+ All Categories
Home > Documents > IRJET-Effect of Cutting Parameters on Surface Quality of AISI 316 Austenitic Stainless Steel in CNC...

IRJET-Effect of Cutting Parameters on Surface Quality of AISI 316 Austenitic Stainless Steel in CNC...

Date post: 17-Aug-2015
Category:
Upload: irjet
View: 218 times
Download: 1 times
Share this document with a friend
Description:
Surface quality is one of the prime requirements of customers for machined parts. The present work deals with the study of effect of cutting parameters on surface roughness and hardness of AISI 316 austenitic stainless steel in CNC turningunder conventional cooling condition. Taguchi method has been employed in the optimization of cutting parameters- such as speed, feed and depth of cut.The turning experiments under conventional cooling were planned as per Taguchi’s L9 orthogonal array (O.A.) which is designed with three levels of turning parameters. The Analysis of Means (ANOM) and Analysis of Variance (ANOVA) were carried out to determine the optimal parameter levels and obtain the level of importance of the cutting parameters, respectively.Validation tests with optimal levels of parameters were performed to demonstrate the effectiveness of Taguchi optimization. The optimization results revealed that feed is the significant parameter for minimizing the surface roughness, whereas depth of cut plays important role in maximizing the hardness. Also a comprehensive analysis has been made to understand the nature of deformation beneath the turned surface and thickness of machining affected zone (MAZ).
Popular Tags:
8
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072 © 2015, IRJET.NET-All RightsReserved Page 1453 Effect of Cutting Parameters on Surface Quality of AISI 316 Austenitic Stainless Steel in CNC Turning Prajwalkumar M. Patil 1 , Rajendrakumar V. Kadi 2 ,Dr. Suresh T. Dundur 3 ,Anil S. Pol 4 1 Research Scholar, Department of Product Design and Manufacturing, VTU, Belagavi, Karnataka, India 2 Asst. Professor, Department of Mechanical Engineering, TCE, Gadag, Karnataka, India 3 Professor, Department of Industrial and Production Engineering, BEC, Bagalkot, Karnataka, India 4 Asst. Professor, Department of Product Design and Manufacturing, VTU, Belagavi, Karnataka, India ---------------------------------------------------------------***-------------------------------------------------------------- AbstractSurface quality is one of the prime requirements of customers for machined parts. The present work deals with the study of effect of cutting parameters on surface roughness and hardness of AISI 316 austenitic stainless steel in CNC turningunder conventional cooling condition. Taguchi method has been employed in the optimization of cutting parameters- such as speed, feed and depth of cut.The turning experiments under conventional cooling were planned as per Taguchi’s L9 orthogonal array (O.A.) which is designed with three levels of turning parameters. The Analysis of Means (ANOM) and Analysis of Variance (ANOVA) were carried out to determine the optimal parameter levels and obtain the level of importance of the cutting parameters, respectively.Validation tests with optimal levels of parameters were performed to demonstrate the effectiveness of Taguchi optimization. The optimization results revealed that feed is the significant parameter for minimizing the surface roughness, whereas depth of cut plays important role in maximizing the hardness. Also a comprehensive analysis has been made to understand the nature of deformation beneath the turned surface and thickness of machining affected zone (MAZ). KeywordsAustenitic Stainless Steel AISI 316, CNC Turning, Conventional cooling condition, Taguchi Method, Surface Roughness, Surface Hardness, ANOVA. 