radius of the sphere is 5 ft.

Page 14: Inverse of a Function Section 5.6 Beginning on Page 276.

Monitoring ProgressSolve for . Then find the input(s) when the output is 2.

1) 2) 3)

Find the inverse of the function. Then graph the function and its inverse.

4) 5) 6)

𝑦+2=π‘₯ ;4 ±√ 𝑦2 =π‘₯ ;Β±1 3√3βˆ’ 𝑦=π‘₯ ;1

Page 15: Inverse of a Function Section 5.6 Beginning on Page 276.

Monitoring Progress

Page 16: Inverse of a Function Section 5.6 Beginning on Page 276.

Monitoring Progress

10) Yes11) No


Recommended