+ All Categories
Home > Documents >  Isolation and Identification of Chroococcidiopsis Photosystems

 Isolation and Identification of Chroococcidiopsis Photosystems

Date post: 22-Feb-2016
Category:
Upload: eilis
View: 79 times
Download: 1 times
Share this document with a friend
Description:
 Isolation and Identification of Chroococcidiopsis Photosystems Brian Moran 1 , Stephen Richardson 2 , Li Meng 3 , Brendan Williams 3 , Barry D. Bruce 3 - PowerPoint PPT Presentation
1
Isolation and Identification of Chroococcidiopsis Photosystems Brian Moran 1 , Stephen Richardson 2 , Li Meng 3 , Brendan Williams 3 , Barry D. Bruce 3 1. Department of Chemical and Biomolecular Engineering, Vanderbilt University; 2. Department of Biochemistry,Maryville College; 3. Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville Photosystem Isolation By Sucrose Ultracentrifugation Sucrose Gradients Chroococcidiopsis T. Elongatus 3A) 3B) Method: Thylakoid membranes of Chroococcidiopsis and T. elongatus (0.2 ug/uL) were solubilized with 1% DM for 1.5 hours at 25°C before loading on to sucrose gradients (10%--30%) with 0.05% DM and ultra- centrifuging for 16 hours at 20000 RPM . 3A) Two bands (1-2) were taken from the T. elongatus sucrose gradient to run on a Blue NativePAGE gel (3C). 3B) Five bands (3-7) were taken from the Chroococcidiopsis sucrose gradient (3C). Blue NativePAGE of Sucrose Gradient Samples Results: 3C) The labels, TE and Ch, correspond to the non- centrifuged thylakoid membranes of T. Elongatus and Chroococcidiopsis, respectively. The labels, 1-2 and 3-7, correspond to 3A and 3B (the same in Figure 4A). The upper gel has been stained. Lane 1 has no PSI trimer (1068 kDa) while lane 2 has a dark band corresponding to PSI trimer. Lane 3 does not have the middle large green band (~890 kDa) while 6 and 7 have little of the lowest large green band (~420 kDa). None of the Chroococcidiopsis sucrose samples contain a high degree of the top large green band (~1180 kDa). This contrasts the results from 2A, which had the top large green band (solubilized with 1.0% DM). 3D) A separate BN-PAGE gel tests the same variables as the sucrose gradient prep (Method on left) except the membrane samples were not ultracentrifuged. The labels, 10%, 20%, 30%, correspond to the sucrose percentage in the sample. These lanes all have the top large green band. It is likely that the act of centrifugation and sedimentation results in the loss of this band. Absorption Spectrum of Isolated Photosystems Identifying Photosystems by 2-D SDS-PAGE Conclusions and Future Directions Acknowledgements Abstract Introduction Photosystem I (PS I) is a protein complex that transfers electrons from plastocyanin or cytochrome c to ferredoxin in cyanobacteria in response to photo-excitation. Understanding the organization and structure of PS I will lay the ground work for utilizing it as a part of solar energy devices. Different from plant PS I, cyanobacterial PS I was believed to be exclusively trimer, until a recent report of a tetramer form of PS I in Anabaena. Chroococcidiopsis photosystems are studied here considering their vitality in various extreme environments. Blue-Native PAGE and sucrose gradient ultra-centrifugation are used as the main methods to analyze and isolate different photosystems. The isolated Photosystems from the cells are further identified by SDS-PAGE and spectral analyses. Thermosynechococcus elongatus (TE) is used as a control and to identify the photosystems in Chroococcidiopsis. Our results indicate a photosystem complex that may be a PS I tetramer/trimer with a higher molecular weight than TE PS I trimer. This new organization of PS I will shed light on the understanding of the evolutionary significance of PS I monomerization and oligomerization. Hopefully, with a better understanding of Chroococcidiopsis photosystems, these Photosystems can be utilized to create better solar energy apparatus. Conclusions: 1.Chroococcidiopsis has a Photosystem I complex, potentially a trimer or tetramer, that is larger than TE PS I trimer; 2.The majority of Chroococcidiopsis photosystems are Photosystem I; 3.The Chroococcidiopsis trimer/tetramer is sensitive to high concentrations of detergent (DM) and ultra- centrifugation force; 4.Sucrose gradient can separate different photosystem mixtures with phycocyanin attached but not for intact higher order tetramer/trimer complexes. 5.Phycocyanin is attached to the Chroococcidiopsis photosystem samples. 6.Chroococcidiopsis may have more than three states (monomer, dimer, trimer/tetramer) of PS I. Future directions and study: Chroococcidiopsis PS I trimer/tetramer, dimer and monomer need to be isolated and purified further to study the properties of the molecular complex. 