+ All Categories
Home > Documents > Inverse Trig Functions

Inverse Trig Functions

Date post: 21-Feb-2016
Category:
Upload: dusty
View: 27 times
Download: 0 times
Share this document with a friend
Description:
Inverse Trig Functions. Section 4.7 . Inverse Sine, Cosine, Tangent Functions. and it’s inverse. y = sin x. y = arcsin x. EXAMPLES. OR. EXAMPLES. Q: How do we explain the inconsistency??. A: It’s a matter of Domain and Range. y = cos x. y = arccos x. EXAMPLES. OR. EXAMPLES. - PowerPoint PPT Presentation
22
Inverse Trig Functions Section 4.7
Transcript
Page 1: Inverse Trig Functions

Inverse Trig Functions

Section 4.7

Page 2: Inverse Trig Functions

Inverse Sine, Cosine, Tangent Functions

Is a one to one funcsin tion?y x

Consider the function sin( ) restricted over the interval , ...2 2

y x Do you remember the requirement?

It's graph must pass both the horizontal and vertical line tests.

and it’s inverse1sin( ) or si nx y y xGraph of sin( )y x

, by [-2 , 2]2 2

2

2

2

2

22

2

2

Page 3: Inverse Trig Functions

1 1

-The unique angle, y, in the interval [ , ] such that sin( ) is the inverse sine (or arcsine) of x, 2 2-denoted by sin or arcsin . The domain of sin is [-1, 1] and the range is [ , ] .2 2

T

y x

x x y x

hink of the range of this function as being to the RIGHT of the Y-AXIS. (Right half of unit circle)

( 0 , - 1 )

( 0 , 1 )

( - 1, 0 )

(- 1

2,

3

2)

(2

2,

- 2

2)

(- 2

2,

- 2

2)

(1

2,

- 3

2)

(2

2,

2

2)

(- 1

2,

- 3

2)

(1

2,

3

2)

(3

2,

- 1

2)

(- 3

2,

1

2)

(- 3

2,

-1

2)

(3

2,

1

2)

(- 2

2,

2

2)

( 1, 0)

2

3

2

11

6

5

6

7

6

5

4

7

4

3

4

5

3

2

3

4

3

360

330

315

300

270

180

240

225

210

150

135

120

90

6

4

360

45

30

0

, by [-2 , 2]2 2

2

2

[-2 , 2] by , 2 2

2

2

y = sin x

y = arcsin x

Page 4: Inverse Trig Functions

EXAMPLES 1 1sin2

1arcsin2

OR

These expressions are related to 1sin2

angle ratio

2

1

1

45

A C

B

2

3

1

60

30

A

C

B6

3

4

1 1sin2 6

The angle between and 2 2

1whose sine is , is the angle 2 6

Page 5: Inverse Trig Functions

EXAMPLES

1 5sin sin6

angleratio

12

1 1sin sin2

angle

1 5sin6

sin

1si 1s n2

n i

n

6si

5? ?6

6

( 0 , - 1 )

( 0 , 1 )

( - 1, 0 )

(- 1

2,

3

2)

(2

2,

- 2

2)

(- 2

2,

- 2

2)

(1

2,

- 3

2)

(2

2,

2

2)

(- 1

2,

- 3

2)

(1

2,

3

2)

(3

2,

- 1

2)

(- 3

2,

1

2)

(- 3

2,

-1

2)

(3

2,

1

2)

(- 2

2,

2

2)

( 1, 0)

2

3

2

11

6

5

6

7

6

5

4

7

4

3

4

5

3

2

3

4

3

360

330

315

300

270

180

240

225

210

150

135

120

90

6

4

360

45

30

0

ratio

ratio

1 1 in2

s

angle

Q: How do we explain the inconsistency??

