+ All Categories
Home > Documents > Isozymes of glucosephosphate isomerase (PGI) in fishes of the subclass actinopterygii

Isozymes of glucosephosphate isomerase (PGI) in fishes of the subclass actinopterygii

Date post: 27-Dec-2016
Category:
Upload: zulema
View: 227 times
Download: 8 times
Share this document with a friend
14

Click here to load reader

Transcript
Page 1: Isozymes of glucosephosphate isomerase (PGI) in fishes of the subclass actinopterygii

Comp. Biochem. Physiol. Vol. 84B, No. 4, pp. 575 588, 1986 0305-0491/86 $3.00+0.00 Printed in Great Britain Pergamon Journals Ltd

ISOZYMES OF GLUCOSEPHOSPHATE ISOMERASE (PGI) IN FISHES OF THE SUBCLASS

ACTINOPTERYGII

ZULEMA COPPES

Departamento de Bioquimica y Biofisica, Facultad de Humanidades y Ciencias, Universidad de la Rephblica, Tristan Narvaja 1674, Montevideo, Uruguay

(Received 9 August 1985)

Abstract--1. A compilation of the species of fishes of the subclass Actinopterygii for the study of the PGI isozyme system is given.

2. PGI appears to be codified by more than one locus in fishes; 65% of the species analysed here have two loci for PGI.

3. PGI duplication in fishes and the relationship of isozymes of PGI with temperature and metabolism are discussed.

INTRODUCTION

Phosphoglucose isomerase (PGI: EC5.3.1.9), a dimeric enzyme with a mol. wt of 132,000 (Darnall and Klotz, 1975), catalyses the interconversion of glucose-6-phosphate and fructose-6-phosphate. PGI is an important enzyme in the regulation of carbo- hydrate metabolism since it determines the amount of D-glucose-6-phosphate that enters the glucolytic way (Meijer and Bloem, 1962). In the metabolic process, this enzyme represents the ramification point between the glycolytic or fermentative pathway and the shunt of pentoses.

PGI was discovered by Lohman (1933), and the first electrophoretic variant was detected in mouse erythrocytes (Carter and Parr, 1967) and man (Detter et al., 1968; Fitch et al., 1968). This enzyme has been studied in several groups of vertebrates: mammals, birds, reptiles and frogs (Carter and Parr, 1967; Zaltitis and Oliver, 1967; Detter et al., 1968; Fitch et al., 1968; Saison, 1968; Carter and Yoshida, 1969; De Lorenzo and Ruddle, 1969; Yoshida and Carter, 1969; Andressen, 1970; Ishimoto, 1970; Welch, 1971; Welch et al., 1971; Blackburn et al., 1972; Carter et al., 1972; Nottebohm and Selander, 1972; Webster et al., 1973; McMorris et al., 1973; Mathers et al., 1974; Tilley et al., 1974; Yang et al., 1974; Ralin and Selander, 1979; Dando, 1980; Fisher et al., 1980) and invertebrates (Selander et al., 1970). In these groups of fishes PGI occurs as a single major form, suggesting a single gene control.

In fishes, PGI appears to be codified by more than one locus. The formation of a heterodimeric enzyme such as PGI, by the association of subunits codified by two gene loci, shows us strong evidence of its homology and consequently of the origin of loci through duplication (Avise and Kitto, 1973). The evolutionary potential of duplicated genes was appre- ciated before the molecular and biochemical tech- niques had documented their existence (Avise and Kitto, 1973). According to the point of view formu- lated by Huxley (1942), Lewis (1951) and Stephens (1951), one locus maintains its previous functions and

the other is free to undergo duplications through chromosomic rearrangements and mutations and to assume new functions, frequently similar to those of the original gene.

There are several examples of homologous en- zymes in fishes: creatine kinase (Eppenberger et al., 1971; Fisher and Whitt, 1978; Fisher et al., 1980; Whitt, 1981), lactate dehydrogenase (Whitt et al., 1973a, b; Markert et al., 1975; Whitt et al., 1975; Fisher et al., 1980; Whitt, 1981; Philipp et al., 1983a,b; Coppes de Achaval, 1984; Panepucci et al., 1984; Whitt, 1984), phosphoglucose isomerase (Avise and Kitto, 1973; Dando, 1974, 1980; Coppes de Achaval, 1980; Fisher et al., 1980; Coppes de Achaval et al., 1982; Philipp et al., 1983a, b; Coppes, 1985), malate dehydrogenase (Clayton et al., 1975; Fisher et al., 1980; Schwantes and Schwantes, 1982). Phos- phoglucose isomerase is one isozyme system that owing to its multigenic nature becomes an interesting model for evolutionary studies, and from this aspect it was investigated (Avise and Kitto, 1973; Dando, 1974, 1980; Coppes, 1985).

Fishes, the most primitive of vertebrates, are excel- lent organisms for studying the formation and evo- lution of isozyme loci (Whitt, 1981). Bony fishes represent the line from which advanced vertebrates (amphibians, reptiles, birds and mammals) evolved. They include the subclass Actinopterygii, with the infraclasses--Chondrostei, Neopterygii and Teleostei (Norman, 1975). Teleosts include approximately 7 superorders, 50 orders, 445 families and a number of species estimated as 21,723, representing 60% of all vertebrates (Nelson, 1984).

The present paper is a recompilation of the species of fishes for the study of the PGI isozyme system. The species listed here (Table 1) were classified according to Norman (1975).

PROBABLE NUMBER OF LOCI CODING FOR PHOSPHOGLUCOSE ISOMERASE IN FISHES

In fishes, PGI is encoded by one (Avise and Kitto, 1973; Dando, 1974, 1980; Schmidtke et al., 1975a, b;

575

Page 2: Isozymes of glucosephosphate isomerase (PGI) in fishes of the subclass actinopterygii

576 ZULEMA COPPES

Table 1. List of the species of fishes of the subclass Actinopterygii used for the study of the PGI isozymes'

INFRACLASS CHONDROSTEI Order Acipenseriformes

Family Acipenseridac Scaphirhynchus a/bus

Family Polyodontidae Po6"odon spathuhz

INFRACLASS NEOPTERYGI1 Order Semionotiformes

Family Lepisosteidae Lepisosteus ocukm~s tepisosteus osseu~ Lepisosteus platostomus

Order Amiiformes Family Amiidae

Amia cah'ia

INFRACLASS TELEOSTEI

SUPERORDER ELOPOMORPHA Order Anguitliformes

Family Anguillidae Anguilla anguilla Anguilla australis Anguilla rostrata

Family Congridae Conger conger Congrina tiara

Family Muraenidae Muraena rniliaris

SUPERORDER CLUPEOMORPHA Order Clupeiformes

Family Clupeidae grecoorlia lyranllu~ Clupea harengus Oorosoma cepemtianum

Harenguht sardina Sardina pilchardus Sprattus antipodon Sprattus ~prattus

Family Engraulidae Engraulis encrasicolus

SUPERORDER OSTEOGLOSSOMORPHA Order Osteoglossiformes

Family Hiodontidae Hiodon tergisu,~

Family Notopteridae Notopterus kapirat

Family Osteoglossidae Osteoglossum hicirrosum

Family Pantodontidae Panzodon buchh}zi

SUPERORDER PROTACANTHOPTERYGII Order Salmoniformes

Family Argentidae Argentina silus

Family Esocidae Esov americanus

Family Osmeridae Osmerus eperhmus

Family Salmonidae Coregonus /era Coregonus /Ol:arelus Oucorhynchus gorbuschu O. kela O. kLs'utch O. nerka O. tshawytschu Sabno aquohonita S. chlrki S. gairdneri S. irideu~ S. saber S. lrutta

Sah~elinus /ontinalis S. nano'cusch

Family Sternotychidae

(108}

(108)(109)

(l)(to8) (lo8) 0)0o8)

(I) 2 (108)

(2)(3)(92)(93)(94)(95) 1 (5)

(3)(29)(30)(92)195)(108) (2)(4) (2)(4)

(108)

i (i) 1 (1)(2)(6)(9)(31)(88) 2 (Io8)

(1) 008) (2) (5) (2)(8)(77}

(2)

(108)

(2)

(108)

(2)

(108)

(1)(108)

(2)(6)(7)(8)

3 (8) 3 (8) 3 (53)(55)(98) 3 (53)(98) 2 (53)(98) 3 (53)(74)(98) 3 (53)(98) 3 (91) 3 (11)(49)(50)(56)(98) 3 (41)(49)(50)(91)(98)(99) 3 (7)(8) 2 (2)(6)(7)(51)(52)(58) 3 (1)(59)(91) 2 (7)(8)19)(10) 3 (1)(7)(8)(10)(57)(108) 3 (57)

008)

Page 3: Isozymes of glucosephosphate isomerase (PGI) in fishes of the subclass actinopterygii

Fish PGI 577

Table 1. (continued)

SUPERORDER OSTARIOPHYSI Order Cypriniformes

Family Anostomidae Leporinus friderici L. silvestri Schizodon nasuttus

Family Catostomidae Carpiodes carpio C. cyprinus C. velifer Catostomus catostomus C. columbianus C. commersoni C. discobulus C. luxatus C. macrocheilus C. occidentalis C. platyrhincus C. plebeius C. fumeiventris C. santaanae Chasmistes brevirostris Cycleptus elongatus Erimyzon oblongus E. sucetta E. tenuis Hypentelium etowanum H. nigricans H. roanokense Ictiobus bubalus L cyprinellus L niger Minytrema melanops noxostoma anisurum M. ariommum M. austrinum M. carinatum M. cervinum M. congestum M. duquesnei M. erythrurum M. hamiltoni M. lachneri M. macrolepidotum M. mascotae M. pappillosum M. peocilurum M. rhothoecum M. robustum M. rupiscartes M. valenciennesi Thorbunia atripinne T. hamiltoni T. rhothoeca Xyrauchen texanus

