+ All Categories
Home > Documents > IPv6 Next Generation Internet Protocol

IPv6 Next Generation Internet Protocol

Date post: 12-Sep-2021
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
27
Thomas Schmidt schmidt@informatik. haw-hamburg.de IPv6 Next Generation Internet Protocol The limits of IPv4 – IPv6 Highlights Addressing IPv6 Packet formats QoS Further aspects Migration scenarios
Transcript
Page 1: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.de

IPv6Next Generation Internet Protocol

• The limits of IPv4 – IPv6 Highlights• Addressing• IPv6 Packet formats• QoS• Further aspects• Migration scenarios

Page 2: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deThe Limits of IPv4

• Basic design over 25 years old - Packet format, ... outdated- Hardware development of networks overran IP algorithms

• Address space exhausted

- ‚Regular‘ Internet growth runs out of addresses

- New kinds of Internet devices (mobile telephones, intelligent devices,...) need new quantities of addresses

- Caused by address bottle-neck: NAT-ALGs

• Support of new services tedious to implement

Page 3: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deIP Routing: CIDR

• Static subnet masks in IPv4 (classes) lead to two main problems:Class B exhaustion & explosion of R-T

• Internet backbone routers need methods foraggregation, to limit routing tables:

– Classless Interdomain Routing (CIDR)

– Variable Length Subnet Masks (VLSM)

• Approach:

– Allocation of coherent blocks of net addresses

– Aggregation through ‚Supernetting‘ addresses

Page 4: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deRoute Aggregation via VLSM

11.0.0.0/8

11.2.0.0/1611.3.0.0/16 . . .11.252.0.0/1611.254.0.0/16

Router A

11.1.0.0/16

11.1.1.0/2411.1.2.0/24 . . .11.1.252.0/2411.1.254.0/24

Router B

11.253.32.0/1911.253.64.0/19 . . .11.253.160.0/1911.253.192.0/19

11.1.253.0/24

11.1.253.32/2711.1.253.64/2711.1.253.96/2711.1.253.128/2711.1.253.160/2711.1.253.192/27

Router D

11.253.0.0/16

Router C

Internet

Bekanntgegebener Wegzu Subnetzen durch Aggregation

11.253.0.0/16

Router C

Page 5: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deIPng History

• IETF WG IPng began to work in the early 90er

• Winter 1992: 7 proposals for development of IP– CNAT, IP Encaps, Nimrod, Simple CLNP, PIP, SIP, TP/IX

• Autum 1993: several mergers lead to– ‚Simple Internet Protocol Plus‘ (SIPP) and ‚Common Architecture for the Internet‘

CATNIP

• July 1994: IPng Area Director recommend roadmap (RFC 1752)on basis of SIPP (Steve Deering)

• Dec. 1995: S. Deering, R. Hinden, „Internet Protocol, Version 6 (IPv6) Specification“ (RFC 1883, now RFC 2460)

• Sub-TLAs available (RIPE-NCC, APNIC, ARIN) since 1999

Page 6: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deIPv6 Innovations

• Addressing and routing - Elimination of address bottle-neck: 128 Bit addresses- Address hierarchy can simplify backbone routing

- Several addresses per interface

• Simple administration - Autoconfiguration of interfaces without DHCPv6- Floating net masks, renumbering via prefix change

• Security: IPSec

– Security header extension for authentication, integrity and encryption

Page 7: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deIPv6 Innovations(2)

• Protocol configuration

– Slim header for fast processing

– Optional extension headers

– Fixed format for all headers

– No header checksum

– No fragmentation in routers

• Improved multicast, anycast, QoS and mobile services

• Transition and coexistence concept IPv4 ↔ IPv6

Page 8: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deAddressing

• IPv6 addresses are 128-bit long and variably built• Address architecture: RFC 3513 (April ´03, Hinden & Deering)• Automatic address configuration• Global address hierarchy from top level

allocation to the interface-ID designated• Aggregation-based allocation to simplify

the global routing (possible)• 3 Bit format prefix (FP) initially used for identification of address type

Page 9: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deNotation of IPv6 Addresses

• Standard Form: 8 x 16 bit HexadecimalExample: 1080:0:FF:0:8:800:200C:417A

• Short form: sequences of nulls replaced by ::Example: FF01:0:0:0:0:0:0:43 → FF01::43