1.Chroococcidiopsis PS I trimer/tetramer isolation using moderate methods such as Chromatography; 2.Componental analysis of the different forms of PS I using Mass Spectrometry; 3.Fluorescence spectra analysis of different PS I to characterize the pigment components; 4.Dynamic equilibrium assay of phycocyanin PS I association; 5.Stability assay of Chroococcidiopsis PS I; 6.Electron transport rates assay of Chroococcidiopsis PS I. ffect of Varying DM Concentration Result: 2A) Three large green bands (PSI or PSII) and at least six other faint bands were separated (ref. Fig 7) for the 0.6, 0.8, and 1.0% DM. Yet, for the 2.0, 3.0, and 4.0% the top large green band mostly disappears. Also, for those higher DM concentrations, the middle large green band becomes larger. This suggests that with higher DM, the multicomplex photosystem disassociates into smaller photosystem complexes. 2B) Three large green bands and one blue band were detected. The concentration of DM did not have a drastic effect on the T. Elongatus. The large green bands do not match the size of the 1 2 3 4 5 6 7 TE Ch kDa 356 1068 700 356 1068 700 3D) Ch 10% 20% 30% DM% .6 .8 1 2 3 4 .6 .8 1 2 3 4 Method: The thylakoid membranes (prepared from fresh cells) of Chroococcidiopsis and T. elongatus were each solubilized for 1.5 hours at 25°C in six concentrations (0.6, 0.8, 1.0, 2.0, 3.0, 4.0 %) of the detergent n-dodecyl-β-- maltopyranocide (DM). The samples were loaded on a 4-16% acrylamide Blue NativePAGE gel. As the consumption of energy continues to increase worldwide (now greater than 425 X 10 18 J), the demand for novel and renewable energy capture devises has never been higher. One rapidly developing area of energy research is in solar energy utilization and bioelectric hybrid systems. These systems involve the union of biological photosynthetic protein complexes (photosystems) and electrically charged metal scaffolding, which, when organized in a particular orientation, allows them to together create the movement of electrons and thus electric current. Photosystems from a cyanobacterial species, Thermosynechococcus elongates, have previously been studied for their potential in bioelectric devices because the species is well characterized and has an available crystal structure. Typically, T. elongates photosystem I (PS I) exists as a trimer (depicted in Figure 1A). Until recent report of a tetramer in Anabaena, it was believed that all cyanobacterial photosystems existed exclusively as trimers. 1A 1B 1A)T.E. Trimer with PsaL shown. 1B) Chroococcidiopsis microscopic image 2A) Chroococcidiopsis 2B) T. elongatus 3C) j b c d e g h i k m a f l 5A) TE Ch 4B) PSI Trimer 4A) Isolated Sucrose Gradient Samples 4C) Phycocyanin * * * * * * Another genus of cyanobacteria that may exist as a tetramer and has recently become of interest in the science of bioelectrics is Chroococcidiopsis (Fig 1B). This organism is of particular interest because of its ability to survive a wide range of extreme environments that are uninhabitable to most other life forms. The goal of this study is to isolate photosystem I of Chroococcidiopsis and characterize the complex through various experimental techniques such as Blue NativePAGE and SDS Page electrophoresis, sucrose gradient ultracentrifugation, and Absorbance spectrum analysis. Using these methods to better understand PS I of Chroococcidiopsis, hopefully will determine whether this protein complex could be used in future bioelectric device research and, ultimately, expedite the introduction of similar devices as viable sources of clean, renewable energy in the future. 1. Phillips, Tony. Greening of the Red Planet. NASA Science News. [Online]. http://science.nasa.gov/science-news/science-at-nasa/2001/ast26jan_1/ 2. Lavan, David and Jennifer N. Cha. Approaches for biological and biomimetic energy conversion. Proceedings of the National Academy of Sciences . 2006, 103(14): 5251- 5255. 3. Watanabe, Mai et al. Novel Supercomplex Organization of Photosystem I in Anabaena and Cyanophora paradoxa. Plant and Cell Physiology. 2010, 52(1): 162-168. 4. Lewis, Nathan S and Daniel G. Nocera. Powering the planet: Chemical Challenges in Solar Energy Utilization. Proceedings of the National Academy of Science. 2006, 103(43): 15729- 15735. 5. Mai Watanabe , Masako Iwai, Rei Narikawa and Masahiko Ikeuchi. Plant Cell Physiology. 2009, 50(9): 1674–1680 Special thanks to the National Science Foundation and the funding of the TN-SCORE Research Experience for Undergraduates (NSF EPS-1004083). Method: To further characterize the photosystem components of Chroococcidiopsis, bands from Blue NativePAGE separation (Fig 5A) were excised and subjected to separation via SDS-PAGE Gel electrophoresis and subsequent silver staining. Results: Figure 5B shows the sample protein separations compared to the T. elongatus purified trimer control. The banding patterns in samples “a,” “e,” “f,” “g,” “h,” “k,” and “l” are consistent with the protein fragments in PS I (noted by blue asterisks), while the banding in samples “c,” “d,” “i,” j,” and “m” are consistent with the expected fragment sizes of PS II (noted by red asterisks). 1A
Transcript
Page 1:  Isolation and Identification of  Chroococcidiopsis  Photosystems

