+ All Categories
Home > Documents > IR MOSFET - StrongIRFET™-IRF200P223 · Figure 13 Typical On-Resistance vs. Drain Current Figure...

IR MOSFET - StrongIRFET™-IRF200P223 · Figure 13 Typical On-Resistance vs. Drain Current Figure...

Date post: 27-May-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
17
D S G G D S Gate Drain Source Applications UPS and Inverter applications Half-bridge and full-bridge topologies Resonant mode power supplies DC/DC and AC/DC converters OR-ing and redundant power switches Brushed and BLDC Motor drive applications Battery powered circuits Benefits Improved Gate, Avalanche and Dynamic dv/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dv/dt and di/dt Capability Pb-Free ; RoHS Compliant ; Halogen-Free Base part number Package Type Standard Pack Form Quantity IRF200P223 TO-247AC Tube 25 IRF200P223 Orderable Part Number VDSS 200V RDS(on) typ. 9.5m max 11.5m ID 100A TO-247AC IRF200P223 G D S D Final Datasheet Please read the important Notice and Warnings at the end of this document V1.0 www.infineon.com 2017-02-27 IRF200P223 IR MOSFET - StrongIRFET™ 25 50 75 100 125 150 175 T C , Case Temperature (°C) 0 20 40 60 80 100 120 I D , Drain Current (A) Figure 1 Typical On-Resistance vs. Gate Voltage Figure 2 Maximum Drain Current vs. Case Temperature 2 4 6 8 10 12 14 16 18 20 V GS, Gate -to -Source Voltage (V) 5 10 15 20 25 30 35 R D S ( o n ) , D r a i n - t o - S o u r c e O n R e s i s t a n c e ( m ) I D = 60A T J = 25°C T J = 125°C
Transcript

D

S

G

G D S Gate Drain Source

Applications UPS and Inverter applications Half-bridge and full-bridge topologies Resonant mode power supplies DC/DC and AC/DC converters OR-ing and redundant power switches Brushed and BLDC Motor drive applications Battery powered circuits

Benefits Improved Gate, Avalanche and Dynamic dv/dt Ruggedness

Fully Characterized Capacitance and Avalanche SOA

Enhanced body diode dv/dt and di/dt Capability Pb-Free ; RoHS Compliant ; Halogen-Free

Base part number Package Type Standard Pack Form Quantity

IRF200P223 TO-247AC Tube 25 IRF200P223

Orderable Part Number

VDSS 200V

RDS(on) typ. 9.5m max 11.5m

ID 100A

 

TO-247AC IRF200P223

G

D

S D

Final Datasheet Please read the important Notice and Warnings at the end of this document V1.0 www.infineon.com 2017-02-27

IRF200P223

IR MOSFET - StrongIRFET™

25 50 75 100 125 150 175

TC , Case Temperature (°C)

0

20

40

60

80

100

120

I D, Drai

n Cu

rren

t (A)

 

Figure 1 Typical On-Resistance vs. Gate Voltage Figure 2 Maximum Drain Current vs. Case Temperature

2 4 6 8 10 12 14 16 18 20

VGS, Gate -to -Source Voltage (V)

5

10

15

20

25

30

35

R DS(o

n),

Drai

n-to

-Sou

rce

On

Resi

stan

ce (m

)

ID = 60A

TJ = 25°C

TJ = 125°C

Final Datasheet V1.0 2017-02-27

IR MOSFET-StrongIRFET™

IRF200P223

Table of Contents

Table of Contents Applications …..………………………………………………………………………...……………..……………1

Benefits …..………………………………………………………………………...……………..…………….1

Ordering Table ….……………………………………………………………………………………………………1

Table of Contents ….………………………………………………………………………………………………...2

1 Parameters ………………………………………………………………………………………………3

2 Maximum ratings, Thermal, and Avalanche characteristics ………………………………………4

3 Electrical characteristics ………………………………………………………………………………5

4 Electrical characteristic diagrams ……………………………………………………………………6

Package Information ………………………………………………………………………………………………14

Qualification Information ……………………………………………………………………………………………15

Revision History …………………………………………………………………………………………..…………16

Final Datasheet V1.0 2017-02-27

IR MOSFET-StrongIRFET™

IRF200P223

1 Parameters

Table1 Key performance parameters

Parameter Values Units

VDS 200 V

RDS(on) max 11.5 m

ID 100 A

Parameters

Final Datasheet V1.0 2017-02-27

IR MOSFET-StrongIRFET™

IRF200P223

Table 2 Maximum ratings (at TJ=25°C, unless otherwise specified) Parameter Symbol Values Unit Continuous Drain Current ID 100

