Isosceles and Equilateral Triangles
October 31, 2013
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
SWBAT: Apply theorems about the interior and exterior angles of triangles.
HW: Take Home Quiz
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
(2x + 32) = 60 2x = 28
x = 14
(4x - 20) = 60 4x = 80
x = 20
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
5y – 6 = 4y + 12
Equiangular ∆ equilateral ∆
NO = OP = PN
1y - 6 = 12 1y = 18
y = 18
OP = 4(18) + 12 = 84
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
𝑵𝑳 𝑵𝑴 𝑳𝑴
∡𝑳 ∡𝑴 ∡𝑵
𝑶𝑷 𝑶𝑸 𝑸𝑷
∡𝑷 ∡𝑸 ∡𝑶
𝑹𝑻 𝑹𝑺 𝑻𝑺
∡𝑻 ∡𝑺 ∡𝑹
𝑿𝒁 𝑿𝒀 𝒁𝒀
∡𝒁 ∡𝒀 ∡𝑿
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
Thus m ∡G = 22° + 44° = 66°.
m∡J = m ∡G (x + 44) = 3x
44 = 2x x = 22
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
Thus m∡N = 6(8) = 48°.
m∡P = m ∡N (8y – 16) = 6y
2y = 16 y = 8
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
𝑽𝒆𝒓𝒕𝒆𝒙 ∡ = 𝒃𝒂𝒔𝒆 ∡ = 𝒃𝒂𝒔𝒆 ∡ =
𝑽𝒆𝒓𝒕𝒆𝒙 ∡ = x + 15 𝒃𝒂𝒔𝒆 ∡ = 𝒙 𝒃𝒂𝒔𝒆 ∡ = 𝒙
x + 𝟏𝟓 + 𝟐 𝒙 = 180
3x + 15 = 180
3x = 165
x = 55
ANSWER: 𝑽𝒆𝒓𝒕𝒆𝒙 ∡ = 𝟓𝟓 + 𝟏𝟓 = 𝟕𝟎° 𝒃𝒂𝒔𝒆 ∡ = 𝟓𝟓° 𝒃𝒂𝒔𝒆 ∡ = 𝟓𝟓°
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
𝑽𝒆𝒓𝒕𝒆𝒙 ∡ = 𝒃𝒂𝒔𝒆 ∡ = 𝒃𝒂𝒔𝒆 ∡ =
𝑽𝒆𝒓𝒕𝒆𝒙 ∡ = x 𝒃𝒂𝒔𝒆 ∡ = 𝒙 − 𝟔 𝒃𝒂𝒔𝒆 ∡ = 𝒙 − 𝟔
x + 𝟐 𝒙 − 𝟔 = 180
3x - 12 = 180
3x = 192
x = 64 ANSWER: 𝑽𝒆𝒓𝒕𝒆𝒙 ∡ = 𝟔𝟒° 𝒃𝒂𝒔𝒆 ∡ = 𝟔𝟒° − 𝟔 = 𝟓𝟖° 𝒃𝒂𝒔𝒆 ∡ = 𝟔𝟒° − 𝟔 = 𝟓𝟖°
x + 2x - 12 = 180
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
SWBAT: Apply Properties of Isosceles and Equilateral Triangles
HW: Pages 22-23
40
40
x 𝒙 + 𝟒𝟎 + 𝟒𝟎 = 𝟏𝟖𝟎°
x = 100