Family Characidae Astyanaz mexicanus Cheirodon axelrodi

Family Cobitidae Acanthopthalmus choirorhyncus .4. semicunctus Botia macrocantha B. modesta

Family Cyprinidae Abramis brama Barbus barbus B. tetrazona Brachydanio albolineatus B. rerio Carassius auratus

Cyprinus carpio

Campostoma anomalum C. oligolepis C. ornatum Ctenopharygodon idella Gila orcutti Hesperoleucus symmetrivus Hypohthalmichthys nobUis

3 (19)(20) 4 (19)(20) 3 (19)(20)

4 (32)(60) 4 (17)(32)(60) 4 (32)(60) 4 (17)(32)(60)(108) 4 (32) 4 (17)(32)(60)(109) 3 (17)(32)(90)(109) 4 (32) 4 (32) 4 (32) 3 (32) 3 (32)(35)(60) 4 (79) 3 (79)(80) 4 (17)(32) 4 (17)(32)(60) 3 (17)(32)(50) 3 (I 5)(32)(60)(64)(108) 3 (l 7)(32)(60) 3 (12)(32)(106) 3 (l 2)(I 7)(32)(60)(107) 4 (12)(106) 4 (17)(32)(60) 4 (32)(60) 4 (32)(60) 4 (60) 3 (12) 3 (12) 3 (12) 3 (12)(60) 3 (12)(32)(60) 3 (12)(32) 3 (12)(17)(32)(60) 3 (12)(17)(32) 2 (16) 4 (12)(41) 3 (12)(32)(60) 3 (12) 3 (12) 3 (12) 3 (16)(32) 3 (12) 3 (12) 3 (12) 3 (107) 3 (107) 3 (107) 4 (17)(32)

(1)(33) (34)

(18) (18) (18) (18)

(7)(8) (7) (7)(8) (97) (97)

3 (1) 4 (7) 2 (13) 3 (36)(76)(108)

(40) (40) (40) (38)(39) (79) (37) (39)

Page 4: Isozymes of glucosephosphate isomerase (PGI) in fishes of the subclass actinopterygii

578 ZULEMA COPPES

Table 1. (continued)

Lavinia exilicauda Notropis

Subgenre Luxilus Nolropis venustus Scardinius erythrothalnius Notimigonus crysoh, ucas

Order Gonorynchiformes Family Chaniidae

Chanos chanos Order Siluriformes

Family Ariidae Arius fi'lis

Family Callichthyidae Corydoras aeneus C. julii C. myersi C. sp.

Family Ictaluridae Ictalurus rnelas I. natalis 1. punctatus

Family Loricariidae 14~Tostomus sp.

Family Pimelodidae Pimelodus maculatus

SUPERORDER SCOPELOMORPHA Order Myctophiformes

Family Myctophidae Argyropeleeus offerri

Family Synodontidae Synodon ./oetens

S. intermedius

SUPERORDER PARACANTHOPTERYGll Order Batrachoidiformes

Family Batrachoidae Opsanus beta Poriehthys porosissimus

Order Gadiformes Family Carapidae

Carapus bermudensis Family Gadidae

Gadus morhua Lola h~ta Microgadus tomcod Theragra ehah'ogramma Uruphyeis chuss

Family Macrouridae Coelorhynehus coelorhynchus

Family Merluciidae Merlucius australia'

Family Ophidiidae Rissola marginata Genvpterus blacodes

Family Zoarcidae Zoarces viviparus macrozoarces artterieanus

Order Lophiiformes Family Antennariidae

Antennarius sp. Family Lophiidae

Lophius piscatorius Family Ogocephalidae

Dibranchus atlanticus

SUPERORDER ACANTHOPTERYGII Order Atheriniformes

Family Atherinidae Allanetta harringtonensis A therina presbyter Menidia audens M. beo'llina M. extensa M. menidia M. peninsulae

Family Belonidae Bellone belhme 7),losure.~ crocodilus

(37)

(13) (1) (2) (108)

(42)

(1)

3 (43) (43) (43) (108)

(I)(108) (108) (4)(108)

5 (19)(20)

4 (19)(20)

(108)

2 (108) I ( I )

(108)

(1) (108)

(108)

(2) (108) (1) (87) (108)

(108)

I (5) 2 (1)(72)

(1) I (5)(73)

( 1 )(44) (108)

(2)

(2)

(108)

(108) (2) (86) (84)(86) (86) (84)(86) (84)(86)

(2) (108)

Page 5: Isozymes of glucosephosphate isomerase (PGI) in fishes of the subclass actinopterygii

Family Cyprinidontidae Cyprinodon variegatus Fundulus heteroclitus F. notatum

Family Exocoetidae Hyporhamphus unifasciatus

Family Poecilidae Gambusia affinis Gambusia geiserie Gambusia heterochir Poecilia formosa Genus Xiphophorus X. couchianus X. helleri X. maculatus

Order Beryciformes Family Holoncentridae

Holocentrus ascensionis Order Gasteroiformes

Family Sygnathidae Corythoichthys braehycephalus Syngnathus fuscus

Order Perciformes Family Acanthuridae

Acanthurus chirurgus Family Arripidae

Arripis trutta Family Carangidae

Caranx crysops C. georgianus Seriola grandis Trachurus declives T. novaezelandidae

Family Centrolophidae Seriolella brama

Family Cheilodactylidae Cheilodactylus macropterus C. douglasi

Family Cichlidae Cichlasoma cyanoguttatum Haplochromus flaviijosephi Sarotherodon niloticus S. aureus Tilapia zillii Tristamella sacra 72 simonis

Family Centrarchidae Acanthatchus pomotis Ambloplites rupestris Archopfites interruptus Centrarchus macropterus Elassoma evergladei E. okefenokee Enneacanthus gloriosus E. obesus Lepomis auritus L. cyanellus

L. gibbosus L. gulosus L. humilus L. macrochirus L. marginatus L. megalotis L. microlophus L. punclalus Micropterus dolomieui M. salmoides Pomoxis annularis P. nigromaculatus

Family Cottidae Hemitripterus americanus

Family Gempylidae Rexea solandri Thrysites atun

Family Gerreidae Eucinostomus lefroyi

Family Kyphosidae Girella tricuspidata

Fish PGI

Table 1. (continued)

(1) (I)(46)(47)(48)(100)(108) (108)

008)

(1) (l) (1) (l) 011) (75) (45)(75)(76) (45)(75)(76)

(108)

(1o8) i (1)

(108)

1 (5)

(108) (5)(67)

2 (5) i (5)(67) 1 (5) 2 (25)

1 (5)

2 (5)(67) (5)

(I) (61) (61) (61) (61) (61) (61)

(62)(104) (62)(69)(108) (62) (62)(104) (62) (62) (104) (62)(104) (62) (21 )(22)(62)(63 )(64)( 65)(81 )( 101 ) (102)(103)(105)(106)(108) (62) (22)(62)(69)(103)(104)(108) (1)(62) (1)(62)(69)(103)(104)(108) (62) (62)(103)(108) (62)(69)(101)(102)(104)(105)(108) (62)(104) (23)(69)(108) (1)(23)(62)(66)(69)(78)(81)(104)(108) (69)(108) (62)(104)

(1)

1 (5) 1 (5)

(108)

(5)

579

Page 6: Isozymes of glucosephosphate isomerase (PGI) in fishes of the subclass actinopterygii

580 ZULEMA COPPES

Table 1. (continued)

Family M ugilidae Mugil eephalus

Family Percichthidae morone americana M. cho'sops M. mississipiensis M. saxatilis

Family Percidae Etheostoma jontieola E. mieropereu E. proeliare Perehta eaprodes

Family Percophididae Hemeroeoetes sp.