A: It’s a matter of Domain and Range

Page 6: Inverse Trig Functions

1 1

The unique angle, y, in the interval [0 , ] such that cos( ) is the inverse cosine (or arccosine) of x,

denoted by cos or arccos . The domain of cos is [-1, 1] and the range is [0 , ] .Thi

y x

x x y x

nk of the range of this function as being to the ABOVE of the X-AXIS. (Top half of unit circle)

[0 , ] by [-2 , 2]

[-2 , 2] by [0 , ]

0

y = cos x

y = arccos x

( 0 , - 1 )

( 0 , 1 )

( - 1, 0 )

(- 1

2,

3

2)

(2

2,

- 2

2)

(- 2

2,

- 2

2)

(1

2,

- 3

2)

(2

2,

2

2)

(- 1

2,

- 3

2)

(1

2,

3

2)

(3

2,

- 1

2)

(- 3

2,

1

2)

(- 3

2,

-1

2)

(3

2,

1

2)

(- 2

2,

2

2)

( 1, 0)

2

3

2

11

6

5

6

7

6

5

4

7

4

3

4

5

3

2

3

4

3

360

330

315

300

270

180

240

225

210

150

135

120

90

6

4

360

45

30

0 2

cos( )y x

Page 7: Inverse Trig Functions

EXAMPLES 1 1cos2

1arccos2

OR

These expressions are related to 1cos2

angle ratio

2

1

1

45

A C

B

2

3

1

60

30

A

C

B6

3

4

1 1cos2

The angle between 0 and 1whose cosine is is the angle 2 3

3

Page 8: Inverse Trig Functions

EXAMPLES

1cos cos3

angleratio

12

1 1cos cos2

angle

1 cos3

cos

1co 1c s2

s o

s

3co

? ?3

3

( 0 , - 1 )

( 0 , 1 )

( - 1, 0 )

(- 1

2,

3

2)

(2

2,

- 2

2)

(- 2

2,

- 2

2)

(1

2,

- 3

2)

(2

2,

2

2)

(- 1

2,

- 3

2)

(1

2,

3

2)

(3

2,

- 1

2)

(- 3

2,

1

2)

(- 3

2,

-1

2)

(3

2,

1

2)

(- 2

2,

2

2)

( 1, 0)

2

3

2

11

6

5

6

7

6

5

4

7

4

3

4

5

3

2

3

4

3

360

330

315

300

270

180

240

225

210

150

135

120

90

6

4

360

45

30

0

ratio

ratio

1 1 os2

c

angle

Q: How do we explain the inconsistency??

A: It’s a matter of Domain and Range

Page 9: Inverse Trig Functions

1 1

-The unique angle, y, in the interval ( , ) such that tan( ) is the inverse tangent (or arctan) of x, 2 2-denoted by tan or arctan . The domain of tan is (- , ) and the range is ( , ).2 2

y x

x x y x

Think of the range of this function as being to the RIGHT of the Y-AXIS. (Right half of unit circle, excluding the top and bottom points)

[ , ] by [-2 , 2]2 2

( 0 , - 1 )

( 0 , 1 )

( - 1, 0 )

(- 1

2,

3

2)

(2

2,

- 2

2)

(- 2

2,

- 2

2)

(1

2,

- 3

2)

(2

2,

2

2)

(- 1

2,

- 3

2)

(1

2,

3

2)

(3

2,

- 1

2)

(- 3

2,

1

2)

(- 3

2,

-1

2)

(3

2,

1

2)

(- 2

2,

2

2)

( 1, 0)

2

3

2

11

6

5

6

7

6

5

4

7

4

3

4

5

3

2

3

4

3

360

330

315

300

270

180

240

225

210

150

135

120

90

6

4

360

45

30

0

2

2

-[ 2 , 2] by [ , ]2 2

2

2

y = tan x

y = arctan x

Page 10: Inverse Trig Functions

EXAMPLES

1 3tan tan4

angleratio

1 1tan tan 1

angle

1 3tan4

tan

1tant n 1a an4

t

3? ?4

4

( 0 , - 1 )

( 0 , 1 )

( - 1, 0 )

(- 1

2,

3

2)

(2

2,

- 2

2)

(- 2

2,

- 2

2)

(1

2,

- 3

2)

(2

2,

2

2)

(- 1

2,

- 3

2)

(1

2,

3

2)

(3

2,

- 1

2)

(- 3

2,

1

2)

(- 3

2,

-1

2)

(3

2,

1

2)

(- 2

2,

2

2)

( 1, 0)

2

3

2

11

6

5

6

7

6

5

4

7

4

3

4

5

3

2

3

4

3

360

330

315

300

270

180

240

225

210

150

135

120

90

6

4

360

45

30

0

ratio

ratio

1 1 ta n angle

Q: How do we explain the inconsistency??

