+ All Categories
Home > Documents > Investigation 10of Be and C structure with break- up ... · Investigation 10of Be and 16C structure...

Investigation 10of Be and C structure with break- up ... · Investigation 10of Be and 16C structure...

Date post: 07-May-2018
Category:
Upload: hanhu
View: 215 times
Download: 1 times
Share this document with a friend
19
14 th International Conference on Nuclear Reaction Mechanism Varenna, June 16 th 2015 Univ. degli Studi di Napoli Federico II & INFN - Napoli Investigation of 10 Be and 16 C structure with break- up reactions at intermediate energies Daniele Dell’Aquila Università degli studi di Napoli “Federico II” & INFN – Sezione di Napoli for the CHIMERA Collaboration [email protected]
Transcript

14th International Conference on Nuclear Reaction Mechanism

Varenna, June 16th 2015

Un

iv. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

Investigation of 10Be and 16C structure with break-

up reactions at intermediate energies

Daniele Dell’Aquila

Università degli studi di Napoli “Federico II” & INFN – Sezione di Napoli

for the CHIMERA Collaboration

[email protected]

Table of Contents U

niv

. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

Exotic structures in light nuclei

• Clustering in non self-conjugated nuclei;

• The state of art of 10Be and 16C nuclei structure;

Experimental results

• 4He-6He correlations: the 10Be structure;

• 6He-10Be correlations: the 16C structure;

Conclusions and future perspectives

• Exotic beam production and tagging at INFN-LNS: The FRIBs facility;

• The 4p CHIMERA multi-detector array;

• Helium break-up of self-conjugated nuclei as experimental test;

Exotic structures in light nuclei

Very big variety of physical phenomena that need investigations

Un

iv. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

Exotic structures in light nuclei: an interesting scenario

Complexity of nuclear force dominant phenomena of nucleon-nucleon correlations

which determine a spatial re-organization of the nucleons in bounded sub-units the

constituent clusters.

12O 15O 13O 14O 17O 16O 19O 18O 20O 21O 22O

11N 12N 13N 14N 15N 16N 17N 18N 19N 20N 21N

8C 9C 10C 11C 12C 13C 14C 15C 16C 17C 18C 19C 20C

8B 9B 10B 11B 12B 13B 14B 15B 17B 19B

7Be 8Be 9Be 10Be 11Be 12Be 14Be

6Li 7Li 8Li 9Li 11Li

3He 4He 6He 8He

1H 2H 3H

n

H

Be

B

Li

He

C

core neutron halo 6He,11Li,11Be

core

neutron skin 8He,C

a a

a-cluster 8Be

a

a a

dilute gas 12C 0+,16O,20Ne(?)

a

a

a

linear chain 10Be,13-14C,16C(?),…

Ref. [1]

Ref. [3]

The 10Be case U

niv

. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

a a AMD+VAP calculations high

deformation in GS [1] Kp=0+

rotational band [2]

High a-a cluster distance [3]

strong molecular structure

Kp=0+ molecular band built on the

6.1793 MeV [4] state

[1] Y. Kanada-En’yo, Phys. Rev. C 91, 014315 (2015)

[4] M. Freer et al., Phys. Rev. Lett. 96, 042501 (2006) [3] Y. Kanada-En’yo, J. Phys. G 24, 1499 (1998) [2] D. Suzuki et al., Phys. Rev. C 87, 054301 (2013)

The 10Be case

Rotational band in dimeric structure very interesting case

Un

iv. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

[6] M. Freer et al., Phys. Rev. C 63, 034301 (2001)

[7] H.T. Fortune and B. Sherr, Phys. Rev. C 84, 024304

(2011)

[8] N.I. Ashwood et al., Phys. Rev. C 68, 0107603

(2004)

[9] N. Curtis et al, Phys. Rev. C 64, 044604 (2001)

[10] R. Wolsky et al., Phys. of Atom. Nucl. 73, 1405

(2010)

[11] F. Kobayashi and Y. Kanada-en’yo, J. Phys.: Conf.