Family Pomadasydae Haemulon seiurus Orthopristis ehrysoptera

Family Pomatomidae Pomalomus saltatrix

Family Pseudochidae Pseudophyeis bacchus

Family Scaridae Sparisoma ruhripinnae

Family Sciaenidae Aplodinotus gruniens Qvnoseion striatus (~voseions nolhus Maerodon ancylodon Mieropogon undulatus Mieropogonias [i~rnieri

Family Scombridae Seomber scombrus S. austra[asieus

Family Serranidae ('entropristri.v striata Dieentrarchus labrax Epinephelu.~ adseem'ionis

Family Sparidae Cho'sophrys auratus Lagodon rhomhoides Stenotomus chrysops

Family Sphyraenidae Sphyruena argentea S. barracuda S. ensis S. idiaste,~ S. lucasana

Family Stromateidae Prepilus triaeanthus

Family Trichiuridae Trichiurus lepturus

Order Pleuronectiformes Family Bothidae

Ancylopsetta quadraeellata Pho,norhombus novogieus

Family Cyonoglossidae Symphurus plugissa

Family Pleuronectidae Limanda limanda Plaliehthys flesus Pleuronectes phttessa Pseudopleuronectes americanus Reinhardtius hippoglossoides

Family Soleidae Achirus lineatus Solea solea

Order Scorpaeniformes Family Scorpaenidae

Sehastes alutus S. caurinus S. elongatus

Family Triglidae Prionotus trihulus P. sp. Trigla kumei

Order Tetraodontiformes Family Balistidae

Nm'odon scaber Family Ostraciidae

Ostraeion diaphanum

( i )

(68) (69)( 1 o8) (108) (68)

(70) (7O) (7O) (I)

(5)

008) (1)

1 (1)

(67)

(108)

008) 3 (28)

(I) 3 (28)

(I) 3 (28)

(1)(2)(24)(82) (1)(5)(25)

(1) (2) (IO8)

(5)(25)(89) (1o8) (i)

(96) 008) (96) (96) (96)

(1)

(i)(1o8)

(l) (2)

i (1)

(2) (2) (2)(27)(71)(I I I) (109) (83)

(I) (2)

(26) (26) (26)

(lO8) (1) (5)(67)

i (5)

(108)

Page 7: Isozymes of glucosephosphate isomerase (PGI) in fishes of the subclass actinopterygii

Fish PGI

Table I. (continued)

581

Family Tetraodontidae Diodon hystri (108) Lagocephalus lagocephalus (2) Sphoeroides parvus (1)

Order Zeiformes Family Zeidae

Cyttus austral& 1 (5) Zeus japonicus 1 (5)

I. Avise and Kitto (1973); 2. Dando (1974); 3. Comparini et al. (1977); 4. Mo et al. (1975); 5. Gauldie and Smith (1978); 6. Schmidtke and Engel (1974); 7. Schmidtke et al. (1975a); 8. Schmidtke et al. (1975b); 9. Engel et al. (1975); 10. Engel et al. (1977); II. Reinitz (1977); 12. Buth (1979a); 13. Buth (1979b); 14. Ferris and Whitt (1977a); 15. Shaklee et al. (1974); 16. Buth (1977); 17. Ferris and Whitt (1979); 18. Ferris and Whitt (1977b); 19. Coppes de Achaval (1980); 20. Coppes de Achaval et al. (1982); 21. Champion and Whitt (1976a); 22. Champion and Whitt (1976b); 23. Philipp et al. (1979); 24. Smith and Jamieson (1978); 25. Smith and Crossland (1977); 26. Johnson et al. (1973); 27. Purdom et al. (1976); 28. Coppes (1985); 29. Koehn and Williams (1978); 30. Williams et aL (1973); 31. Grant (1981); 32. Ferris et al. (1979); 33. Avise and Selander (1972); 34. Kuhl et al. (1976); 35. Ferris et al. (1982); 36. Schmidtke and Engel (1975); 37. Avise et al. (1975); 38. Utter and Folmar (1978); 39. Magee and Philipp (1982); 40. Buth and Burr (1978); 41. Buth (1982); 42. Winans (1979); 43. Dunham et al. (1980); 44. Yngaard (1972); 45. Siciliano and Wright (1976); 46. Palumbi et al. (1980); 47. Powers and Place (1978); 48. Mitton and Koehn (1975); 49. Utter et al. (1976); 50. Allendorf and Phelps (1980); 51. Cross and Ward (1980); 52. Wilkins (1972a); 53. May (1975); 54. Allendorf (1975); 55. Seeb and Whishard (1977); 56. Campton (1980); 57. May et al. (1980); 58. Wilkins (1972b); 59. Allendorf et al. (1977); 60. Ferris and Whitt (1980); 61. Kornfield et al. (1979); 62. Avise et al. (1977); 63. Shaklee et al. (1977); 64. Champion et al. (1975); 65. Whitt et al. (1976); 66. Philipp et al. (1981); 67. Gauldie and Johnston (1980); 68. Sidell and Otto (1978); 69. Philipp et al. (1983a); 70. Buth et al. (1980); 71. Ward and Beardmore (1977); 72. Smith et al. (1979); 73. Smith (1979); 74. Grant et al. (1980); 75. Morizot and Siciliano (1982a); 76. Morizot and Siciliano (1982b); 77. Smith and Robertson (1981); 78. Philipp et al. (1983b); 79. Crabtree and Buth (1981); 80. Buth and Crabtree (1982); 81. Whitt et aL (1977); 82. Smith and Jamieson (1980); 83. Fairbain (1981); 84. Johnson (1974); 85. Vuorinen (1984); 86. Johnson (1975); 87. Grant and Utter (1980); 88. Anderson et al. (1981); 89. Smith et al. (1978); 90. Smith et al. (1983); 91. Wishard et al. (1984); 92. Williams and Koehn (1984); 93. Comparini et aL (1975); 94. Rodino and Comparini (1978); 95. Comparini and Rodino (1980); 96. Graves and Somero (1982); 97. Pontier and Hart (1981); 98. Utter et al. (1980); 99. Busack et al. (1980); 100. Place and Powers (1978); 101. Pasdar et al. (1984a); 102. Pasdar et al. (1984b); 103. Parker et al. (1985a); 104. Parker et al. (1985b); 105. Pasdar et al. (1984c); 106. Buth (1980); 107. Buth (1979c); 108. Fisher et al. (1980); 109. Carlsson et aL (1982); 110. Morizot and Siciliano (1983); 111. Galleguillos and Ward (1982)

*The number of loci was noted down in the species that possess other than two loci. All the others possess two loci for PGI.

Fisher et al., 1980), two (Avise and Kitto, 1973; Johnson et al., 1973; Dando, 1974, 1980; Mo et al., 1975; Schmidtke et al., 1975a, b; Champion and Whitt, 1976a, b; Allendorf et al., 1977; Comparini et al., 1977; Engel et al., 1977; Smith and Crossland, 1977; Gauldie and Smith, 1978; Place and Powers, 1978; Smith and Jamieson, 1978; Smith, 1979; Buth, 1979a, b,c; Cross and Ward, 1980; Dunham et al., 1980; Fisher et al., 1980; Philipp et al., 1983a,b; Pasdar et al., 1984a, b,c; Parker et al., 1985a,b), three (Avise and Kitto, 1973; Shaklee et al., 1974; Schmidtke et al., 1975a,b; Kuhl et al., 1976; Allendorf et al., 1977; Engel et al., 1977; Dunham et al., 1980; Coppes de Achaval et al., 1982; Coppes, 1985), four (Schmidtke et al., 1975b; Coppes de Achaval, 1980; Coppes de Achaval et al., 1982) and five (Coppes de Achaval et al., 1982) gene loci.

The PGI codified by two gene loci genetically independent in the majority of fishes studied, shows a modification and divergence in the structure and function which follows gene duplication. The two enzymes which catalyse the same reaction show marked differences in electrophoretic mobility, heat inactivation, and reaction with inhibitors (Avise and Kitto, 1973).

As we can see in Table 1, the majority of the species of fishes studied show the existence of two gene loci which codify PGI, with a differential expression in tissues. According to Schmidtke et al. (1975b), only some species of Salmonidae and Cyprinidae, show more than two PGI loci, reflecting the tetraploid

origin of these species. Thus, Ohno (1970) thinks that polyploidization has been an important factor in the primitive formation of chordates (nearly 500 million years ago) and it has caused the great diversity of isozymes found in present day vertebrates. The elec- trophoretic analysis of proteins of recent polyploids (50 to 100 million years), suggests that these are codified by a number of loci greater than their related diploid species (Allendorf et al., 1975; Engel et al., 1975; Ferris and Whitt, 1977a,b,c). To consider polyploidy as an evolutionary factor in vertebrates, it is necessary to admit diploidization. A recent polyploid begins its evolution containing four homologous chromosomes. If a tetraploid state could contribute to the creation of new gene loci, the diploid state might eventually be reestablished by the functional diversification of the four original hom- ologous. The preferential formation of two bivalent contrasts to the quadrivalents in meiosis is a pre- requisite for diploidization (Ohno, 1970). Thus in the diploid species studied by Coppes de Achaval (1980), Coppes de Achaval et al. (1982), Coppes (1985) and belonging to the orders Cypriniformes and Siluri- formes, three, four and five genetic loci were found for PGI, suggesting a tetraploid origin with later diploidization. However, in the species studied by these authors, there is no indication of polyploidy. In this case, it is difficult to admit that the number of loci which determine PGI would be owed to any hypo- thetical and ancient polyploidy. As PGI is frequently polymorphic the occurrence of duplications of this

Page 8: Isozymes of glucosephosphate isomerase (PGI) in fishes of the subclass actinopterygii

582 ZULEMA COPPES

type increases. However, several proteins studied from subtropical regions (Hb, MDH and LDH), as well as those from temperate regions (LDH, s-MDH and CK) did not show codification by a number of loci greater than those expected for diploid species.

PG| DUPLICATIONS IN FISHES: POSSIBLE ORIGIN

To determine the occurrence of PGI loci in fishes with the fundamental purpose of understanding the evolutionary history of gene duplication and its ori- gin, data in literature were collected from 283 species belonging to 21 orders, subclass Actinopterygii. The whole discussion is based on the phylogeny of Osteichthyes, of Romer (1966) and the classification by Norman (1975). Arise and Kitto (1973) study- ing 53 species belonging to 15 orders gave an evolutionary history for PGI loci in fishes.