• IPv4 compatible addresses:Example: 0:0:0:0:0:0:13.1.68.3 → ::13.1.68.3

• CIDR notation for prefixes:

Example: 1080:645:FF::/48

Page 10: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deAddress TypesType Binary Prefix

• Unicast (one-to-one)– global all not specified elsewhere

– site-local 1111 1110 11 (FEC0::/10)

– link-local 1111 1110 10 (FE80::/10)

– compatible (IPv4, a.a.) 0000...0 (96 zero bits)

– Loop back 0000..1 ::1/128

• Multicast (one-to-many) 1111 1111 (FF00::/8)

• Anycast (one-to-nearest) of Unicast Prefixes

• No broadcast addresses (only multicast)!

Page 11: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deGlobal Unicast Addresses (RFC 3513)

n bits m bits 128–m–n bits

Subnet ID

Interface IdentifierGlobal RoutingPrefix

• All fields have variable length and are not ‚self-explanatory ‘(as of CIDR)

• All global unicast addresses, which do not begin with 000 (binary),carry a 64 bit interface ID, this means m + n = 64

• Mechanisms of automatic prefix exchange provided

Page 12: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deLocal Unicast Addresses

• Link-local addresses for use during auto-configuration and in nets without routers:

1111111010 Interface ID0

• Site-local addresses independent of TLA/NLA:

1111111011 0 Interface IDSLA

Page 13: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deExample: FHTW IPv6 Net

• 2001:: /16 - Pre-set prefix

• 2001:0600:: /23 - Regional registry Europa (RIPE)

• 2001:0638:: /29 - DFN prefix

• 2001:0638:0801:: /48 - FHTW net address

• 2001:0638:0801:0001:: /64 - First FHTW subnet

• 2001:0638:0801:0001:0000:0000:0000:0001 /128

- First IPv6 computer address at FHTW ☺

Addressing of Sub-TLAs (Ripe) according to RFC 2450

Page 14: IPv6 Next Generation Internet Protocol

Internet Control Message Protocol (ICMPv6)

Thomas Schmidtschmidt@informatik.

haw-hamburg.de

• RFC 2463 (Conta, Deering)

• Defines two (expandable) message classes:

Informational Messages• Echo Request (128)

• Echo Reply (129)

Error Messages• Destination Unreachable (1)

• Packet Too Big (2)

• Time Exceeded (3)

• Parameter Problem (4)

Page 15: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deStateless Auto-Configuration

1. Interface assigns a link-local address on activation (e.g. built from a hardware address).

2. Interface sends router solicitation, to omit waiting for router advertisements.

3. Router sends router advertisement (prefix, default gateway, …).

4. The interface creates its global address from prefix and link-local address.

5. For verification of uniqueness a ICMP neighbour solicitation will be sent (Duplicate Address Detection).

Page 16: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deIPv6 Packet Format: Basic Header160 314 12 24

VERSION TRAFFIC CLASS FLOW LABEL

PAYLOAD LENGTH NEXT HEADER HOP LIMIT

SOURCE ADDRESS

DESTINATION ADDRESS

VERSION 4 Bit Internet Protocol Version number = 6

TRAFFIC CLASS 8 Bit Type-of-Services

FLOW LABEL 20 Bit

PAYLOAD LENGHT 16 Bit Oktettanzahl des Paketes ohne IPv6-Header

NEXT HEADER 8 Bit Type des "encapsulated protocol"

HOP LIMIT 8 Bit TTL-Zähler wird dekrementiert je Router

SOURCE ADDRESS 128 Bit Adresse des Ausgangsknoten (128 Bits)

DESTINATION ADRESS 128 Bit Adresse des Ausgangsknoten (128 Bits)

Qos-Informationen für Routerverarbeitung

Page 17: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.de

1 4 8 16 19 24 32

Version Servicetypen Paketlänge

Identifikation DF

MF

Fragmenabstand

Lebenszeit Transport Kopfprüfsumme

Senderadresse

Empfängeradresse

FüllzeichenOptionen

IP-Protocolkopf

Länge

IPv4 Header

Page 18: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deIPv6 Packet Format: Option Headers