1. INTRODUCTION Austenitic stainless steel is one of the most important engineering materials with wide variety of applications. This material is attractive because of its properties such as high hardness, toughness, yield strength, excellent ductility, superior resistance to corrosion and oxidation, compatibility in high temperature and high vacuum. But these materials are very “difficult to machine” than carbon and low alloy steels because of their high strength, poor thermal conductivity and a higher degree of ductility and work hardenability [1, 2, 4, 5]. The problems such as poor surface finish and high tool wear are common while machining these materials [1]. Therefore, attempts have been made to improve the machinability of austenitic stainless steel by adding free machining elements like lead, sulfur, tellurium and selenium [7]. In the machining process, one of the most noteworthy mechanical requirements of the customers is surface finish. To improve the fatigue strength, corrosion resistance, aesthetic appeal and tribological properties of the product; a sensibly good surface finish is required. Nowadays, fabricating commercial ventures are particularly concerned with dimensional precision and surface completion. Our main objective is to study effect of cutting parameters on AISI 316 austenitic stainless steel workpiece surface roughness and hardness by employing design of experiments via Taguchi methods and Analysis of Variance (ANOVA) using tungsten carbide tool on CNC lathe under wet environment. Austenitic grade of stainless steel is one of the vastly consumed steel (70 percentage) universally [4, 8]. The austenitic alloys used most often are those of the AISI 300 series. Grade 316 is the standard molybdenum-bearing grade. Molybdenum gives 316 preferable corrosion resistance properties over crevice corrosion in chloride environment. It has excellent forming and welding characteristics. AISI 316 austenitic stainless steel has wide range of applications such as it is used in chemical processing equipment; aerospace components; for food, dairy and beverage industries; for surgical embeds inside of the threatening environment of the body; in deck components for boats and ships in marine environment; and for heat exchangers [3, 4]. 1.1 Taguchi Parameter Design In the early 1950s, Dr. Genichi Taguchi, “the father of Quality Engineering”, introduced the concept of off-line Quality control techniques known as Taguchi parameter design [9]. Off-line Quality control techniques are those activities performed during the product (or process) design and development phases. Taguchi parameter design is based on the concept of fractional factorial design [10]. Taguchi design is a powerful methodology designed for finding the optimum levels of the control process parameters to make the product or process impervious to the noise factors [11, 12]. The Taguchi method is based on matrix experiments, and these
Transcript

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 02 Issue: 04 | July-2015www.irjet.netp-ISSN: 2395-0072 2015, IRJET.NET-All RightsReserved Page 1453 Effect of Cutting Parameters on Surface Quality of AISI 316 Austenitic Stainless Steel in CNC Turning Prajwalkumar M. Patil 1, Rajendrakumar V. Kadi 2,Dr. Suresh T. Dundur3,Anil S. Pol 4 1Research Scholar, Department of Product Design and Manufacturing, VTU, Belagavi, Karnataka, India 2 Asst. Professor, Department of Mechanical Engineering, TCE, Gadag, Karnataka, India 3Professor, Department of Industrial and Production Engineering, BEC, Bagalkot, Karnataka, India 4 Asst. Professor, Department of Product Design and Manufacturing, VTU, Belagavi, Karnataka, India ---------------------------------------------------------------***--------------------------------------------------------------AbstractSurfacequalityisoneoftheprime requirementsofcustomersformachinedparts.The presentworkdealswiththestudyofeffectofcutting parametersonsurfaceroughnessandhardnessofAISI 316austeniticstainlesssteelinCNCturningunder conventionalcoolingcondition.Taguchimethodhas beenemployedintheoptimizationofcutting parameters-suchasspeed,feedanddepthofcut.The turningexperimentsunderconventionalcoolingwere