A Continuous Drain Current ID 71 Pulsed Drain Current IDM 400 Maximum Power Dissipation PD 313 W Linear Derating Factor 2.1 W/°C Gate-to-Source Voltage VGS ± 20 V Operating Junction and Storage Temperature Range

TJ TSTG

-55 to + 175 °C Soldering Temperature, for 10 seconds

(1.6mm from case) - 300

Mounting Torque, 6-32 or M3 Screw - 10 lbf·in (1.1 N·m) -

Conditions TC = 25°C, VGS @ 10V

TC = 100°C, VGS @ 10V TC = 25°C TC = 25°C TC = 25°C

-

-

-

-

Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.24mH, RG = 50, IAS = 60A, VGS =10V. ISD 60A, di/dt 2330A/µs, VDD V(BR)DSS, TJ 175°C. Pulse width 400µs; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. R is measured at TJ approximately 90°C. Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 33A, VGS =10V.

Table 4 Avalanche characteristics Parameter Symbol Values Unit

Single Pulse Avalanche Energy EAS (Thermally limited) 429 mJ  

Single Pulse Avalanche Energy EAS (Thermally limited) 541

Avalanche Current IAR

See Fig 16, 17, 23a, 23b A

Repetitive Avalanche Energy EAR mJ

Table 3 Thermal characteristics Parameter Symbol Conditions Typ. Max. Unit Junction-to-Case RJC TJ approximately 90°C - 0.48

°C/W Case-to-Sink, Flat Greased Surface RCS - 0.24 - Junction-to-Ambient RJA - - 40

Min. - - -

2 Maximum ratings and thermal characteristics

Maximum ratings and thermal characteristics

Final Datasheet V1.0 2017-02-27

IR MOSFET-StrongIRFET™

IRF200P223

D

S

G

Table 6 Dynamic characteristics

Parameter Symbol Conditions Values Unit Min. Typ. Max. Forward Trans conductance gfs VDS = 50V, ID =60A 93 - - S Total Gate Charge Qg - 68 102

nC Gate-to-Source Charge Qgs - 25 - Gate-to-Drain Charge Qgd - 13 - Total Gate Charge Sync. (Qg– Qgd) Qsync - 55 - Turn-On Delay Time td(on) VDD = 130V - 16 -

ns Rise Time tr ID = 60A - 66 - Turn-Off Delay Time td(off) RG = 2.7 - 55 - Fall Time tf VGS = 10V   - 62 - Input Capacitance Ciss VGS = 0V - 5094 -

pF

Output Capacitance Coss VDS = 50V - 628 - Reverse Transfer Capacitance Crss ƒ = 1.0MHz, See Fig.7 - 8.7 - Effective Output Capacitance (Energy Related) Coss eff.(ER) VGS = 0V, VDS = 0V to 160V - 537 -

Output Capacitance (Time Related) Coss eff.(TR) VGS = 0V, VDS = 0V to 160V - 783 -

ID = 60A VDS = 100V VGS = 10V

Table 7 Reverse Diode

Parameter Symbol Conditions Values Unit Min. Typ. Max. Continuous Source Current IS

MOSFET symbol - - 100 A (Body Diode) showing the

Pulsed Source Current integral reverse - - 400 (Body Diode) p-n junction diode. Diode Forward Voltage VSD TJ = 25°C, IS = 60A,VGS = 0V - - 1.2 V Peak Diode Recovery dv/dt dv/dt TJ = 175°C, IS = 60A,VDS = 200V - 15 - V/ns

Reverse Recovery Time trr TJ = 25°C - 105 -

ns TJ = 125°C  - 150 -

Reverse Recovery Charge Qrr TJ = 25°C - 283 -

nC TJ = 125°C  - 580 -

Reverse Recovery Current IRRM TJ = 25°C - 4.1 - A

ISM

VDD = 170V IF = 60A, di/dt = 100A/µs

Table 5 Static characteristics

Parameter Symbol Conditions Values Unit Min. Typ. Max. Drain-to-Source Breakdown Voltage V(BR)DSS VGS = 0V, ID = 1mA 200 - - V Breakdown Voltage Temp. Coefficient V(BR)DSS/TJ Reference to 25°C, ID = 1mA - 0.10 - V/°C Static Drain-to-Source On-Resistance RDS(on) VGS = 10V, ID = 60A - 9.5 11.5 m Gate Threshold Voltage VGS(th) VDS = VGS, ID = 270µA 2.0 - 4.0 V

Drain-to-Source Leakage Current IDSS VDS =160V, VGS =0V - - 1.0

µA VDS =160V,VGS = 0V,TJ =125°C - - 100

Gate-to-Source Forward Leakage IGSS VGS = 20V - - 100 nA Gate Resistance RG - 2.7 -