In the order Perciformes (Acanthopterygii), the majority of fishes, 73 of the 84 species belonging to 28 families have two loci for PGI. Analysing the Superorder Protacanthopterygii, from which prob- ably all higher teleosts arose (Avise and Kitto, 1973), in the order Salmoniformes, 14 species of 18 have three loci for PGI. According to Avise and Kitto (1973) the possibility of secondary loss of a duplicate locus in higher teleosts cannot be excluded, so they conclude that the original gene duplication occurred sometime before the branching of the Prota- canthopterygii and is now manifest in nearly all higher teleosts, so the majority of higher teleosts show two loci for PGI. However, analysing the Superorder Ostariophysi (more advanced teleosts than the Protacanthopterygii), we see that of a total of 87 species, 31 show three loci for PGI and 20, four. Thus, 51 species of 87 present more than two loci for PGI (representing 58%).

Most diploid teleosts have two gene loci encoding PGI isozymes (Arise and Kitto, 1973: Johnson et al., 1973; Dando, 1974; Mo et al., 1975; Schmidtke et al., 1975a, b; Champion and Whitt, 1976a,b; Allendorf et al. , 1977; Comparini et al., 1977; Engel et al., 1977; Smith and Crossland, 1977; Gauldie and Smith, 1978; Place and Powers, 1978; Smith and Jamieson, 1978; Smith, 1979; Buth, 1979a,b; Dunham et al., 1980; Fisher et al., 1980; Philipp et al., 1983a,b) (Table I). Thus, the duplicate gene for PGI is of widespread occurrence in fish. In the Superorder Ostariophysi, Cypriniformes diploid fishes were found to have their PGI encoded by two loci (Arise and Selander, 1972; Avise and Kitto, 1973; Dando, 1974; Schmidtke et al., 1975a,b; Kuhl et al., 1976; Buth, 1977; Ferris and Whitt, 1977a,b; Buth, 1979a,b; Ferris and Whitt, 1979), whereas in the case of tetraploid fish, the PGI is encoded by three (Arise and Kitto, 1973; Shaklee et al., 1974; Engel et al., 1975; Schmidtke et al., 1975a, b) or four loci (Schmidtke et al., 1975b). However the data presented by Coppes de Achaval et al. (1982) showed a number of loci higher than that reported for other Cypriniformes diploid species: thus, the authors believe that the PGI loci correspond to the ones described for the tetraploid fish of this order. Among diploid species of the order Siluri- formes PGI is also encoded by two gene loci (Arise and Kitto, 1973; Mo et al., 1975; Dunham et al.,

1980; Fisher et al., 1980). Dunham et al. (1980) showed a duplication at the PGI-2 locus in a South American catfish (family Callichthydae), a pre- sumptive tctraploid species. Here again the number of loci obtained in a diploid species by Coppes de Achawd et al. (1982) correspond to that for a letra- ploid species. In the genus l l y p o s t o m u s , Coppes de Achaval el al. (1982) found a species, which accord- ing to Miehelle et al. (1977) possess a haploid chro- mosome number (n = 34 and 37), with PGI encoded by five loci.

The time postulated by Arise and Kitlo (1973~ oi PGI gene duplication was early in the teleost line since the most primitive group in which they lbund two PGI loci was the Anguilliformes. But Fisher et al, (1980) and Dando (1980) have observed that the most primitive group in which they found two PGI loci was the Cyclostomata. The observations taken by Arise and Kitto (1973) were due to the single locus lbund in the Semionotiformes, the most primitive fishes the5' studied. The two PGI loci clearly expressed in lhe agnathans (lampreys) strongly suggest that the time of PGI gene duplication was much earlier lhan tile time postulated by Arise and Kitto. This idea is strengthened by the observation of Fisher ~'; ul. (1980) that two PGI loci were found in Cross- opterygii and Dipnoi (Subclass Sarcopterygii).

According to these observations and for us to localise the group of fishes we are studying here, a scheme was made (Fig. 1),

Since Zuckerkandl and Pauling (1965) have shown that the analysis of phylogeny at molecular level is valuable in resolving questions about systematics o1" advanced groups, these have become more frequent. These studies are, of course, limited to extant species, and the complexity of the problem varies with the particular group studied. Fishes are advantageous because of the numcrous taxa today they are repre- sented and the existence of one or more species morphologically similar to their ancestors.

Several authors (Fisher and Whitt, 1978: Fisher et al., 1980: Whitt, 1981, 1983: Schwantes and Schwantes, 1982a,b); lhink that the morphological conservation of certain extant species reflects a partial conservation of the pattern of the ancestral gene function, which in its turn reflects a conservation of one portion of the structure of the genome. A study of one multilocus isozyme system in several remain- der groups of fishes may lead to suggestions about the patterns of gene regulation at different evolutionary levels (Markert et al., 1975; Whitt et al., 1975: Whitt, 1983).

The evolutionary importance of gene duplication has been repeatedly emphasized (Lewis, 1951: Ingrain, 1961; Zuckerkandl and Pauling, 1965: Ohno et al., 1967: Watts and Watts, 1968a,b: Ohno, 1970, 1974: Arise and Kitto, 1973; Wilson, 1975; Sparraw and Naumann, 1976: Wilson et al., 1977: WhiH, 1983).

According to Fisher and Whitt (1978), the evo- lutionary alterations that occurred after the establish- ment of the simplest way o1" life, were originated by modifications of pre-existing specifically functional genes. The evolutionary transformation of a neutral gene with a new function would involve a loss of the ancient function: at least the transformation would

Page 9: Isozymes of glucosephosphate isomerase (PGI) in fishes of the subclass actinopterygii

Fish PGI 583

Act inopteryg t i

¢ Poroconthopterygi ( I, 2) ~con)thopterygi i ( 2 )

Ostoriophysi (2,3,4,5)

~ ~ e r y g i i (3 41

If

I! - Osteoglossomorpha (2) Teleosteii / / Clupeomorpho (I)

Neopterygii ( I ?, 2 )

Chondros~ei (2)

Fig. 1. Probable number of loci for PGI (in brackets) that are present in fishes Actinopterygii.

be measured by the formation of additional copies of the ancestral gene.

There are several examples of gene duplication which lead to homologous proteins: haemoglobin (Goodman et al., 1975), cytochrome c (Goldberg, 1977), lactate dehydrogenase (Markert et aL, 1975), phosphoglucose isomerase (Avise and Kitto, 1973; Dando, 1974; Coppes de Achaval et al., 1982), carbonic anhydrase (Tashian et al., 1983), immuno- globulins (Dayhoff, 1972). PGI as well as other enzymes (s-MDH, CK, LDH) is a good isozymic system which serves as a model for studying the evolution of isozymic loci (Fisher et al., 1980; Whitt, 1983), and was formed by relatively ancient gene duplication and maintained for hundreds of million years (Whitt, 1983).

The number of isozymic loci present in a given species is easily estimated by electrophoresis since those loci diverged and therefore, their isozymes are different owing to the unnumbered amino acid substi- tutions. The confirmation of number of loci present is obtained by (1) presence of genetic variants, (2) observations of the number and relative intensities of isozymes and (3) physical and antigenic properties of isozymes (Fisher et al., 1980; Whitt, 1981).

ISOZYMES OF PGI, TEMPERATURE AND METABOLISM

Body temperature of poikilothermic animals changes with ambient temperature but it is not necessarily the same as that of the environment (Hochachka and Somero, 1973, 1984; Jankowsky, 1973). The gradient of temperature between the body and the environment is not only a function of the production and loss of heat. There are also, a number of environmental factors which surround the organ- ism, such as solar radiation, humidity and drought (Jankowsky, 1973).

We could consider organisms as a total of inter- related chemical reactions, catalysed by enzymes.

These are macromolecules widely influenced by fac- tors such as pH, temperature, salinity and inhibitors.

One of the pioneer works about adaptation of enzymes to temperature was done by Hochachka and Somero (1968). These authors show that the affinity of LDH with substrate varies with temperature and reaches its maximum value (minimum Km) at the temperature to which the organism is adapted. Moon (1975), Schwantes et aL (1976), De Luca (1980), Schwantes and Schwantes (1982a, b), De Luca et al. (1983), suggest that alterations in ambient tem- perature act as positive or negative modulators, inducing increasing or decreasing of enzyme activity of certain isozymes during acclimation. So, ecto- therms would alter the isozymic complement, prefer- entially yielding a quantity of isozymes with great catalytic efficiency at each temperature. Thus, there would be cold and warm adapted isozymes. The existence of multiple forms of an enzyme, would permit the organism to have catalytic material available to face changes in the environment which influence the inner environment of ectotherms.

Isozymes of PGI, resist in a different way, alter- ations in temperature (Arise and Kitto, 1973; Shaklee et al., 1977; Coppes de Achaval, 1980; Coppes de Achaval et al., 1982; Coppes, 1985). Thus, meanwhile PGI-B2 is more resistent to heat inactivation, PGI-A2 is more thermolabile.

The isozymic alterations detected during the pro- cess of acclimation, led some authors to propose that these could be important components in thermo- acclimation of ectotherms in general, and thus would represent "qualitative strategies of biochemical adap- tation" (Somero and Hochachka, 1971; Hochachka and Somero, 1973, 1984). On the other hand, the existence of divergence in PGI loci at the different tissues would permit a difference in the regulation of metabolism. According to Pearse (1972), PGI is an important enzyme in the regulation of metabolism of carbohydrates since it determines the quantity o1 D-glucose-6-phosphate in glycolysis. The reaction

C.BP 8 4 4 ~ K

Page 10: Isozymes of glucosephosphate isomerase (PGI) in fishes of the subclass actinopterygii

584 ZULEMA COPPES

catalysed by PGI is reversible, yielding G-6-P or F-6-P, depending on the direct ion of the reaction. If the reaction is diverted to the fo rmat ion of G-6-P it can be t r ans formed to G-1-P and yield glycogen in the liver, or can be diverted to the pentose shunt . Based on specific activity, we suggest tha t PGI-A: would catalyse more efficiently the reaction to the fo rmat ion of glycogen. Similarly, the p redominance of less anodic zone in skeletal muscle, would suggest tha t the p roduc t of Pgi-B locus would be adapted to the glycolytic direction.