 Isolation and Identification of Chroococcidiopsis PhotosystemsBrian Moran1, Stephen Richardson2, Li Meng3, Brendan  Williams3, Barry D. Bruce3

1. Department of Chemical and Biomolecular Engineering, Vanderbilt University; 2. Department of Biochemistry,Maryville College; 3. Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville

Photosystem Isolation By Sucrose Ultracentrifugation

Sucrose Gradients

Chroococcidiopsis

T. Elongatus3A)

3B)

Method:Thylakoid  membranes  of  Chroococcidiopsis and T. elongatus (0.2 ug/uL) were solubilized with  1%  DM  for  1.5  hours  at  25°C  before loading  on  to  sucrose  gradients  (10%--30%) with 0.05% DM and ultra-centrifuging  for 16 hours at 20000 RPM . 

3A)  Two  bands  (1-2) were  taken  from  the T. elongatus sucrose  gradient  to  run  on  a  Blue NativePAGE gel (3C). 3B)  Five  bands  (3-7)  were  taken  from  the Chroococcidiopsis sucrose gradient (3C).

Blue NativePAGE of Sucrose Gradient Samples

Results:3C)  The  labels,  TE  and  Ch, correspond    to  the  non-centrifuged  thylakoid membranes of T. Elongatus and Chroococcidiopsis,  respectively. The  labels,  1-2  and  3-7, correspond  to    3A  and  3B  (the same  in  Figure  4A).    The upper gel has been stained. Lane 1 has no  PSI  trimer  (1068  kDa)  while lane  2  has  a  dark  band corresponding  to  PSI  trimer. Lane  3  does  not  have  the middle  large  green  band  (~890 kDa) while 6 and 7 have little of the  lowest  large  green  band (~420  kDa).  None  of  the Chroococcidiopsis sucrose samples  contain  a  high  degree of  the  top  large  green  band (~1180  kDa).  This  contrasts  the results  from  2A, which  had  the top  large  green  band (solubilized with 1.0% DM).

3D)  A  separate  BN-PAGE  gel  tests  the  same variables  as  the  sucrose  gradient  prep    (Method on  left)  except  the membrane  samples were  not ultracentrifuged.  The  labels,  10%,  20%,  30%, correspond  to  the  sucrose  percentage  in  the sample.  These  lanes  all  have  the  top  large  green band. It is likely that the act of centrifugation and sedimentation results in the loss of this band.