plannedasperTaguchisL9orthogonalarray(O.A.) whichisdesignedwiththreelevelsofturning parameters.TheAnalysisofMeans(ANOM)and AnalysisofVariance(ANOVA)werecarriedoutto determinetheoptimalparameterlevelsandobtainthe levelofimportanceofthecuttingparameters, respectively.Validationtestswithoptimallevelsof parameterswereperformedtodemonstratethe effectiveness of Taguchi optimization. The optimization resultsrevealedthatfeedisthesignificantparameter for minimizing the surface roughness, whereas depth of cutplaysimportantroleinmaximizingthehardness. Alsoacomprehensiveanalysishasbeenmadeto understandthenatureofdeformationbeneaththe turnedsurfaceandthicknessofmachiningaffected zone (MAZ). KeywordsAusteniticStainlessSteelAISI316,CNC Turning,Conventionalcoolingcondition,TaguchiMethod, Surface Roughness, Surface Hardness, ANOVA. 1. INTRODUCTION Austeniticstainlesssteelisoneofthemost importantengineeringmaterialswithwidevarietyof applications.Thismaterialisattractivebecauseofits propertiessuchashighhardness,toughness,yield strength,excellentductility,superiorresistanceto corrosion and oxidation, compatibility in high temperature and high vacuum. But these materials are very difficult to machine than carbon and low alloy steels because of their highstrength,poorthermalconductivityandahigher degree of ductility andwork hardenability [1,2, 4,5].The problemssuchaspoorsurfacefinishandhightoolwear arecommonwhilemachiningthesematerials[1]. Therefore,attemptshavebeenmadetoimprovethe machinabilityofausteniticstainlesssteelbyaddingfree machiningelementslikelead,sulfur,telluriumand selenium[7].Inthemachiningprocess,oneofthemost noteworthymechanicalrequirementsofthecustomersis surfacefinish.Toimprovethefatiguestrength,corrosion resistance,aestheticappealandtribologicalpropertiesof theproduct;asensiblygoodsurfacefinishisrequired. Nowadays,fabricatingcommercialventuresare particularlyconcernedwithdimensionalprecisionand surface completion. Our main objective is to study effect of cuttingparametersonAISI316austeniticstainlesssteel workpiecesurfaceroughnessandhardnessbyemploying designofexperimentsviaTaguchimethodsandAnalysis ofVariance(ANOVA)usingtungstencarbidetoolonCNC lathe under wet environment. Austenitic grade of stainless steelisoneofthevastlyconsumedsteel(70percentage) universally [4, 8]. The austenitic alloys used most often are thoseoftheAISI300series.Grade316isthestandard molybdenum-bearinggrade.Molybdenumgives316 preferablecorrosionresistancepropertiesovercrevice corrosioninchlorideenvironment.Ithasexcellent formingandweldingcharacteristics.AISI316austenitic stainlesssteelhaswiderangeofapplicationssuchasitis usedinchemicalprocessingequipment;aerospace components;forfood,dairyandbeverageindustries;for surgicalembedsinsideofthethreateningenvironmentof thebody;indeckcomponentsforboatsandshipsin marine environment; and for heat exchangers [3, 4]. 1.1 Taguchi Parameter Design In the early 1950s, Dr. Genichi Taguchi, the father ofQualityEngineering,introducedtheconceptofoff-line QualitycontroltechniquesknownasTaguchiparameter design[9].Off-lineQualitycontroltechniquesarethose activitiesperformedduringtheproduct(orprocess) designanddevelopmentphases.Taguchiparameter designisbasedontheconceptoffractionalfactorial design[10].Taguchidesignisapowerfulmethodology designedforfindingtheoptimumlevelsofthecontrol processparameterstomaketheproductorprocess impervioustothenoisefactors[11,12].TheTaguchi methodisbasedonmatrixexperiments,andthese International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 02 Issue: 04 | July-2015www.irjet.netp-ISSN: 2395-0072 2015, IRJET.NET-All RightsReserved Page 1454 experimentalmatricesarespecialorthogonalarrays (OAs),whichallowthesimultaneouseffectsofseveral process parameters to be studied [11, 12]. The purpose of conducting an orthogonal experimentation is to determine themostfavourablelevelforeverysingleprocess parameterandtodeterminetherelativesignificanceof