The present work shows that gene dupl icat ion for PGI in fishes commonly found in the l i terature, can be seen in diploid species. The presence of iso- zymes, as demons t ra ted for o ther ectotherms, and o ther proteins, seems to be a strategy of biochemical adap ta t ion to different envi ronments .

REFERENCES

Allendorf F. W. (1975) Genetic variability in a species possessing extensive gene duplication. Genetic inter- pretation of duplicate loci and examination of genetic variation in population of rainbow trout. PhD Thesis, University of Washington, Seattle.

Allendorf F. W., Mitchell N., Ryman N. and Stahl G. (1977) Isozyme loci in brown trout (Salmo trutta L.): detection and interpretation from population data. Hereditas 86, 179 190.

Allendorf F. W. and Phelps S. R. (1980) Loss of genetic variation in a hatchery stock of cutthroat trout. Trans. Am. Fish. Soc. 109, 537 543.

Allendorf F. W., Utter F. M. and May B. P. (1975) Gene duplication within the family Salmonidae. I1. Detection and interpretation of the genetic control of duplicate loci through inheritance studies and the examination of pop- ulations. In lsozymes IV. Genetics and Evolution (Edited by Markert C. L.), pp. 415 432. Academic Press, New York.

Anderson L., Ryman N., Rosenberg R. and Stahl G. (1981) Genetic variability in Atlantic herring (Clupea harengus harengus): description of protein loci and population data. Hereditas 95, 69 78.

Andressen A. (1970) Close linkage between the locus for phosphohexose isomerase and the H blood group locus in pigs. Anim. Blood Grps bioehem. Genet. 1, 173 174.

Avise J. C. and Kitto G. B. (1973) Phosphoglucose isomer- ase gene duplication in the bony fishes; an evolutionary history. Biochem. Genet. 8, 113 132.

Arise J. C. and Selander R. K. (1972) Evolutionary genetics of cave-dwelling fishes of the genus Astyanax. Erolution 26, 1 19.

Arise J. C., Smith J. J. and Ayala F. J. (1975) Adaptative differentiation with little genic change between two native California minnows. Evolution 29, 411 426.

Avise J. C., Straney D. O. and Smith M. H. (1977) Biochemical genetics of sunfish. IV. Relationships of centrarchid genera. Copeia (2), 250 258.

Blackburn H. N., Chirwin J. N., James G. T., Kempe T. D., Parsons T. F., Register A. M., Schnackers K. D. and Noltmann E. A. (1972) Pseudoisoenzymes of rabbit phos- phoglucose isomerase. J. biol. Chem. 247, 117ff1179.

Busack C. A., Thorgaard G. H., Bannon M. P. and Gall G. A. (1980) An electrophoretic, karyotypic and meristic characterization of the Eagle Lake trout, Salmo gairdneri aquilarum, Copeia (3), 418 424.

Buth D. G. (1977) Biochemical identification of Moxostoma rhothoeeum and M. hamiltoni. Biochern. S.vst. Ecol. 5, 57-50.

Buth D. G. (1979a) Duplicate gene expression in tetraploid

fishes of the tribe Moxostomatini (Cyprini%rmes, Cat- ostomidae). Comp. Biochem. Physiol. 63B, 7 12.

Buth D. G. (1979b) Biochemical systematics of the cyprinid genus Notropis. I. The subgenus Luxilus. Bioehem. Syst, Ecol. 7, 69 79.

Buth D. G. (1979c) Genetic relationships among the torrent suckers, genus Thorburnia. Biochem. ,~vvt. Ecol. 7. 311 316.

Buth D. G. (1980) Evolutionar} genetics and systematic relationships in the catostomid genus tlrpenteliw~l. Copeia (2), 280 290.

Buth D. G. (1982) Glucosephosphatc isomerase expression in a tetraploid fish, Moxosloma h,:hneri (Cypriniformes, Catostomidae): evidence for "'tetraploidization". Genetica 57, 171 175,

Buth D. G. and Burr B. M. (1978) Isozyme variability in the cyprinidid genus Campostoma. Copeia (2), 298 31 I.

Buth D. G., Burr B. M. and Schenck J. R. (1980) Electro- phoretic evidence for relationships and differentiation among members of the percid subgenus Maeroperca. Biochem. Svst. Ecol. 8, 297 304.

Buth D. G. and Crabtree C. B. (1982) Genetic variability and population structure of Cato,~tomus santaanae in the Santa Clara Drainage. Copeia (2), 439 444.

Campton D. E. (1980) Genetic structure of sea-run cut- throat trout (Salmo elarki elarki) populations in the Puget Sound region. MSc Thesis, Univ. of Wash.. Seattle.

Carlsson D. M., Kettler M. K.. Fisher S. E. and Whitt G. S. (1982) Low genetic variability in paddlefish popu- lations. Copeia (3), 721 725.

Carter N. D., Hill M. R. and Weir B. J. (1972) Genetic variation of phosphoglucose isomerase in some hy- stricomorph rodents. Biochem. Genet. 6, 147 156.

Carter N. D. and Parr C. W. (1967) lsoenzymes of PGI in mice. Nature, Lond. 216, 51 I.

Carter N. D. and Yoshida A. (1969) In ritro hybridization of mouse phosphoglucose isomerase variants. Bioehim. hiophys. Acta 181,468 470.

Case S. M., Haneline P. G. and Smith M. T. (19751 Protein variation in several species of Hvla. Syst. Zool. 24, 281 285.

Champion M. J., Shaklee J. B. and Whitt G. S. (1975) Developmental genetics of teleost isozymes. In lsozymes 111. Decelopmental Biology (Edited by Markert C. L.I, pp. 417 437. Academic Press, New York.

Champion M. J. and Whitt G. S. (1976a) Differential gent expression in multilocus isozyme of the developing green sunfish. J, exp. Zool. 196, 263 282.

Champion M. J. and Whitt G. S. (1976b) Synchronous allelic expression at the glucosephosphate isomerase A and B loci in interspecific sunfish hybrids. Biochem. Genet. 14, 723 737.

Clayton J. W., Tetriak A., Billeck B. N. and lhssen P. (19751 Genetics of multiple supernatant and mitochondriai malate dehydrogenasc isozymes in rainbow trout (Salmo trutta ). In Ls'oz.vmes IlL Genetics and Ez,olution (Edited by Markert C. L.), pp. 433 448. Academic Press, New York

Comparini A., Rizzotti M., Nardella M. and Rodino E. (1975) Ricerche elettroforetiche sulla variabilitfi genetica di An guilla anguilla. Boll. Zool. 42, 283 288.

Comparini A., Rizzotti M. and Rodino E. (t977) Genetic control and variability of phosphoglucose isomerase (PGI), in eels from Atlantic Ocean and Mediterranean Sea. Mar. Biol. 43(2), 109 116.

Comparini A. and Rodino E. (1980) Electrophoretic evi- dence for two species of Anguilla leptocephali in the Sargasso Sea. Nature, Lond. 287, 435 437.

Coppes Z. (1985) Estudos eletrot\~rbticos de quatro sistemas multildcicos em peixes da familia Sciaenidae (Perciformes) da costa Sul uruguaia. PhD. Thesis, Universidade Federal de SaG Carlos. 357pp. SaG Paulo, Brazil.

Coppes de Achaval Z. (1980) Estudo da isomerase fi3sl'o- gliconica (PGI) em peixes Ostariophysi de 5 represas e da

Page 11: Isozymes of glucosephosphate isomerase (PGI) in fishes of the subclass actinopterygii

Fish PGI 585

cachoeira de Emas (Estado de Sao Paulo). MSc Thesis. Universidade Federal de Sao Carlos. 280pp. Sao Paulo, Brazil.

Coppes de Achaval Z. (1984) Isozymes of lactate dehy- drogenase in fishes of the superorder Acanthopterygii-- an update. Comp. Biochem. Physiol. 79B, 1-8.

Coppes de Achaval Z., Schwantes M. L., Schwantes A. R., De Luca P. H. and Val A. L. (1982) Adaptative features of ectothermic enzymes. III. Studies on phosphoglucose isomerase (PGI) from five species of tropical fishes of the superorder Ostariophysi. Comp. Biochem. Physiol. 72B, 201-214.

Crabtree C. B. and Buth D. G. (1981) Gene duplication and diploidization in tetraploid catostomid fishes Catostomus fumeiventris and C. santaanae. Copeia (3), 705-708.

Cross T. P. and Ward R. D. (1980) Protein variation and duplicate loci in the Atlantic salmon, Salmo salar L. Genetics 85, 147-165.

Dando P. R. (1974) Distribution of multiple glucose phos- phate isomerases in teleostean fishes. Comp. Biochem. Physiol. 47B, 663~79.

Dando P. R. (1980) Duplication of the glucosephosphate isomerase locus in vertebrates. Comp. Biochem. Physiol. 66B, 375-378.