Ser. 436, 012042 (2013)

[12] S. Ahmed et al., Phys. Rev. C 69, 024303 (2004)

[13] N. Curtis et al. Phys. Rev. C 73, 057301 (2006)

[1] Y. Kanada-En’yo, Phys. Rev. C 91, 014315 (2015)

[4] M. Freer et al., Phys. Rev. Lett. 96, 042501 (2006) [3] Y. Kanada-En’yo, J. Phys. G 24, 1499 (1998) [2] D. Suzuki et al., Phys. Rev. C 87, 054301 (2013)

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50

Eexc (

MeV

)

J(J+1)

GS rotational band

Kp=0+ molecular band

Kp=1- rotational band

J J(J+1) Ex (MeV)

0 0 6.18

2 6 7.54

4 20 10.15 [4]

J J(J+1) Ex (MeV)

0 0 0

2 6 3.37

4 20 11.78 [14]11 [2] (?)

J J(J+1) Ex (MeV)

1 2 5.96

2 6 6.26

3 12 7.73

4 20 9.27

5 30 11.8

6 42 15.3

[14] H.G. Bohlen et al., Phys. Rev. C 75, 054604 (2007)

a a

[5] N. Soic et al., Europhys Lett. 34, 7 (1996)

GS triangular linear chain

possible cluster configurationsAMD calculations Ref. [1]

Ref. [1]

The 16C case

Experimental evidence still missing!

Un

iv. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

a a a

a a a

[1] T. Baba, Y. Chiba and M. Kimura , Phys. Rev. C 90, 064319

(2014)

molecular states predicted possible

rotational bands 6He+10Be powerful

disintegration channel to explore this region

confirmations needed.

[2] N. I. Ashwood et al., Phys. Rev. C 70, 0644607 (2004)

[3] P.J. Leask et al., Jour. Phys. G: Nucl. Part. Phys. 27, B9 (2001)

no experimental

evidence on 16C

molecular nature still

provided [2,3]

very low statistic

measurements

primary beam

production target participant zone

spectator zone

exotic nucleus

FRIBs Facility @ LNS U

niv

. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

Istituto Nazionale di Fisica Nucleare

LNS - Laboratori Nazionali del Sud

Beam productionIFF (In Flight Fragmentation)

technique FRIBs (Flight Radioactive Ion Beams)

facility @ INFN-LNS:

• 18O7+ at 56 𝑀𝑒𝑉/𝑢 (superconducting cyclotron K800);

• 9Be (1,5 𝑚𝑚 tickness) production target;

• LNS-FRS (Fragment-Recoil Separator) 𝐵𝜌 ≈ 2,8𝑇𝑚;

Tagging system [1] (particle by particle identification):

• MCP large area detector;

[1] I. Lombardo et al., Nuc. Phys. B 215, 272 (2011).

MCP detector

primary beam

production target participant zone

spectator zone

exotic nucleus

FRIBs Facility @ LNS U

niv

. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

Istituto Nazionale di Fisica Nucleare

LNS - Laboratori Nazionali del Sud

Beam productionIFF (In Flight Fragmentation)

technique FRIBs (Flight Radioactive Ion Beams)

facility @ INFN-LNS:

• 18O7+ at 56 𝑀𝑒𝑉/𝑢 (superconducting cyclotron K800);

• 9Be (1,5 𝑚𝑚 tickness) production target;

• LNS-FRS (Fragment-Recoil Separator) 𝐵𝜌 ≈ 2,8𝑇𝑚;

Tagging system [1] (particle by particle identification):

• MCP large area detector;

• DSSSD position sensitive detector (≈ 13𝑚 after);

[1] I. Lombardo et al., Nuc. Phys. B 215, 272 (2011).

DSSSD detector

primary beam

production target participant zone

spectator zone

exotic nucleus

FRIBs Facility @ LNS U

niv

. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

Istituto Nazionale di Fisica Nucleare

LNS - Laboratori Nazionali del Sud

Beam productionIFF (In Flight Fragmentation)

technique FRIBs (Flight Radioactive Ion Beams)

facility @ INFN-LNS:

• 18O7+ at 56 𝑀𝑒𝑉/𝑢 (superconducting cyclotron K800);

• 9Be (1,5 𝑚𝑚 tickness) production target;

• LNS-FRS (Fragment-Recoil Separator) 𝐵𝜌 ≈ 2,8𝑇𝑚;

[1] I. Lombardo et al., Nuc. Phys. B 215, 272 (2011).

Identification (DE-ToF) plot FRIBs cocktail beam good performances.