• Extended option mechanisms: Each header references a possible successive header or data, e.g.:

I P v 6 h e a d e r

N H : r o u t i n g

I P v 6 h e a d e r

N H : r o u t i n g

f r a g m e n t h e a d e r

N H : T C P

T C P h e a d e r

d a t a

r o u t i n g h e a d e r

N H : f r a g m e n t

• Option headers have no length limit (IPv4: 40 Octets), Padding to 8 Octets

• Option headers will be processed only by hosts, not by routers.Exeption: Hop-by-Hop Option Header

Page 19: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deBasic Option Headers• Routing

Advanced routing information (source routing)• Fragmentation

Fragmentation / defragmentation information• Authentication

Security information: authentication and integrity• Encapsulation

‚Tunnelling‘, i.g. for confidential data• Hop-by-Hop Option

Dedicated options to be processed by every router• Destination Option

Information for the destination host (header extension)

Page 20: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deIPv6 & QoS

Priority: Traffic Class Feld (8 Bit) break down in two classes:

• Flow controlled traffic (0 - 7)0 Not specified 4 Bulk (i.g. ftp, http)

1 ‚Feeder‘ (i.g. netnews) 5 (Reserved)

2 Unnoticed (i.g. email) 6 Interactive (i.g. telnet, X11)

3 (Reserved) 7 Internet control (i.g. rip)

• Traffic without flow control (Realtime, Constant Bitrate, ...)Priority from 8 to 15 (ascending)

Page 21: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deFlow Labels

24-bit Flow Labels can be uses by senders to mark associated packets.

• At present still experimental

• Goal: accelerated, uniform handling of packet streams through routers

• Flow label: Random per Flow

• Header information consistent per flow (router caching)

• Defines router states: 120 s lifecycle

Page 22: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deMore to IPv6

• Domain Name System, closed disscussion– A-Record → AAAA - Record versus

– A-Record → [A6 - Record (storage of address parts)]

• SNMP: in review, SNMP(v4) can manage IPv6 interfaces

• IPsec is mandatory part of IPv6

• Secure Neighbour Discovery (Send)

• IPv6 over 3GPP

• Mobile IPv6

Page 23: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.dePacket Tunnelling of IPv6

• RFC 2473 (Conta, Deering)• Mainly used for explicit routing path control• Defines (statefull) ‚ends‘:

- Tunnel Entry-Point- Tunnel Exit-Point

• State variables contain MTU, Traffic Class, Flow Label• Fragmentation may be necessary at tunnel entry point

New Header Ext. Hds. Original Packet (incl. Header)

Page 24: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deIPv4 → IPv6 Porting

• Source and binary code compatibility for existent application: ‘all goes on’

• Address data structure:New for IPv6

• Name-to-address translation:New functions to support IPv6 and IPv4

• Address converting functions:New functions to support IPv6 and IPv4

• DNS resolver:Gives IPv6 or IPv4 address or both back

Page 25: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deIPv4 → IPv6 Migration

Many techniques for migration are designed and implemented according to the following approach:

– Dual-Stack techniques, which allow the coexistence of IPv4 and IPv6 for the same devices and nets

– Tunnel, which connect IPv6 regions over IPv4 regions

– Protocol translator, which let IPv6 devices with IPv4 devices speak

During migration the combined use of all this methods likely.

Page 26: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.de

DRIVER

IPv4 IPv6IPv4 IPv6

APPLICATION

TCP/UDPDual Stack

• On activation of IPv6 the IPv4 can continously being used (multi protocol approach)

• Devices can keep their addresses (IPv4 in IPv6)

• Application / libraries choose the IP version:– On approach in dependency of DNS answer

– On answering in dependency from received packets

• The Dual stack operation can continue without limits, it allows the step by step porting of applications

Page 27: IPv6 Next Generation Internet Protocol

Thomas Schmidtschmidt@informatik.

haw-hamburg.deInformation

• Christian Huitema: IPv6, die neue Generation Addison Wesley, 2000

• Herbert Wiese: Das neue Internetprotokoll IPv6, Hanser 2002

• www.ip6forum.com

• www.6net.org

• playground.sun.com/ipng

• www.cisco.com/ipv6

• www.6bone.net

• www.ietf.org/html.charters/ipngwg-charter.html


Recommended