Darnall D. W. and Klotz I. M. (1975) Subunit composition of proteins: a table. Archs Biochem. 166, 651~82.

Dayhoff M. (1972) Atlas of Protein Sequence and Structure. Vol. 5. National Biomedical Research Foundation, Washington D.C.

De Lorenzo L. and Ruddle F. H. (1969) Genetic control of two electrophoretic variants of glucosephosphate isomer- ase in mouse (Mus musculus). Biochem. Genet. 3, 151-162.

De Luca P. H. (1980) Estudo de malato desidrogenase (s-MDH) de Astyanax fasciatus da Represa do Lobo (Sao Carlos-SP). MSc Thesis, Universidade Federal de Sao Carlos. Sao Paulo, Brazil.

De Luca P. H., Schwantes M. L. and Schwantes A. R. (1983) Adaptative features of ectothermic enzymes. IV. Studies on malate dehydrogenase of Astyanax fasciatus (Characidae) from Lobo Reservoir (Sao Carlos, Sao Paulo, Brazil). Comp. Biochem. Physiol. 47B, 315-324.

Detter J. C., Ways P. O., Giblett E. R., Baughman M. A., Hopkinson D. A., Povey S. and Harris H. (1968) Inherited variations in human phosphoglucose isomerase. Ann. Hum. Genet., Lond. 31, 32%338.

Dunham R. A., Philipp D. P. and Whitt G. S. (1980) Levels of duplicate gene expression in armoured catfishes. J. Hered. 71, 248-252.

Engel W., Kuhl P. and Schmidtke J. (1977) Expression of the paternally derived phosphoglucose isomerase genes during hybrid trout development. Comp. Biochem. Phys- iol. 56B, 103-108.

Engel A., Schmidtke J. and Wolf V. (1975) Diploid-tetraploid relationships in teleostean fishes. In Isozymes IV. Genetics and Evolution (Edited by Markert C. L.), pp. 449-469. Academic Press, New York.

Eppenberger H. M., Scholl A. and Ursprung H. (1971) Tissue specific isoenzyme patterns of creatine kinase (2.7.3.2) in trout. FEBS Lett. 14, 317-319.

Fairbain D. J. (1981) Biochemical genetic analysis of population differentiation in greenland halibut (Rein- hardtius hippoglossoides) from the Northwest Atlantic, Gulf of St. Lawrence, and Bering Sea. Can. J. Fish. Aquat. Sci. 38, 669~577.

Ferris S. D., Buth D. G. and Whitt G. S. (1982) Substantial genetic differentiation among populations of Catostomus plebeius. Copeia (2), n.44 449.

Ferris S. D., Portnov S. L. and Whitt G. S. (1979) The roles of speciation and divergence times in the loss of duplicate gene expression. Theor. Pop. Biol. 15, 114-139.

Ferris S. D. and Whitt G. S. (1977a) Duplicate gene expression in diploid and tetraploid loaches (Cy- priniformes, Cobitidae). Biochem. Genet. 15, 1097 1111.

Ferris S. D. and Whitt G. S. (1977b) Loss of duplicate gene expression after polyploidization. Nature, Lond. 265, 258-260.

Ferris S. D. and Whitt G. S. (1977c) Loss of duplicate gene expression in the carp (Cyprinus carpio). Experientia 33, 1299-1301.

Ferris S. D. and Whitt G. S. (1980) Genetic variability in species with extensive gene duplication: the tetraploid catostomid fishes. Am. Natur. 115(5), 650-4566.

Fisher S. E., Shaklee J. B., Ferris S. D. and Whitt G. S. (1980) Evolution of five multilocus isozyme systems in the chordates. Genetics 52/53, 73-85.

Fisher S. E. and Whitt G. S. (1978) Evolution of isozyme loci and their differential tissue expression: creatine kinase as a model system. J. molec. Evol. 12, 25-55.

Fitch L. I., Parr C. W. and Welch S. G. (1968) Phos- phoglucose isomerase variation in man. Biochem. J, l l0 , 56.

Galleguillos R. A. and Ward R. D. (1982) Genetic and morphological divergence between populations of the flatfish Platichthys flesus (L.) (Pleuronectidae). Biol. J. Linnean Soc. 17, 395-408.

Gauldie R. W. and Johnston A. J. (1980) The geographical distribution of phosphoglucomutase and glucose- phosphate isomerase alleles of some New Zealand fishes. Comp. Biochem. Physiol. 66B, 171-183.

Gauldie R. W. and Smith P. S. (1978) The adaptation of cellulose acetate electrophoresis to fish enzyme. Comp. Biochem. Physiol. 61B, 421-425.

Goldberg E. (1977) Isozymes of testes and spermatozoa. In Isozymes: Current Topics in Biological and Medical Research. Vol. I (Edited by Rattazzi M. C., Scandalios J. G. and Whitt G. S.), pp. 79-124. Alan R. Liss, New York.

Goodman M., Moore G. W. and Matsuda G. (1975) Evolution of vertebrate haemoglobin amino acid se- quences. In Isozymes IV. Genetics and Evolution. (Edited by Markert C. L.), pp. 181 206. Academic Press, New York.

Gracy R. W. (1975) Nature of the multiple forms of glucosephosphate and triosephosphate isomerases. In Isozymes L Molecular Structure (Edited by Markert C. L.), pp. 471-487. Academic Press, New York.

Grant W. S. (1981) Biochemical genetic variation, popu- lation structures, and evolution of Atlantic and Pacific herring. PhD Thesis, Univ. of Washington. 135pp.

Grant W. S., Milner G. B., Krasnowski P. and Utter F. M. (1980) Use of biochemical genetic variants for identification of sockeye salmon (Oncorhynchus nerka) stocks in Cook Inter, Alaska. Can. J. Fish. Aquat. Sci. 37, 1236-1247.

Grant W. S. and Utter F. M. (1980) Biochemical genetic variation in walleye pollock, Theragra chalcogramma: population structure in the Southeastern Bering Sea and the Gulf of Alaska. Can. J. Fish. Aquat. Sci. 37, 1093-1 I00.

Graves J. E. and Somero G. N. (1982) Electrophoretic and functional enzymic evolution in four species of Eastern Pacific barracudas from different thermal environments. Evolution 36, 97-106.

Hochachka P. W. and Somero G. N. (1968) The adaptation of enzymes to temperature. Comp. Biochem. Physiol. 27, 659~68.

Hochachka P. W. and Somero G. N. (1973) Strategies of Biochemical Adaptation. Philadelphia, 385pp.

Hochachka P. W. and Somero G. N. (1984) Biochemical Adaptation. Princeton University Press, Princeton 537pp.

Huxley J. (1942) Evolution: The Modern Synthesis. Allen & Unwin, London.

Ingrain V. M. (1961) Gene evolution and the haemoglobins. Nature, Lond. 189, 704.

Ishimoto G. (1970) Red cell phosphohexose isomerase variants in primates. J. anthrop. Soc. Tokyo 78, 334-338.

Page 12: Isozymes of glucosephosphate isomerase (PGI) in fishes of the subclass actinopterygii

586 ZULEMA COPPES

Jankowsky H. O. (1973) In Temperature and Lift" (Edited by Precht M., Christophersen, Hensel M. and Larcher W.). Springer-Verlag, Berlin, Heidelberg, New York.

Johnson A. D., Utter F. M. and Hodgins H. O. (1973) Estimate of genetic polymorphism and heterozygosity in three species of rockfish (Genus Sebas'tes). Comp. Bio- chem. Physiol. 44B, 397 406.

Johnson M. S. (1974) Comparative geographic variation in Menidia. Evolution 28, 607 618.

Johnson M. S. (1975) Biochemical systematics o1" the atherinid genus Menidia. Copeia (4), 662 691.

Koehn R. K. and Williams G. C. (1978) Genetic differentiation without isolation in the American eel, Anguilla rostrata. II. Temporal stability of geographic patterns. Evolution 32, 624 637.

Kornfield I. L., Ritte U., Richler C. and Wahrman J. (1979) Biochemical and cytological differentiation among cichlid fishes of the Sea of Galilee. Evolution 33, I 14.

Kuhl P., Schmidtke J., Weiler C. and Engel W. (1976) Phosphogtucose isomerase isozymes in the characid fish Cheirodon axelrodi: evidence for a spontaneous gene duplication. Comp. Biochem. Physiol. 55B, 279 281.

Lewis E. B. (1951) Pseudoallelism and gene evolution. Cold Spring Harbour Symp. Quant. Biol. 16, 159.

Lohmann K. (1933) Ober Phophorylierung und de- phosphorylierung. Bildung der natiirlichen Hexose- monophosphorsfiure aus ihren Komponenten. Biochem. Z. 262, 137 151.

Magee S. M. and Pfiilipp D. P. (1982) Biochemical genetic analysis of the grass carp '~' × bighead carp S F~ hybrid and the parental species. Trans. Am. Fish. Soc. I11, 593-602.

Markert C. L., Shaklee J. B. and Whitt G. S. (1975) Evolution of a gene. Science 189, 102 114.

Mathers N. F., Wilkins N. P. and Walne P. R. (1974) Phosphoglucose isomerase and esterase phenotypes in Crassostrea angulata and C. gigas. Bioehem. Svst. Ecol. 2, 93 96.

May B. (1975) Electrophoretic variation in the genus Oncorhynchus: the methodology, genetic basis and prac- tical applications to fisheries research and management. MSc Thesis, Univ. of Washington, Seattle.