High exotic beams intensity:

• 16C (49,5 𝑀𝑒𝑉/𝑢) 105 𝑝𝑝𝑠;

• 13B (49,5 𝑀𝑒𝑉/𝑢) 5 ⋅ 104 𝑝𝑝𝑠;

• 10Be (56,0 𝑀𝑒𝑉/𝑢) 4 ⋅ 104 𝑝𝑝𝑠;

Complete cocktail beam identification

Tagging system [1] (particle by particle identification):

• MCP large area detector;

• DSSSD position sensitive detector (≈ 13𝑚 after);

The CHIMERA 4p multi-detector

DE-E identification good isotopic separation

Un

iv. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

CHIMERA (Charged Heavy Ion Mass

Energy Resolving Array) [1,2] [1] A. Pagano, Nucl. Phys. News 22, 25 (2012)

[2] A. Pagano et al., Nucl. Phys. A 734, 504 (2004)

• 1192 DE-E telescopes (~300𝜇𝑚 Si + CsI(Tl) scintillator);

• 9 forward rings (1° ≤ 𝜃 ≤ 30°);

• 17 rings sphere (30° < 𝜃 ≤ 176°);

First 3 forward rings144 telescopes (1° ≤ 𝜃 ≤ 7°) complete azimuthal coverage DE-E

identification technique.

Good 4He – 6He separation beryllium line

mainly dominated by 10Be

Total fit

Experimental data

Check on self-conjugated nuclei U

niv

. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

As a starting check correlations between helium break-up fragments from self-

conjugated nuclei

2a correlations the 8Be spectroscopy: Experimental data

MonteCarlo simulation

8B

eg

s (0

+)

9B

e 2

,43 M

eV

(5

/2- )

9B

e 2

,78 M

eV

(1

/2- )

3,0

3 M

eV

(2

+)

MonteCarlo simulation good agreement

with the experimental data for the 91,8 keV

peak (8Begs) good consistency of the

procedure.

Possible contaminations of 9Be neutron

decay ghost peaks?

3a correlations the 12C spectroscopy:

3 body correlations good agreement

with the literature 12C Hoyle state.

Check on self-conjugated nuclei U

niv

. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

As a starting check correlations between helium break-up fragments from self-

conjugated nuclei

2a correlations the 8Be spectroscopy: Experimental data

MonteCarlo simulation

8B

eg

s (0

+)

9B

e 2

,43 M

eV

(5

/2- )

9B

e 2

,78 M

eV

(1

/2- )

3,0

3 M

eV

(2

+)

MonteCarlo simulation good agreement

with the experimental data for the 91,8 keV

peak (8Begs) good consistency of the

procedure.

Possible contaminations of 9Be neutron

decay ghost peaks?

3a correlations the 12C spectroscopy:

3 body correlations good agreement

with the literature 12C Hoyle state.

Interesting study of sequential de-

excitation for the Hoyle state

𝑪𝟏𝟐 ∗ → 𝜶 + 𝑩𝒆𝟖𝒈𝒔 (green spectrum)

Good test for the experimental technique

Possible new state in 10Be

Un

iv. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

Experimental data

Efficiency 1H target

Efficiency 12C target

Background (event mixing)

Smooth efficiency for both the

possible target nuclei (12C and 1H

from the polyethylene CH2 target

used) MonteCarlo simulation

with exponential angular

distribution in the anelastic

scattering center of mass frame:

Flat spourious

background contribution

event mixing procedure.

𝑑𝜎

𝑑Ω𝑐𝑚∝ 𝑒

𝜃𝑐𝑚𝛼

a fall-of factor 12°-16°

Found bumps corresponding to

excited states known in literature

(vertical arrows) interesting

peak at about 13.5 MeV.

Possible evidence of a new

excited state at about 13.5 MeV not

reported in literature.

13.5 MeV

6He+4He channel: the 10Be structure

Un

iv. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

Angular correlation analysis on 13.5 MeV state

high spin contributions possible 6+

assignement agreement with the recent R-

matrix calculation in resonant elastic scattering 6He+4He experiment [1]

Ref. [1]

[1] G. Rogachev et al., J. Phys.: Conf. Ser. 569, 012004 (2014)

6+ 13.5 MeV

6He+4He channel: the 10Be structure

Continuation of the 10Be molecular band

Un

iv. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

Angular correlation analysis on 13.5 MeV state

high spin contributions possible 6+

assignement agreement with the recent R-

matrix calculation in resonant elastic scattering 6He+4He experiment [1]

Possible 6+ further member of the K=0+ molecular

band low statistics new experiments are

needed.