individualparameteronperformancecharacteristic[11, 12].Classicalexperimentaldesignmethodsaretoo intricate,time-consumingandnotsimpletouse.Alarge numberoftestshavetobeperformedwhenmore parametersareinvolved.Toresolvethisproblem,the Taguchiprincipleusesaspecialpurposedesignof orthogonal arrays (OAs) to study the complete parameter spacewithonlyalessernumberofexperimentations. Taguchiconveysthatsignal-to-noise(S/N)ratioisthe mainobjectivefunctionfororthogonalmatrixtrials[11, 12].Thesignal-to-noiseratioisusedtomeasure performancecharacteristicsandshowsthedegreeof expectableperformanceintheexistenceofnoisefactors. TaguchicategorizestheS/Nratiointotypessmallerthe better,largerthebetterandnominalthebestbased onthenatureofobjectivefunction.TheAnalysisof Means(ANOM)establishedontheS/Nratioisusedto decidethebestlevelsoftheprocessparametersin Taguchisdesignofexperiment.Theoptimallevelfora processparameteristhelevelofoutcomesinthe maximumvalueofsignal-to-noiseratiointhe experimentalregion.TheAnalysisofVariance(ANOVA) inTaguchiconstraintdesigncreatesthecomparative significanceofprocessparametersandwasperformedon theS/Nratiotofindthecontributionofeachprocess parameter [11, 12]. 2. EXPERIMENTAL DETAILS 2.1 Materials and Methods Used Turningisapopularmaterialremovalprocessin whichacuttingtoolremovesunwantedouterlayerof materialfromtherotatingcylindricalworkpiece.The ComputerNumericalControlled(CNC)machineplaya critical function in currentmachining industry to improve an item quality and profitability [13]. Theworkpiecematerialselectedforinvestigation isAISI316austeniticstainlesssteelrod.Inthepresent work, we have used a round workpiece of dimensions 360 mmlengthand30mmdiameter.Thechemical composition,mechanicalandphysicalpropertiesofAISI 316austeniticstainlesssteelareshowninTable-1and Table-2 respectively. TurningexperimentswereperformedusingCNC Ace Turn Mill Fanuc, lathe type LT-2XLMMC. The lathe is equippedwithmaximumspindlespeedof4000rpmand 11KW.AtoolholderwithageneralspecificationGCLNR 2020MK12wasusedinthisexperiment.Thecoated carbideinsertofISOgeometryCNMG120416withchip breaker were used throughout the experiment. The insertshaveCVDcoatingofTiNoncementedcarbidesubstrate, whichconsistsofthick,moderatetemperature,chemical vapordeposition(MT CVD)of TiNforheatresistanceand lowcoefficientoffriction.Theturningexperimentswere conductedunderconventionalcoolingconditionwhere soluble oil (1:20) was used as a coolant. Theexperimentsareconductedwiththree controllable3-levelfactorsandtworesponse variables.Table-3presentsthreecontrolledfactorsofthe cuttingspeed(i.e.,A(m/min)),thefeedrate(i.e.,B (mm/rev)),andthedepthofcut(i.e.,C(mm))withthree levelsforeachfactor.Asperfullfactorialdesigns,33 design can be expressed as a {3 x 3 x 3 = 33} design, where totalof27runsareneeded.Turningexperimentsare conductedfor27setsofcuttingparameterswhichare recordedasperL27orthogonalarray.Afterturning,two qualityobjectivesoftheworkpiecesareselected,that includesthesurfaceroughness( and(m))and micro-hardness (H (HV)). Typically, small values of surface roughnessandtargetvaluesofmicro-hardnessare desirableforthesurfaceintegrityinturningoperations. For27turnedpartssurfaceroughnesstestiscarriedout. Table-4shows27setofcuttingparameterslistedasper L27orthogonalarraywithcorrespondingsurface roughnessvalues.Ninetrialrunsbasedontheorthogonal array L9 are necessary. Nine cutting experimental runs are selectedaccordingtoL9O.A.(orthogonalarray)table. Wirecuttingwascarriedoutforonly9turnedportions amongst27referringtoL9O.A.Thiswasdonetoreduce the cost and time of experimentation. 