Absorption Spectrum of Isolated Photosystems

Identifying Photosystems by 2-D SDS-PAGE

Conclusions and Future Directions

Acknowledgements

Abstract

Introduction

Photosystem I (PS I) is a protein complex that transfers electrons from plastocyanin or cytochrome c to ferredoxin in cyanobacteria  in response to photo-excitation. Understanding the organization and  structure  of  PS  I will  lay  the  ground work  for  utilizing  it  as  a  part  of  solar  energy  devices. Different from plant PS I, cyanobacterial PS I was believed to be exclusively trimer, until a recent report of a tetramer form of PS I  in Anabaena. Chroococcidiopsis photosystems are studied here considering their vitality in various extreme environments. Blue-Native PAGE and sucrose gradient ultra-centrifugation are used as the main methods to analyze and isolate different photosystems. The isolated Photosystems from the cells are further identified by SDS-PAGE and spectral analyses. Thermosynechococcus elongatus (TE)  is  used  as  a  control  and  to  identify  the  photosystems  in Chroococcidiopsis. Our results indicate a photosystem complex that may be a PS I tetramer/trimer with a higher molecular weight than TE PS I trimer. This new organization of PS I will shed light on the understanding of  the evolutionary  significance of PS  I monomerization and oligomerization. Hopefully, with  a  better  understanding  of Chroococcidiopsis  photosystems,  these  Photosystems can be utilized to create better solar energy apparatus.

Conclusions:1.Chroococcidiopsis has a Photosystem I complex, potentially a trimer or tetramer, that is larger than TE PS I trimer;2.The majority of Chroococcidiopsis photosystems are Photosystem I;3.The Chroococcidiopsis trimer/tetramer  is  sensitive  to  high  concentrations  of detergent (DM) and ultra-centrifugation force;4.Sucrose  gradient  can  separate  different  photosystem  mixtures with phycocyanin attached but not for intact higher order tetramer/trimer complexes.5.Phycocyanin is attached to the Chroococcidiopsis photosystem samples.6.Chroococcidiopsis may  have  more  than  three  states  (monomer, dimer, trimer/tetramer) of PS I.

Future directions and study: Chroococcidiopsis PS  I  trimer/tetramer, dimer and monomer need  to be  isolated and purified further to study the properties of the molecular complex.1.Chroococcidiopsis PS  I  trimer/tetramer  isolation  using  moderate  methods  such  as Chromatography;2.Componental analysis of the  different forms of PS I using Mass Spectrometry;3.Fluorescence  spectra  analysis  of  different  PS  I  to  characterize  the  pigment components;4.Dynamic equilibrium assay of phycocyanin PS I association;5.Stability assay of Chroococcidiopsis  PS I;6.Electron transport rates assay of Chroococcidiopsis PS I.

Effect of Varying DM ConcentrationResult:2A) Three large green bands (PSI or PSII) and at least six other faint bands were separated (ref. Fig  7)  for  the  0.6,  0.8,  and  1.0% DM.  Yet,  for the 2.0, 3.0, and 4.0% the top large green band mostly  disappears.  Also,  for  those  higher  DM concentrations,  the  middle  large  green  band becomes larger. This suggests that with higher DM,  the  multicomplex  photosystem disassociates  into  smaller  photosystem complexes.

2B)  Three  large  green  bands  and  one  blue band were detected. The concentration of DM did  not  have  a  drastic  effect  on  the  T. Elongatus. The large green bands do not match the  size  of  the  large  green  bands  in Chroococcidiopsis.

1 2 3 4 5 6 7TE   Ch

kDa

356

1068700

356

1068

700

3D)   Ch  10%  20%  30%

DM%     .6   .8   1    2   3    4   .6  .8  1    2    3   4

Method:The  thylakoid  membranes  (prepared  from  fresh cells)  of Chroococcidiopsis  and T. elongatus were each  solubilized    for  1.5  hours  at  25°C  in  six concentrations    (0.6,  0.8,  1.0,  2.0,  3.0,  4.0 %)  of the  detergent  n-dodecyl-β-ᴅ-maltopyranocide (DM).    The  samples  were  loaded    on  a  4-16% acrylamide Blue NativePAGE gel.