6He+4He channel: the 10Be structure

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50

Eexc (

MeV

)

J(J+1)

GS rotational band

Kp=0+ molecular band

Kp=1- rotational band

The 10Be spectroscopy

Un

iv. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

As a final test complete MonteCarlo simulation with the 13.5 MeV state (shadowed

histogram) nice agreement with the experimental data (black points)

13.5 MeV

Ex (MeV) Jp Gtot (MeV)

9.51 2+[1,2,3] 0.14 [4,5]

10.15 [6];10.2 [3] 3−[6]; 4

+[7] 0.30 [4,5]

10.6 [5] 0.20 [8,4]

11.8 (4+

) [5,6] 0.12 [5,6]

≈ 13.5 6+[9], this work ≈ 0.15 this work

[1] M. Freer et al., Phys. Rev. C 63, 034301 (2001)

[2] S. Ahmed et al., Phys. Rev. C 69, 024303 (2004)

[3] N. Curtis et al. Phys. Rev. C 73, 057301 (2006)

[4] N. Curtis et al, Phys. Rev. C 64, 044604 (2001)

[5] Brookhaven National Laboratory, National Nuclear Data Center

[6] D.R. Tilley et al., Nucl. Phys. A 745, 155 (2004)

[7] M. Freer et al., Phys. Rev. Lett. 96, 042501 (2006)

[8] N. Soic et al., Europhys Lett. 34, 7 (1996)

[9] G.V. Rogachev et al., J. Phys.: Conf. Ser. 569, 012004 (2014)

6He+4He channel: the 10Be structure

6He-10Be coincidences: the 16C structure

Low statistics results 20,6 MeV bump

Un

iv. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

Ref. [1] Ref. [2]

16C 2 body disintegration 6He+10Be break-up channel low statistics data.

Enhancement at about 20.6

MeV possible

agreement with the

previous low statistics

measurement s [1][2]

more statistics required to

confirm the suggestion.

Experimental data

Efficiency 1H target

Efficiency 12C target

≈ 𝟐𝟏 𝐌𝐞𝐕

Ref. [3]

[3] T. Baba, Y. Chiba and M. Kimura , Phys. Rev. C 90, 064319 (2014)

[1] N. I. Ashwood et al., Phys. Rev. C 70, 0644607 (2004)

[2] P.J. Leask et al., Jour. Phys. G: Nucl. Part. Phys. 27, B9 (2001)

16C three body break-up: 6He+6He+4He

Very low statistics no data in literature

Un

iv. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

16C 3 body disintegration 6He+6He+4He break-up channel low statistics data no

data present in literature .

Experimental data

Experimental data gated on Qgggg

Possible state?

Conclusions and Perspectives

Thank you for your attention.

Un

iv. d

egli

Stu

di

di

Nap

oli

Fed

eric

o I

I &

IN

FN

- N

ap

oli

• We have performed a spectroscopic investigation of 10Be and 16C via cluster break-

up reactions at intermediate energies at INFN-LNS.

• The cocktail beam was provided by the FRIBs facility particle by particle identification

tagging system coupled to CHIMERA 4p multi-detector.

• 6He-4He correlations structure of 10Be new possible 6+ state at about 13.5 MeV

excitation energy possible agreement with a recent R-matrix calculation [1] (resonant

elastic scattering data) energetic compatibility with a 6+ further member of the 10Be

molecular band.

• 6He-10Be correlations structure of 16C very low statistics data agreement with

previous experiment enhancement at about 21 MeV excitation energy.

• 16C three body disintegrations 6He-6He-4He correlations very low statistics data

enhancement at about 33 MeV no data provided by literature.

[1] G. Rogachev et al., J. Phys.: Conf. Ser. 569, 012004 (2014)

[2] G. Verde et al., J. Phys. Conf. Ser. 420, 0112158 (2013)

Future Perspectives: FARCOS array [2] coupled to CHIMERA device improved energy

and angular resolution DSSSD+CsI detectors.

(CLIR experiment INFN-LNS February 2015 – June 2015).


Recommended