2.2 Measuring Apparatus Thesurfaceroughnessofthe27turnedsurfaces wasmeasuredwithaMitutoyoSurftestmodelSJ-201P,a portablesurfaceroughnessinstrument.Allthe measurements were carried out with a cutoff length of 0.8 mm,andineachcasetheaverageoffivereadingswas used.Thesurfaceroughnesswasmeasuredtoassessthe qualityoftheturnedsurfacequantitatively.Tomeasure thehardness,thefirststepistowirecuttheturned surfaceoftheroundbar.Andthenmeasurethehardness ofthewirecutspecimenusinghardnesstester.The surfacehardnessof9wirecutspecimenswasmeasured alongthelengthandaroundtheperipherybyapplyinga loadof0.3kgfromthesurfaceofthespecimentothe depthofthespecimen.Theaveragevaluesofsix measurementsforeachspecimenwasrecorded.The hardnessvaluewasusedtoexplaintheeffectofsurface modificationcausedbytheturningprocess.Figure-1and Figure-2exhibitthephotographsofsurfaceroughness measuring device and Vickers hardness tester employed in thepresentwork.Thecalculatedvaluesofsurface roughness and hardness are tabulated in Table-5. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 02 Issue: 04 | July-2015www.irjet.netp-ISSN: 2395-0072 2015, IRJET.NET-All RightsReserved Page 1455 Fig-1:Mitutoyo Surf Test Model SJ-201P Fig -2: Vickers Hardness TesterTable-1: Chemical Composition of Austenitic Stainless Steel (AISI 316) ElementsCSiMnSPCrNiMoCuCoTiVNbFe Wt. (%)0.0580.3491.0800.0190.01316.53610.7692.0860.5590.0790.0090.0140.02068.319 Table-2: Mechanical and Physical Properties of Austenitic Stainless Steel (AISI 316) Table-3:Control factors and their levels TABLE-4: O.A. L27 of the experimental runs with measured surface roughness PropertyValue Yield strength (Mpa)290 Tensile strength (Mpa)580 Hardness (HB)140-160 Density(g/cm)8 Poissons Ratio0.25 Elongation at break50% Modulus of elasticity (Gpa)193 CodeControl Factor Level 123 ASpeed, (m/min)120150180 BFeed, (mm/rev)0.200.250.30 CDepth of Cut, (mm)0.51.01.5 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 02 Issue: 04 | July-2015www.irjet.netp-ISSN: 2395-0072 2015, IRJET.NET-All RightsReserved Page 1456 Trail No. Speed, A (m/min) Feed, B (mm/rev) Depth of Cut, C (mm) Surface Roughness Ra (m)Rz(m) 11200.200.51.376.394 21200.201.01.4346.700 31200.201.51.4426.798 41200.250.52.019.372 51200.251.02.039.458 61200.251.51.898.790 71200.300.52.1710.075 81200.301.02.2910.706 91200.301.52.310.700 101500.200.51.255.766 111500.201.01.4666.852 121500.201.51.356.330 131500.250.51.687.746 141500.251.01.778.176 151500.251.51.486.876 161500.300.52.1529.934 171500.301.01.868.712 181500.301.51.989.230 191800.200.51.095.030 201800.201.01.185.478 211800.201.51.4466.058 221800.250.51.797.918 231800.251.01.839.612 241800.251.51.829.912 251800.300.51.978.986 261800.301.02.29610.024 271800.301.52.089.608 TABLE-5:Orthogonal array L9 of the experimental runs withMeasured Responsesand Corresponding S/N Ratios Sl. no. Speed (m/min) Feed (mm/rev) DOC (mm) Ra (m) Rz (m) Hardness H (Hv) S/N Ratio for (dB) S/N Ratio for (dB) S/N Ratio for Hardness (dB) 11200.20.5 1.376.394208-2.73441-16.115546.3613 21200.251.0 2.039.458224-6.14992-19.516047.0050 31200.301.5 1.898.790266-5.52924-18.879848.4976 41500.21.0 1.4666.852239-3.32268-16.716347.5680 51500.251.5 1.486.876248-3.40523-16.746747.8890 61500.300.5 2.1529.934206-6.65685-19.942546.2773 71800.21.5 1.4466.058267-3.20337-15.646648.5302 81800.250.5 1.797.918212-5.05706-17.972346.5267 91800.301.0 2.29610.024 221-7.21944-20.020846.8878 3. RESULTS AND DISCUSSIONS 3.1 ANOM and ANOVA International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 02 Issue: 04 | July-2015www.irjet.netp-ISSN: 2395-0072 2015, IRJET.NET-All RightsReserved Page 1457 Inthepresentwork,thegoalistoreducethe surfaceroughnessandtoincreasethehardnessof turningprocess.Hence,smallerthebettertype classificationforsurfaceroughnessandlargerthe bettertypeclassificationforhardnesshavebeen selected.TheS/Nratioconnectedwiththetarget capacitiesforeachtrialoftheorthogonalarrayisgiven by: = 10 log10 ( )(1) = 10 log10 ( )(2) = 10 log10 ( )(3) TheS/Nratiosforeachtrialoforthogonal arrayweredeterminedusingEqs.