May B., Stoneking M. and Wright J. E. (1980) Joint segregation of biochemical loci in Salmonidae. II. Link- age associations from a hybridized sah,elinus genome (S. namaycuseh x S. fontinalis). Genetics 95, 707 726.

McMorris F. A., Chen T. R., Ricciuti F., Tischfield J., Creagan R. and Ruddle F. (1973) Chromosone assign- ments in man of genes for two hexosephosphate isomer- ases. Science N.Y. 179, 1129 1131.

Meijer A. E. F. H. and Bloem J. H. (1969) Histochemical method for the demonstration of the activity of glucose- phosphate isomerase. Aeta histochem. 32, 110 116.

Mitton J. B. and Koehn R. K. (1975) Genetic organization and adaptive response of allowance to ecological vari- ables in Fundulus heteroclitus. Genetics 79, 97 111.

Mo J., Young C. D., Gray R., Carter N. and Dando P. (1975) Isolation and characterization of tissue-specific isozymes of glucose-phosphate isomerase from catfish and conger. J. hiM. Chem. 250, 6747 6755.

Moon T. W. (1975) Temperature adaptation: isozymic function and the maintenance of heterogeneity. In lsozymes 11. Physiological Function {Edited by Markert C. L.), pp. 207 220. Academic Press, New York.

Morizot D. C. and Siciliano M. J. (1982a) Linkage group IV of fish of the genus k'iphosphorus (Poecilidae): assignment of loci coding for pyruvate kinase-1, glucose- phosphate isomerase-l, and isocitrate dehydrogenase-l. Bioehern. Genet. 20, 505 518.

Morizot D. C. and Siciliano M. J. (1982b) Protein poly- morphisms, segregation in genetic crosses and genetic distances among fishes of the genus Xiphosphorus (Poecilidae). Genetics 102, 539 556.

Morizot D. C. and Siciliano M. J. (1983) Comparative gene mapping in fishes. In lsozymes: Current Topics in Biolog- ical and Medical Research (Edited by Rattazzi M. C.. Scandalios J. G. and Whitt G. S.), Vol. 10, pp. 261 285~ Alan R. Liss, New York.

Nelson J. S. (1984) Fishes of the l+'orld. Wiley. 2nd ed.. 523pp.

Norman J. R. (1975) A History q/Fishes (Edited by Green- wood P. M.), pp. 371 376. Ernest Benn Ltd., London

Nottebohm F. and Selander R. K. (1972) Vocal dialects and gene frequencies in the chingole sparro,a (Zonotrichia capensis). Condor 74, 137.

Ohno S. (1970) Evolution hv Gene Dzq>lieation. Springer- Verlag, Berlin.

Ohno S. (1974) Protochordata, Cyclostomata and Pisces. In Animal Cytogenetics (Edited by .John B.). Bonntraeger, Berlin.

Ohno S.. Wolf V. and Atkin N. B. (1967) Evolution from fish to mammals by gone duplication. Hereditas 59, 169 187.

Palumbi S. R., Sidell B. D., van Beneden R. and Smith G. D. (1980) Glucosephosphate isomerase (GPIJ of the teleost Fundulus heteroclitus (Linnaeus): isozymes, allo- zymes and their physiological roles. J. Comp. Physiol. 138, 49 57.

Panepucci L. L. L., Schwantes M. L. and Schwantes A. R. (1984) Loci that encode the lactate dehydrogenase in 23 species of fish belonging to the orders Cypriniformes, Siluriformes and Perciformes: adaptative features. Comp. Biochem. Physiol. 77B, 867 876.

Parker H. R., Philipp D P. and Whitt G. S. (1985a) Relative developmental success of interspecific Lepomis hybrids as an estimate of gene regulatory divergence between species. J, exp. Zool. 233, 451 466.

Parker H. R., Philipp D. P. and Whitt G. S. (1985b) Gene regulatory divergence among species estimated by altered developmental patterns in interspecific hybrids. Motet. Biol. Evol. 2, 217-250.

Pasdar M., Philipp D. P., Monammad W. A. and Whitt G. S. (1984a) Differences in tissue expressions of enzyme activities in interspecific sunfish (Centrarchidae) hybrids and their backcross progeny. Biochem. Genet. 22, 931 956.

Pasdar M., Philipp D. P. and Whitt G. S. (1984b) Linkage relationships of nine enzyme loci in sunfishes (Lepomis, Centrarchidae). Geneti¢w 107, 435 446.

Pasdar M., Philipp D. P. and Whitt G. S. (1984c) Enzyme activities and growth rates in two sunlish species and their hybrids. J. Heredity 75, 453 456.

Pearse A. G. E. (1972) Itistoellemistrv. Theoretical and Applied. Vol. 2. Churchill Livingston, Boston.

Philipp D. P., Childers W. F. and Whitt G. S. (1981) Management implications Ik)r different genetic stocks of largemouth bass (Micropterus salmoides) in the United States. Can. J. Fish. Aquat. Sci. 38, 1715 1723.

Philipp D. P., Childers W. F. and Whitt G. S. (1983b1 A biochemical genetic evaluation of the northern and Florida subspecies of largemouth bass. Trans'. Am. Fish. Soc. 112, I 20.

Philipp D. P., Parker H. R. and Whitt G. S. (1983al Evolution of gene regulation: isozymic analysis of pat- terns of gene expression during hybrid fish development. In Lsozymes Current Topics in Biological and Medical Research (Edited by Rattazzi M. C., Scandalios J. G. and Whitt G. S.L Vol. 10, pp. 193 238. Alan R. Liss, New York.

Philipp D. P. and Whitt G. S. (1977) Patterns of genc expression during teleost embryogenesis: lactate dehy- drogenase isozyme ontogeny in the Medaka (O0,2ius latipes). Devel. Biol. 59, 183 197.

Place A. R. and Powers D. A. (1978) Genetic bases for protein polymorphism in Fundulus heteroclitus (L). I. Lactate dehydrogenase tLdh-B), malate dehydrogenase

Page 13: Isozymes of glucosephosphate isomerase (PGI) in fishes of the subclass actinopterygii

Fish PGI 587

(Mdh-A), glucosephosphate isomerase (Gpi-B), and phosphoglucomutase (Pgm-A). Biochem. Genet. 16, 577-591.

Pontier P. J. and Hart N. H. (1981) Developmental expression of glucose and triose phosphate isomerase genes in teleost fishes (Brachydanio). J. exp. Zool. 217, 53-71.

Powers D. A. and Place A. R. (1978) Biochemical genetics of Fundulus heteroclitus (L.) I. Temporal and spatial variation in gene frequencies of Ldh-B, Mdh-A, Gpi-B and Pgm-A. Biochem. Genet. 16, 593~07.

Ralin B. B. and Selander R. K. (1979) Evolution of diploid-tetraploid species of three frogs of the genus Hyla. Evolution 33, 595~508.

Rodino E. and Comparini A. (1978) Genetic variability in the European eel, Anguilla anguilla L. Marine Organ- isms, Evology and Evolution (Edited by Battaglia B. and Beardmore J. A.), pp. 389-424. Plenum Press, New York.

Romer A. S. (1966) Vertebrate Paleontology. 3rd ed. University of Chicago Press, Chicago.

Saison R. (1968) Serum and red cell enzyme systems in pigs. Proc. XIth. Eur. Conf. Anim. Blood Grps Biochem. Polymorphisms. pp. 321-330.

Schmidtke J. and Engel W. (1975) Gene action in fish of tetraploid origin. I. Cellular and biochemical parameters in cyprinid fish. Biochem. Genet. 13, 45-51.

Schmidtke J., Atkin N. B. and Engel W. (1975a) Gene action in fish of tetraploid origin. If. Cellular and biochemical parameters in clupeoid and salmonid fish. Biochem. Genet. 13, 301-309.

Schmidtke J., Dunkhase G. and Engel W. (1975b) Genetic variation of phosphoglucose isomerase isoenzymes in fish of the order Ostariophysi and Isospondyli. Comp. Bio- chem. Physiol. 50, 395-398.

Schwantes M. L. and Schwantes A. R. (1982a) Adaptative features of ectothermic enzymes. I. Temperature effects on the malate dehydrogenase from a temperate fish, Leiostomus xanthurus. Comp. Biochem. Physiol. 72B, 49 58.

Schwantes M. L. and Schwantes A. R. (1982b) Adaptative features of ectothermic enzymes II. The effects of accli- mation temperature on the malate dehydrogenase of the spot, Leiostomus xanthurus. Comp. Biochem. Physiol. 72B, 59-64.

Schwantes M. L., Sullivan B. and Schwantes A. R. (1976) Malate dehydrogenase (s-MDH). c. Aclimataq~.o de Leiostomus xanthurus. Ci~ncia e Cultura 28, 478.

Seeb J. and Wishard L. N. (1977) Genetic characterization of Prince William Sound pink salmon populations. Report to Alaska Dep. Fish. Game.

Selander R. K., Yang S. Y., Lewontin R. C. and Johnson W. E. (1970) Genetic variation in the horseshoe crab (Limulus polyphemus), a phylogenetic "Relic". Evolution 24, 402-412.

Shaklee J. B., Champion M. J. and Whitt G. S. (1974) Developmental genetics of teleosts: a biochemical ana- lysis of Lake Chubsuker ontogeny. Devel. Biol. 38, 356-382.