3 Electrical characteristics

Electrical characteristics

Final Datasheet V1.0 2017-02-27

IR MOSFET-StrongIRFET™

IRF200P223

Electrical characteristic diagrams

4 Electrical characteristic diagrams

Figure 3 Typical Output Characteristics Figure 4 Typical Output Characteristics

Figure 5 Typical Transfer Characteristics Figure 6 Normalized On-Resistance vs. Temperature

 

 

0.1 1 10 100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D, Dra

in-t

o-So

urce

Cur

rent

(A)

VGSTOP 15V

10V7.0V6.0V5.5V5.0V4.5V

BOTTOM 4.0V

60µs PULSE WIDTHTj = 25°C

4.0V

0.1 1 10 100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D, Dra

in-t

o-So

urce

Cur

rent

(A)

VGSTOP 15V

10V7.0V6.0V5.5V5.0V4.5V

BOTTOM 4.0V

60µs PULSE WIDTHTj = 175°C

4.0V

2 3 4 5 6 7 8

VGS, Gate-to-Source Voltage (V)

0.10

1.0

10

100

1000

I D, Dra

in-t

o-So

urce

Cur

rent

(A)

TJ = 25°CTJ = 175°C

VDS = 50V

60µs PULSE WIDTH

-60 -20 20 60 100 140 180

TJ , Junction Temperature (°C)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R DS(o

n) , D

rain

-to-

Sour

ce O

n Re

sist

ance

(

Nor

mal

ized

)

ID = 60A

VGS = 10V

Final Datasheet V1.0 2017-02-27

IR MOSFET-StrongIRFET™

IRF200P223

Electrical characteristic diagrams

Figure 7 Typical Capacitance vs. Drain-to-Source Voltage

Figure 8 Typical Gate Charge vs. Gate-to-Source Voltage

Figure 9 Typical Source-Drain Diode Forward Voltage

 

 

0.0 0.4 0.8 1.2 1.6 2.0

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

1000

I SD, R

ever

se D

rain

Cur

rent

(A)

TJ = 25°C

TJ = 175°C

VGS = 0V

0 10 20 30 40 50 60 70 80 90 100

QG, Total Gate Charge (nC)

0

2

4

6

8

10

12

14

V GS, G

ate-

to-S

ourc

e Vo

ltage

(V)

ID= 60A

VDS= 160V

VDS= 100V

VDS= 40V

1 10 100 1000

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

10000

100000

1000000

C, C

apac

itanc

e (p

F)

VGS = 0V, f = 1 MHZCiss = C gs + Cgd, Cds SHORTEDCrss = Cgd Coss = Cds + Cgd

Coss

Crss

Ciss

Final Datasheet V1.0 2017-02-27

IR MOSFET-StrongIRFET™

IRF200P223

Electrical characteristic diagrams

Figure 10 Maximum Safe Operating Area

 

 

0.1 1 10 100

VDS, Drain-to-Source Voltage (V)

0.01

0.1

1

10

100

1000

I D, Dr

ain-

to-S

ourc

e Cu

rren

t (A)

Tc = 25°CTj = 175°CSingle Pulse

1msec

10msecOPERATION IN THIS AREA LIMITED BY RDS(on)

100µsec

DC

Figure 11 Drain-to-Source Breakdown Voltage Figure 12 Typical Coss Stored Energy

-60 -40 -20 0 20 40 60 80 100 120 140 160 180

TJ , Temperature ( °C )

195

205

215

225

235

V (BR)

DSS, Dr

ain-

to-S

ourc

e Br

eakd

own

Volta

ge (V

)

Id = 1.0mA

0 20 40 60 80 100 120 140 160 180 200 220

VDS, Drain-to-Source Voltage (V)

0

2

4

6

8

10

Ener

gy (µ

J)

Final Datasheet V1.0 2017-02-27

IR MOSFET-StrongIRFET™

IRF200P223

Electrical characteristic diagrams

Figure 13 Typical On-Resistance vs. Drain Current

Figure 14 Threshold Voltage vs. Temperature

 

 

0 25 50 75 100 125 150 175 200

ID, Drain Current (A)

8

10

12

14

16

R DS(o

n),

Drai

n-to

-Sou

rce

On

Resi

stan

ce (m

)

VGS = 6.0VVGS = 7.0VVGS = 8.0VVGS = 10V

-75 -50 -25 0 25 50 75 100 125 150 175

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

V GS(t

h), Ga

te th

resh

old

Volta

ge (V

)

ID = 270µA

ID = 1.0mAID = 1.0A

Figure 15 Maximum Effective Transient Thermal Impedance, Junction-to-Case

1E-006 1E-005 0.0001 0.001 0.01 0.1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

Ther

mal

Res

pons

e ( Z

thJC

) °C/

W

0.20

0.10

D = 0.50

0.020.01

0.05

SINGLE PULSE( THERMAL RESPONSE )

Notes:1. Duty Factor D = t1/t22. Peak Tj = P dm x Zthjc + Tc

Final Datasheet V1.0 2017-02-27

IR MOSFET-StrongIRFET™

IRF200P223

10 

Electrical characteristic diagrams

Figure 16 Avalanche Current vs. Pulse Width

 

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

tav (sec)

0.1

1

10

100

Aval

anch

e Cu

rren

t (A)

Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 25°C and Tstart = 150°C.

Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150°C and Tstart =25°C (Single Pulse)

 

Figure 17 Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 16, 17: (For further info, see AN-1005 at www.infineon.com) 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. DT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 14) PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 25 50 75 100 125 150 175

Starting T J , Junction Temperature (°C)

0

100

200

300

400

500

E AR , A

vala

nche

Ene

rgy

(mJ)

TOP Single Pulse BOTTOM 1.0% Duty CycleID = 60A

Final Datasheet V1.0 2017-02-27

IR MOSFET-StrongIRFET™

IRF200P223

11 

Electrical characteristic diagrams

Figure 18 Typical Recovery Current vs. dif/dt Figure 19 Typical Recovery Current vs. dif/dt

 

100 200 300 400 500 600 700 800 900 1000

diF /dt (A/µs)

0

10

20

30

40

50

I RRM

(A)

IF = 40A

VR = 170V

TJ = 25°C

TJ = 125°C

100 200 300 400 500 600 700 800 900 1000

diF /dt (A/µs)

0

10

20

30

40

50

I RRM

(A)

IF = 60A

VR = 170V

TJ = 25°C

TJ = 125°C

Figure 20 Typical Stored Charge vs. dif/dt Figure 21 Typical Stored Charge vs. dif/dt

 

100 200 300 400 500 600 700 800 900 1000

diF /dt (A/µs)

0

500

1000

1500

2000

QRR

(nC)

IF = 40A

VR = 170V

TJ = 25°C

TJ = 125°C

100 200 300 400 500 600 700 800 900 1000

diF /dt (A/µs)

0

500

1000

1500

2000

2500

QRR

(nC)

IF = 60A

VR = 170V

TJ = 25°C

TJ = 125°C

Final Datasheet V1.0 2017-02-27

IR MOSFET-StrongIRFET™

IRF200P223

12 

Electrical characteristic diagrams

Figure 22 Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET™ Power MOSFETs

 

Figure 23a Unclamped Inductive Test Circuit Figure 23b Unclamped Inductive Waveforms

 

Final Datasheet V1.0 2017-02-27

IR MOSFET-StrongIRFET™

IRF200P223

13 

Electrical characteristic diagrams

Figure 24a Switching Time Test Circuit

 

Figure 24b Switching Time Waveforms

Figure 25a Gate Charge Test Circuit Figure 25b Gate Charge Waveform

 

Final Datasheet V1.0 2017-02-27

IR MOSFET-StrongIRFET™

IRF200P223

14 

TO-247AC Package Outline (Dimensions are shown in millimeters (inches))

TO-247AC package is not recommended for Surface Mount Application.

TO-247AC Part Marking Information

YEAR 1 = 2001

DATE CODE

PART NUMBERINTERNATIONAL

LOGORECTIFIER

ASSEMBLY

56 57

IRFPE30

135H

LINE Hindicates "Lead-Free" WEEK 35LOT CODE

IN THE ASSEMBLY LINE "H"

ASSEMBLED ON WW 35, 2001

Note: "P" in assembly line position

EXAMPLE:WITH ASSEMBLY THIS IS AN IRFPE30

LOT CODE 5657

Package Information

5 Package Information

Final Datasheet V1.0 2017-02-27

IR MOSFET-StrongIRFET™

IRF200P223

15 

† Applicable version of JEDEC standard at the time of product release.

Qualification Information

Qualification Level Industrial (per JEDEC JESD47F) †

Moisture Sensitivity Level TO-247AC N/A RoHS Compliant Yes

Qualification Information

6 Qualification Information

Final Datasheet V1.0 2017-02-27

IR MOSFET-StrongIRFET™

IRF200P223

16 

Revision History

Revision History

Major changes since the last revision

Page or Reference Revision Date Description of changes

All pages 1.0 2017-02-27 First release data sheet.

Trademarks of Infineon Technologies AG µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™ Trademarks updated November 2015 Other Trademarks All referenced product or service names and trademarks are the property of their respective owners.

IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”) . With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Edition 2015-05-06 Published by Infineon Technologies AG 81726 Munich, Germany   © 2016 Infineon Technologies AG. All Rights Reserved.   Do you have a question about this document? Email: [email protected] Document reference


Recommended