(1),(2)and(3)and are presented in Table-5. TheAnalysisofMeans(ANOM)basedonthe S/Nratiowasusedtodeterminetheoptimallevelsof process parameters [11]; the results of ANOM for surface roughness( ),surfaceroughness( )andhardness (H)arerepresentedinTables6,7and8respectively. The parameter level that corresponds to highest value of S/Nratioisthebestlevelofcombination.Theideal parameter setting is found to be A2, B1, C3 for minimum surfaceroughness( and );andA3,B1,C3for maximum hardness. TABLE-6:ANOM forvalues based on S/N Ratio Parameter Code LevelsOptimum Level 123 A -4.805-4.462-5.1602 B -3.087-4.871-6.4691 C -4.816-5.564-4.0463 TABLE-7:ANOM for Rzvalues based on S/N Ratio Parameter Code LevelsOptimum Level 123 A -18.17-17.80-17.882 B -16.16-18.08-19.611 C -18.01-18.75-17.093 TABLE-8:ANOM for Micro Hardness based on S/N Ratio Parameter Code LevelsOptimum Level 123 A 47.2947.2447.313 B 47.4947.1447.221 C 46.3947.2248.313 TheAnalysisofVariance(ANOVA)basedon S/Nratiohasbeenemployedtostudytheeffectsof turningprocessparametersquantitatively[11,12].The summaryofANOVAresultsofsurfaceroughness( ), surface roughness ( ) and hardness are givenTables 9, 10and11,respectively.Itcanbeobservedfromthe ANOVAtablesthatfeed(75.76%)incaseofandfeed (77.43%)incaseofmakemajorcontributionsin minimizingthesurfaceroughness;whereasspeedand depthofcuthaveleasteffectsinminimizingthesurface roughness. The depth of cut (90.93%) play major role in maximizing the hardness, whereas speed and feed do not show noticeable effects in controlling the hardness. TABLE-9: ANOVA for Ra values based on S/N Ratio Parameter Code DFAdj SSAdj MS % Contribution A2 0.73170.36583.23 B2 17.17108.585575.76 C2 3.45701.728515.25 Error8 1.30500.65255.76 Total26 22.664711.3323100.00 TABLE-10: ANOVA for Rz values based on S/N Ratio Parameter Code DFAdj SSAdj MS % Contribution A20.22630.11320.97 B217.97788.988977.43 C24.14942.074717.87 Error80.86320.43163.73 Total2623.216711.6084100.00 TABLE-11:ANOVA for Micro Hardness based on S/N Ratio Parameter Code DFAdj SSAdj MS % Contribution A2 0.007510.003760.12 B2 0.196910.098463.20 C2 5.588262.7941390.93 Error2 0.353050.176525.75 Total8 6.145733.07287100.00 3.2. Main Effect Plots Analysis Theanalysisismadewiththeassistanceof softwarepackageMINITAB-16[14].Themaineffectof theplotisshowninFig.3,4and5.Itdemonstratesthe variation of every single response with three parameters i.e.speed,feedrateanddepthofcutdistinctly.Inthe plot, x-axis signifies the value of each process parameter andy-axissignifiestheresponsevalue.Themeanofthe responseisindicatedbyhorizontalline.Themaineffect plotsareutilizedtodeterminetheoptimaldesign conditionstogettheidealsurfacefinishandhardness. As indicated by main effect plots, the ideal conditions for leastsurfaceroughness( )arespeedatlevel2 (150m/min),feedrateatlevel1(0.20mm/rev)and depthofcutatlevel3(1.5mm);theidealconditionsfor mostextremehardnessarespeedatlevel3(180 m/min), feedrate at level 1 (0.20 mm/rev) and depth of cut at level 3 (1.5mm). International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 02 Issue: 04 | July-2015www.irjet.netp-ISSN: 2395-0072 2015, IRJET.NET-All RightsReserved Page 1458 Fi g-3: Effect of turning parameters on Surface Roughness ( ) Fig-4: Effect of turning parameters on Surface Roughness ( ) Fig-5: Effect of turning parameters on Hardness 3.3 Machining Affected Zone (MAZ) Micro-hardnessismeasuredbytaking6micro-indentations diagonally along the cross section of turned surface.ThisdistinguishesbetweenMAZandthebulk materialandasteepmicro-hardnessgradienthasbeen observed. Fig. 6 shows the typical micro-hardness profile ofoneofthesamplesusedintheexperiment.Micro-hardnessofallthespecimenvariesinbetween268to 160 and depth of MAZ lies between 100 to 120 m. Fig-6: Micro indentation along MAZ 3.4. Verification Test of Optimal Result Afterselectingtheoptimallevelofprocess parameters,thelaststepistopredictandconfirmthe performancecharacteristics.Thepredictedoptimum value of S/N ratio (is given by [10] : (4) where istheS/Nratioofoptimumleveliof parameterj,mistheoverallmeanofS/Nratioandpis thenumberofparametersthataffectthemachinability characteristics. Inordertojudgetheclosenessofthe experimentalvalueofS/Nratio( )withthatofthe predictedvalue),theconfidenceinterval(CI)of ( )fortheoptimumprocessparameterlevel combinationat95%levelisdetermined.TheCIisgiven by [10, 11]: (5) whereistheFvaluefor95%confidenceinterval; isthedegreesoffreedomforerror;isthemean square of error; =,N = Total trial number in orthogonalarrayand=Degreesoffreedomofp factors;is the confirmatory test trial number. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 02 Issue: 04 | July-2015www.irjet.netp-ISSN: 2395-0072 2015, IRJET.NET-All RightsReserved Page 1459 Here, the best combination values of the process parameters obtained through Taguchi optimization were set, and the workpieces of the identical lots were turned. TheexperimentalvalueofS/Nratio( )and predictedvalueofS/Nratio( )werecompared. Table-12givestheconfirmatorytestresults,andfrom thetableweseethatthepredictionerror,i.e., ( )iswithintheCIvalue,indicatingthe adequacyofthesurfaceroughnessandhardness additivemodels.Thebestcombinationsofprocess parametersforminimizingsurfaceroughnessandfor maximizinghardness,alongwiththecorresponding optimal values are given in Table-13. TABLE-12:Results of Confirmatory Tests Performance measures RaRzHardness Levels (A, B, C)2, 1, 32, 1, 33, 1, 3 Experimental value 1.35 m6.330 m267 Hv S/N experimental ( ),dB-2.60668-16.028148.5465 S/N predicted ( ),dB -1.977-15.1548.53 Prediction error, dB( ) 0.629680.8781-0.0165 Confidence interval value (CI), dB +3.6629+2.9791+1.9052 TABLE-13:Optimal Parametersetting and the Corresponding Optimal Values Response Optimal process parameter setting Speed (m/min) Feed (mm/rev) DOC (mm) Optimal value Surface roughness (Ra) 1500.201.51.35 m Surface roughness (Rz) 1500.201.56.330m Hardness1800.201.5267 Hv 4. CONCLUSIONS Thefollowingaretheconclusionsdrawnbased ontheexperimentalinvestigationconductedonturning AISI316austeniticstainlesssteelusingCarbideinsert underconventionalcoolingconditionsatthreelevelsby employingTaguchitechniquetodeterminetheoptimal level of process parameters. Analysisofvariance(ANOVA)demonstratesthatthe feedratehasthehighestinfluenceonsurface roughness.RaisinfluencedbyfeedratewithPCRof 75.76%.RzisinfluencedbyfeedratewithPCRof 77.43%.Nevertheless,thedepthofcutandcutting speedhavenegligibleinfluenceonthesurface roughness at the reliability level of 95%. ANOVAdemonstratesthatthedepthofcuthasthe highest influence on hardness. Hardness is influenced bydepthofcutwithPCRof90.93%.Cuttingspeed andfeedratehavenegligibleinfluenceonthe hardness.Theoptimalcombinationprocessparametersfor minimumsurfaceroughness(RaandRz)isobtained at 150 rpm, 0.2 mm/rev and 1.5mm. Theoptimalcombinationofprocessparametersfor maximum hardness is obtained at 180 m/min cutting speed, 0.3 mm/rev feed, 1.5 mm depth of cut. Thehardnessvaluesofthemicro-hardnessprofile revealedthatthehardnessoftheturnedspecimen goesondecreasingfromthesurfacetothedepthof the specimen. Theverificationtestshavededucedthattheresults obtained are accurate up to 95% of confidence level. ItisalsopredictedthatTaguchimethodisabest methodforoptimizationofvariousmachining parameters as it reduces the number of experiments. ACKNOWLEDGMENT Theauthorswouldliketoexpresstheir gratitudetoMr.Adivesh.K.ofKarnatakaOriginal EquipmentManufacturers(KOEM),Gadag,Karnataka, India for extending their laboratory facilities to carry out theexperimentsandfortheirvaluablesuggestions during its accomplishment. REFERENCES [1]IhsanKorkut,MustafaKasap,IbrahimCiftci, UlviSeker,Determinationofoptimumcutting parameters during machining of AISI 304 austenitic stainlesssteel,MaterialsandDesign25,2004;pp. 303305. [2]IlhanAsilturk,SuleymanNeseli,Multiresponse optimizationofCNCturningparametersvia Taguchimethod-basedresponsesurfaceanalysis, Measurement 45, 2012; pp. 785794. [3]Kaladhar,M.,VenkataSubbaiah,K.,ShrinivasRao, Ch.,Determinationofoptimumprocess parametersduringturningofAISI304Austenitic stainlesssteelusingTaguchimethodandANOVA, International journal of Lean Thinking, 2012; Vol. 3, Issue1. [4]AtulP.Kulkarni,GirishG.Joshi,VikasG.Sargade, DryturningofAISI304austeniticstainlesssteel usingAlTiCrNcoatedinsertproducedbyHPPMS