As the consumption of energy continues to  increase worldwide (now  greater  than  425  X  1018  J),  the  demand  for  novel  and renewable energy capture devises has never been higher.    One rapidly  developing  area  of  energy  research  is  in  solar  energy utilization and bioelectric hybrid systems.  These systems involve the  union  of  biological  photosynthetic  protein  complexes (photosystems)    and  electrically  charged  metal  scaffolding, which, when organized  in  a particular  orientation,  allows  them to together create the movement of electrons and thus electric current.  

Photosystems  from  a  cyanobacterial  species, Thermosynechococcus elongates,  have  previously  been  studied for  their  potential  in  bioelectric  devices  because  the  species  is well  characterized  and  has  an  available  crystal  structure.   Typically,  T. elongates  photosystem  I  (PS  I)  exists  as  a  trimer (depicted  in  Figure  1A).    Until  recent  report  of  a  tetramer  in   Anabaena,  it was believed that all cyanobacterial photosystems existed exclusively as trimers.  

1A

1B

1A)T.E. Trimer with PsaL shown. 1B) Chroococcidiopsis microscopic image

2A) Chroococcidiopsis 2B) T. elongatus

3C)

jbc

d

e

gh i

k

m

a f

l

5A)       TE      Ch

4B)                           PSI Trimer

4A)            Isolated Sucrose Gradient Samples 

4C)                       Phycocyanin

***

***

Another genus of cyanobacteria that may exist as a tetramer and has recently  become  of  interest  in  the  science  of  bioelectrics  is Chroococcidiopsis (Fig  1B). This  organism  is  of  particular  interest because of its ability to survive a wide range of extreme environments that  are  uninhabitable  to  most  other  life  forms.      The  goal  of  this study is to isolate photosystem I of Chroococcidiopsis and characterize the  complex  through  various  experimental  techniques  such  as  Blue NativePAGE  and  SDS  Page  electrophoresis,  sucrose  gradient ultracentrifugation,  and  Absorbance  spectrum  analysis.  Using  these methods to better understand PS I of Chroococcidiopsis, hopefully will determine  whether  this  protein  complex  could  be  used  in  future bioelectric device research and, ultimately, expedite the introduction of similar devices as viable sources of clean, renewable energy in the future.  

1.  Phillips,  Tony.  Greening  of  the  Red  Planet.  NASA Science News.  [Online]. http://science.nasa.gov/science-news/science-at-nasa/2001/ast26jan_1/2. Lavan, David and Jennifer N. Cha.   Approaches for biological and biomimetic energy conversion.   Proceedings of the National Academy of Sciences. 2006,  103(14): 5251-5255.3. Watanabe, Mai et al.   Novel Supercomplex Organization of Photosystem  I  in Anabaena and Cyanophora paradoxa.   Plant and Cell Physiology.  2010, 52(1): 162-168.4.  Lewis,  Nathan  S  and  Daniel  G.  Nocera.    Powering  the  planet:  Chemical  Challenges  in  Solar  Energy  Utilization.   Proceedings of the National Academy of Science. 2006, 103(43): 15729- 15735.5. Mai Watanabe , Masako Iwai, Rei Narikawa and Masahiko Ikeuchi. Plant Cell Physiology. 2009, 50(9): 1674–1680 

Special  thanks  to  the  National  Science  Foundation  and  the  funding  of  the  TN-SCORE  Research  Experience  for Undergraduates (NSF EPS-1004083). 

Method:To further characterize the photosystem components of Chroococcidiopsis, bands from Blue NativePAGE separation (Fig 5A) were excised and subjected to separation via SDS-PAGE Gel electrophoresis and subsequent silver staining.Results:Figure 5B shows the sample protein separations compared to the  T. elongatus purified trimer control. The banding patterns in samples “a,” “e,” “f,” “g,” “h,” “k,” and “l” are consistent with the protein fragments in PS I (noted by blue asterisks), while the banding in samples “c,” “d,” “i,” j,” and “m” are consistent with the expected fragment sizes of PS II (noted by red asterisks).

1A

Recommended