A: It’s a matter of Domain and Range

Page 11: Inverse Trig Functions

Let’s talk DOMAIN and RANGE…

sin( )y x

: ,DOMAIN ANGLES

: 1,1RANGE RATIOS

1sin ( )y x:[ 1,1]DOMAIN

RATIOS

: ,2 2

RANGE

ANGLES

Page 12: Inverse Trig Functions

Let’s talk DOMAIN and RANGE…

cos( )y x

: ,DOMAIN ANGLES

: 1,1RANGE RATIOS

1cos ( )y x:[ 1,1]DOMAIN

RATIOS : 0,RANGE

ANGLES

Page 13: Inverse Trig Functions

Let’s talk DOMAIN and RANGE…

tan( )y x*

: ,2 2

DOMAIN

ANGLES: ( , )RANGE

RATIOS

1tan ( )y x: ( , )DOMAIN RATIOS

: ,2 2

RANGE

ANGLES

Page 14: Inverse Trig Functions

Now some examples…Evaluate w/out Calc

1 1cos(sin )2

RATIO

Find the cosine of the angle whose sine is ½

Start with innermost expression 1 1sin 2

1 1sincos( )2

6

cos6

Work your way out

Evaluate

32

Page 15: Inverse Trig Functions

Now some examples…Evaluate w/out Calc

arcsin(cos )3

ANGLE

Find the angle whose sine is the cosine of

Start with innermost expression cos 3

arcsin(cos )3

12

12

arcsin

Work your way out

Evaluate 6

3

Page 16: Inverse Trig Functions

Now some examples…Evaluate w/out Calc

7arccos(tan )4

ANGLE

Find the angle whose cos is the tangent of

Start with innermost expression 7tan 4

7taarcc s( no )4

1

arccos 1Work your way out

Evaluate

74

Page 17: Inverse Trig Functions

Example: #41 & #42*, P. 422

ca orc scos( )x

,2 2

ANGLES

arcsinsin( ) 1x

sin ? 1

[ 1,1]RATIOS

So 1x

sin 12

arccos ?

( , )ANGLES

[ 1,1]RATIOS

arccos 1 So can be ANY angle in ( , )that has a cosine of 1...x

x ,3 ,5 , , 3

(2 1) where is an integerx n n

... odd multiples of x

Page 18: Inverse Trig Functions

State the DOMAIN and RANGE the composite function

sin(arccos )x

RATIOS

Decide the domain of innermost function This is your DOMAIN

:[0,1]RANGE

arccos[sin( )1,1]

sin[0, ]

Find RANGE of innermost function

This is the DOMAIN of the outer function

Determine the RANGE based on “new”

DOMAIN

:[ 1,1]DOMAIN

Page 19: Inverse Trig Functions

State the DOMAIN and RANGE the composite function

arccos(sin )x

ANGLES

Decide the domain of innermost function This is your DOMAIN

:[0, ]RANGE

sin(a , )rccos( )

[ar cos ]c 1,1

Find RANGE of innermost function

This is the DOMAIN of the outer function

Determine the RANGE based on “new”

DOMAIN

: ,DOMAIN

Page 20: Inverse Trig Functions

State the DOMAIN and RANGE the composite function

1sin(tan (cos ))x

ANGLES

2 2: ,2 2

RANGE

1 cossin(tan ( ( , )) 1s [in(ta ]n )1,1

: ,DOMAIN

sin ,4 4

1s tan [ 1in( ),1]

Page 21: Inverse Trig Functions

x

1

1. Let be an angle whose tangent is .x1

opp x xadj

12. Find an .t xAngle whose tan is x =

4. Find the hypotenuse.

2 2 2

2 2

1

1 1

h x

h x x

h

-15. Find sin tan( ( ))x sin( )2 1

x xh x

16. Find cos(tan ( ))x2

1cos1x

-1

Write an ALGEBRAIC expression that represents

sin(tan ( ))x

-13 . Find sin tan( ( ))x sin( ) opphyp

2 1x

Page 22: Inverse Trig Functions

550'100

110

#25, p. 433: A boat is due east of the shoreline running north/south. The bearings of the boat from two points on the shore that are 550’ apart from each other are 100 and 110 degrees. How far is the boat from the shore?

Consider two of the triangles formed in the diagram.

d

x

80

d

550 + x

70

x

tan80

tan805.671

dx

d xd x

tan 70550

( 550) tan 702.747 1511.11

dx

d xd x

5.671 2.747 1511.112.924 1511.11

516.83'

x xxx

So 516.83(5.671)2930.94

dd


Recommended