Shaklee J. B., Christiansen J. A., Sidell B. D., Prosser, C. L. and Whitt G. S. (1977) Molecular aspects of temperature acclimation in fish: contributions of changes in enzyme activities and isozyme patterns to metabolic reorganization in the green sunfish. 3. exp. Zool. 201, 1-20.

Siciliano M. J. and Wright D. A. (1976) Biochemical genetics of the platyfish--swordtail hybrid melanoma system. Prog. exp. Tumor Res. 20, 398-411.

Sidell B. D. and Otto G. (1978) A biochemical method of isolation of stripped bass and white perch larvae. Copeia, 340-345.

Smith G. R., Hall J. G., Koehn R. K. and Innes D. J. (1983) Taxonomic relationships of the zuni mountain

sucker, Catostomus discobolus yarrowi. Copeia (1), 37-48.

Smith P. J. (1979) Glucosephosphate isomerase and phos- phoglucomutase polymorphism in the New Zealand ling Genypterus blacodes. Comp. Biochem. Physiol. 62B, 573-57%

Smith P. J. and Grossland J. (1977) Identification of larvae of snapper Chrysophrys auratus Forster by electro- phoretic separation of tissue enzymes. N . Z . J . Mar. Freshwat. Res. 11, 795-798.

Smith P. J., Francis R. I. C. C. and Paul L. J. (1978) Genetic variation and population structure in the New Zealand snapper. N.Z. J. Mar. Freshwat. Res. 12, 343-350.

Smith P. J, and Jamieson A. (1978) Enzyme polymorphism in the Atlantic mackerel, Scomber scombrus L. Comp. Biochem. Physiol. 60B, 487-489.

Smith P. J. and Jamieson A. (1980) Protein variation in the Atlantic mackerel Scomber scombrus. Anim. Blood Grps Biochem. Genet. 11, 207 214.

Smith P. J., Patchell G. J. and Benson P. G. (1979) Glucosephosphate isomerase and isocitrate dehydro- genase polymorphisms in the hake, Merluccius australis. N.Z. J. Mar. Freshwat. Res. 13, 545-547.

Smith P. J. and Robertson D. A. (1981) Genetic evidence for two species of sprat (Sprattus) in New Zealand waters. Mar. Biol. 62, 227 233.

Somero G. N. and Hochachka P. W. (1971) Biochemical adaptation to the environment. Am. Zool. 11, 159-167.

Sparraw A. H. and Nauman A. F. (1976) Evolution of genome size by DNA doublings. Science 192, 524-539.

Stephens S. G. (1951) Possible significance of duplication in evolution. Adv. Genet. 4, 247.

Tashian R. E., Hewett-Emmett D. and Goodman M. (1983) On the evolution and genetics of carbonic anhydrases I, II and III. In Isozymes: Current Topics in Biological and Medical Research (Edited by Rattazzi M. C., Scandalios J. G. and Whitt G. S.), Vol. 7, pp. 79 100. Alan R. Liss, New York.

Tilley B. E., Gracy R. W. and Welch S. G. (1974) A point mutation increasing the stability of human phospho- glucose isomerase. J. biol. Chem. 249, 4571-4579.

Utter F. M., Allendorf F. W. and May B. (1976) The use of protein variation in the management of salmonid populations (Edited by Taber R. C. and BunneU F.). Proceeding of the 41st North American Wildlife Confer- ence, pp. 373-384.

Utter F. M., Campton D., Grant S., Milner G., Seeb J. and Wishard L. (1980) Population structures of indigenous salmonid species of the Pacific Northwest. Salmonid Ecosystems of the North Pacific (Edited by Neil W. J. and Hinsworth D. C.). Oregon State University Press and Oregon State University Sea Grant College Program, pp. 285-304.

Utter F. and Folmar L. (1978) Protein systems of grass carp: allelic variants and their application to management of introduced populations. Trans. Am. Fish. Soc. 107, 129-134.

Vandeberg J. L. and Stone W. H. (1978) Biochemical genetics of Macaques. II. Glucosephosphate isomerase polymorphism in Rhesus monkeys. Biochem. Genet. 16, 691-694.

Vuorinen J. (1984) Electrophoretic expression of genetic variation and duplicate gene activity in vendace, Core- gonus albula (Salmonidae). Hereditas 101, 85 96.

Ward R. D. and Beardmore J. A. (1977) Protein variation in the plaice, Pleuronectes platessa L. Genet. Res. Cam. 30, 45-62.

Watts R. L. and Watts D. C. (1968a) The implications for molecular evolution of possible mechanisms of primary gene duplication. J. theoret. Biol. 20, 227-244.

Watts R. L. and Watts D. C. (1968b) Gene duplication and the evolution of enzymes. Nature, Lond. 217, 112~1130.

Page 14: Isozymes of glucosephosphate isomerase (PGI) in fishes of the subclass actinopterygii

588 ZULEMA COPPES

Webster T. P., Selander R. K. and Yang S. Y. (1972) Genetic variability and similarity in the Anolis lizards of Bimini. Evolution 26, 523-535.

Welch S. G. (1971) Qualitative and quantitative variants of human phosphoglucose isomerase. Human Hered. 21, 467477.

Welch S. G., Fitch L. I. and Parr C. W. (1970) A variant of phosphoglucose isomerase in the rabbit. Biochem. J. 117, 525 521.

Whitt G. S. (1981) Evolution of isozyme loci and their differential regulation. In Evolution Today, Proceedings q]' the Second International Congress o/" Systematic and Evolutionary Biology (Edited by Scudder G. G. E. and Reveal J. L.), pp. 271 289. Hunt Institute for Botanical Documentation.

Whitt G. S. (1983) Isozymes as probes and participants in developmental and evolutionary genetics. In lsozymes: Current Topics in Biological and Medical Research (Edited by Rattazzi M. C., Scandalios J. G. and Whitt G. S.), Vol. 10, pp. 1 40. Alan R. Liss, New York.

Whitt G. S. (1984) Genetic, developmental and evo- lutionary aspects of the lactate dehydrogenase isozyme system. Cell Biochemistry and Function 2, 134 139.

Whitt G. S., Childers W. F. and Cho P. L. (1973a) Allelic expression at enzyme loci in an interbridal hybrid sunfish population. J. Hered. 64, 55 61.

Whitt G. S., Childers W. F., Shaklee J. B. and Matsumoto J. (1976) Linkage analysis of the multilocus glucose- phosphate isomerase isozyme system in sunfish (Centrar- chidae, Teleostei). Genetics 82, 35 42.

Whirr G. S., Miller E. T. and Shaklee J. B. (1973b) Developmental and biochemical genetics of lactate dehy- drogenase isozymes in fishes. In Genetics and Muta- genesis ol'Fish (Edited by Schroeder J. H.), pp. 243 276. Springer-Verlag, Berlin.

Whitt G. S., Philipp D. P. and Childers W. F. (1977) Aberrant gene expression during the development of hybrid sunfishes (Perciformes, Teleostei). D{fferentiation 9, 97 109.

Whitt G. S., Shaklee J. B. and Markert C. L. (1975) Evolution of the lactate dehydrogenase isozymes of fishes. In lsozymes. IV. Genetics and Evolution (Edited by Markert C. L.), pp. 381400. Academic Press, New York.

Wilkins N. B. (1972a) Biochemical genetics of the Atlantic salmon Salmo salar L.I. A review of recent studies. J. Fish Biol. 4, 487 504.

Wilkins N. B. (1972b) Biochemical genetics of the Atlantic salmon Salmo salar L. 11. The significance of recent studies and their application in population identification. J. Fish. Biol. 4, 505 517.

Williams G. C. and Koehn R. K. ([984) Population genetics of North Atlantic catadromous eels (Anguilla!. Evolutiona O, Genetics o/" Fishes (Edited by Turnm J. B.), Chapter I0, pp. 529 569. Plenum Publishing Corporation.

Williams G. C., Koehn R. K. and Mitten .I.B. (1973J Genetic differentiation in the American eel, An euilla rostrata. Evolution 27, 192 204.

Wilson A. C. (1975) Evolutionary importance of gene regulation. Stadler Syrup. 7, 119 134.

Wilson A. C., Carlson S. S. and White -1. J (1977) Biochemical ew)lution. Ann. Rev. Bioclu,m. 46, 573 639.

Winans G. A. (1979) Geographic variation in the milklish Chanos chanos. 1. Biochemical evidence. Evolution 34, 558 574.

Wishard k. N., Seeb J. E., Utter E. M. and Stetan D. (1984) A genetic investigation of suspected redband trout pop- ulations. Copeia (1), 120 132.

Yang S. Y., Soul6 M. and Gorman G. C. (1974) Anoli.s lizards of the eastern Caribbean: a case study in evo- lution. Syst. Zool. 23, 387 399.

Yngaard C. F. (1972) Genetically determined electro- phoretic variants of phosphoglucose isomerase and 6-phosphogluconate dehydrogenase in Zoarces viviparus L. Hereditas 71, 151 154.

Yoshida A. and Carter N. D. (1969) Nature of rabbit phosphoglucose isomerase isozymes. Biochim. hiophvs. Acta 194, 151 160.

Zaltitis J. and Oliver 1. T. (1967) Inhibition of glucose- phosphate isomerase by metabolic intermediates of fruc- tose. Biochem. J. 102, 753 759.

Zuckerkandl E. and Pauling L. (1965) Evolutionary diver gence and convergence in proteins. In Evolving Genes and Proteins (Edited by Brison V. and Vogel H. J.I. pp. 97 166. Academic Press, New York.


Recommended