technique, International Conference on Design and Manufacturing, 2013; pp. 737-746. [5]MalekHabak,JeanLouLebrun,Anexperimental studyoftheeffectofhigh-pressurewaterjet assisted turning (HPWJAT) on the surface integrity International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 02 Issue: 04 | July-2015www.irjet.netp-ISSN: 2395-0072 2015, IRJET.NET-All RightsReserved Page 1460 InternationalJournalofMachineTools& Manufacture 51(9), 2011; pp.661669. [6]AnthonyXavior,M.,Adithan,M.,Determiningthe influenceofcuttingfluidsontoolwearandsurface roughnessduringturningofAISI304austenitic stainlesssteel,Journalofmaterialsprocessing technology 209, 2009; pp. 900909. [7]Akasawa,T.,Sakurai,H.,Nakamura,M.,Tanaka,T., Takano,K.,Effectsoffree-cuttingadditivesonthe machinabilityofausteniticstainlesssteels,Journal ofMaterialsProcessingTechnology,2003;143144, pp. 6671. [8]OSullivan,D.,Cotterell,M.,Machinabilityof austeniticstainlesssteelSS303,Journalof MaterialsProcessingTechnology,2002;124,pp. 153159. [9]Antony,J.andKaye,M.,ExperimentalQualityA StrategicApproachtoAchieveandImprove Quality,Norwell,Massachusetts,KluwerAcademic Publishers, 1999. [10]Montgomery,D.C.,DesignandAnalysisof Experiments, 4th edition, 1997; John Wiley & Sons, New York. [11]Phadke,M.S.,QualityEngineeringUsingRobust Design,1989;Prentice-HallInternational, Englewood Cliffs, New Jersey. [12]Ross,P.J.,TaguchiTechniquesforQuality Engineering,2ndEdition,1996;McGraw-Hill,New York. [13]Tian-SyungLan.,TaguchioptimizationofMulti objectiveCNCmachiningusingTOPSIS, InformationTechnologyJournal,2009;8(6):pp. 917-922. [14]MinitabInc.,MinitabUserManual,Version16, 2011; State College, Pennsylvania, USA. [15]Gaitonde,V.N.,Karnik,S.R.,Selectionofoptimal processparametersforminimizingburrsizein drillingusingTaguchi'squalitylossfunction approach,JournaloftheBrazilianSocietyof Mechanical Sciences and Engineering, 2012; Vol. 34, no.3, pp. 238-245. [16]Krishankant,JatinTaneja,MohitBector,Rajesh Kumar,ApplicationofTaguchiMethodfor OptimizingTurningProcessbytheeffectsof MachiningParameters,InternationalJournalof EngineeringandAdvancedTechnology(IJEAT), 2012; ISSN: 2249 8958, Volume-2, Issue-1. [17]SreenivasaMurthy,T.,Suresh,R.K.,Krishnaiah,G., DiwakarReddy,V.,Optimizationofprocess parametersindryturningoperationofEN41B alloysteelswithcermettoolbasedontheTaguchi method,InternationalJournalofEngineering ResearchandApplications(IJERA),2013;ISSN: 2248-9622, Vol. 3, Issue 2 BIOGRAPHIES Mr.PrajwalkumarM.Patilcompleted B.E.(Mechanical)degreein2013 fromTontadaryaCollegeof Engineering,Gadag,Karnataka, IndiaandM.Tech.(ProductDesignand Manufacturing)degreein2015from VisveswarayaTechnological University, Belagavi, Karnataka, India. Mr.RajendrakumarV. KadicompletedB.E.(Industrialand productionengineering)degreein 1996andM.Tech.(Production Management)degreein2003from BEC,Bagalkot,Karnataka,India.Heis currentlyworkingasanAsst. ProfessorintheDepartmentof MechanicalEngineering,Tontadarya CollegeofEngg.,Gadag,Karnataka, India.Hehas12yearsofteaching experience.Hehaspublishedmany researchpapersininternationaland national journals. Dr.SureshT.DundurcompletedB.E. (Mechanical)degreein1984from BEC,Bagalkot,Karnataka,Indiaand M.Sc.(Engg.)inM/cDesignand AnalysisfromREC,Rourkelain1990. HeisalsoawardedPh.D.inMetal Machining,SliplineFieldTheoryfrom NIT,Rourkelain2006.Heisalsoa Lifetime Member in ISTAM, ISTE and a Fellow Member in IE. He is currentlya Professor and Head in theDepartment ofIndustrialandProduction Engineering, BEC, Bagalkot, Karnataka, India.Hehaspublishedmanyresearch papersininternationalandnational journals. Mr.AnilS.PolcompletedB.E. (Mechanical)degreein2010from KLEsMSSCET,Belagavi,Karnataka, IndiaandM.Tech(ProductDesignand Manufacturing)in2012fromVTU, Belagavi,Karnataka,India.Heis currently working as anAsst. Professor intheDepartmentofProductDesign andManufacturing,VTU,Belagavi, Karnataka,India.Hehas2yearsof teachingexperience.Hehaspublished 2 research papers in national journals.


Recommended