+ All Categories
Home > Documents > Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group...

Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group...

Date post: 19-Dec-2015
Category:
View: 219 times
Download: 1 times
Share this document with a friend
Popular Tags:
96
Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research
Transcript
Page 1: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Iterative Image Registration:

Lucas & Kanade Revisited

Kentaro Toyama

Vision Technology Group

Microsoft Research

Page 2: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Every writer creates his own precursors. His work modifies our conception of the past, as it will modify the future.

Jorge Luis Borges

Page 3: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

History

• Lucas & Kanade (IUW 1981)

LK BAHH ST S BJ HB BL G SI CETSC

• Bergen, Anandan, Hanna, Hingorani (ECCV 1992)

• Shi & Tomasi (CVPR 1994)

• Szeliski & Coughlan (CVPR 1994)

• Szeliski (WACV 1994)

• Black & Jepson (ECCV 1996)

• Hager & Belhumeur (CVPR 1996)

• Bainbridge-Smith & Lane (IVC 1997)

• Gleicher (CVPR 1997)

• Sclaroff & Isidoro (ICCV 1998)

• Cootes, Edwards, & Taylor (ECCV 1998)

Page 4: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Image Registration

Page 5: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Applications

Page 6: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Applications

• Stereo

LK BAHH ST S BJ HB BL G SI CETSC

Page 7: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Applications

• Stereo

• Dense optic flow

LK BAHH ST S BJ HB BL G SI CETSC

Page 8: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Applications

• Stereo

• Dense optic flow

• Image mosaics

LK BAHH ST S BJ HB BL G SI CETSC

Page 9: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Applications

• Stereo

• Dense optic flow

• Image mosaics

• Tracking

LK BAHH ST S BJ HB BL G SI CETSC

Page 10: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Applications

• Stereo

• Dense optic flow

• Image mosaics

• Tracking

• Recognition

LK BAHH ST S BJ HB BL G SI CETSC

?

Page 11: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Lucas & Kanade

#1

Derivation

Page 12: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

L&K Derivation 1

I0(x)

)('0 xI

h

xIhxIh

)()(lim 00

0

)('0 xI

Page 13: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

L&K Derivation 1

)('0 xI

h

xIhxI )()( 00

h I0(x)

I0(x+h)

Page 14: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

L&K Derivation 1

h I0(x)

)('0 xI

h

xIxI )()( 0

I(x)

Page 15: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

L&K Derivation 1

h I0(x)

h)(

)()('0

0

xI

xIxI

I(x)

Page 16: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

L&K Derivation 1

I0(x)

h

Rx xI

xIxI

R )(

)()(

||

1'0

0

RI(x)

Page 17: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

L&K Derivation 1

I0(x)

h

RxxxI

xIxIxw

xw )(

)]()()[(

)(

1'0

0

I(x)

Page 18: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

L&K Derivation 1

h0 I0(x)

0h

I(x)

RxxxI

xIxIxw

xw )(

)]()()[(

)(

1'0

0

Page 19: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

L&K Derivation 1

1h

Rxx

hxI

hxIxIxw

xwh

)(

)]()()[(

)(

1

0'0

000

I0(x+h0)

I(x)

Page 20: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

L&K Derivation 1

2h

Rxx

hxI

hxIxIxw

xwh

)(

)]()()[(

)(

1

1'0

101

I0(x+h1)

I(x)

Page 21: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

L&K Derivation 1

1kh

Rx k

k

x

k hxI

hxIxIxw

xwh

)(

)]()()[(

)(

1'0

0

I0(x+hk)

I(x)

Page 22: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

L&K Derivation 1

1kh

Rx k

k

x

k hxI

hxIxIxw

xwh

)(

)]()()[(

)(

1'0

0

I0(x+hf)

I(x)

Page 23: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Lucas & KanadeDerivation

#2

Page 24: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

L&K Derivation 2

• Sum-of-squared-difference (SSD) error

E(h) = [ I(x) - I0(x+h) ]2x R

E(h) [ I(x) - I0(x) - hI0’(x) ]2x R

Page 25: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

L&K Derivation 2

2[I0’(x)(I(x) - I0(x) ) - hI0’(x)2] x Rh

E

I0’(x)(I(x) - I0(x))x R h I0’(x)2

x R

= 0

Page 26: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Comparison

I0’(x)[I(x) - I0(x)] h I0’(x)2

x

x

h

w(x)[I(x) - I0(x)]

w(x)x

x I0’(x)

Page 27: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Comparison

I0’(x)[I(x) - I0(x)] h I0’(x)2

x

h

x

w(x)[I(x) - I0(x)]

w(x)x

x I0’(x)

Page 28: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalizations

Page 29: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Original

h ) = x R

(E [I( x ) - (x ]2)+ h I

Page 30: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Original

• Dimension of image

h ) = x R

(E [I( x ) - (x ]2)+ h

1-dimensional

I

LK BAHH ST S BJ HB BL G SI CETSC

Page 31: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalization 1a

• Dimension of image

h ) = x R

(E [I( x ) - (x ]2)+ h

y

xx2D:

I

LK BAHH ST S BJ HB BL G SI CETSC

Page 32: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalization 1b

• Dimension of image

h ) = x R

(E [I( x ) - (x ]2)+ h

1

y

x

xHomogeneous 2D:

I

LK BAHH ST S BJ HB BL G SI CETSC

Page 33: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Problem A

LK BAHH ST S BJ HB BL G SI CETSC

Does the iteration converge?

Page 34: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Problem A

Local minima:

Page 35: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Problem A

Local minima:

Page 36: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Problem B

- I0’(x)(I(x) - I0(x))x R h I0’(x)2

x R

h is undefined if I0’(x)2 is zerox R

LK BAHH ST S BJ HB BL G SI CETSC

Zero gradient:

Page 37: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Problem B

Zero gradient:

?

Page 38: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Problem B’

- (x)(I(x) - I0(x))x R

hy 2

x R

y

I )(0 xy

I

)(0 x

Aperture problem:

LK BAHH ST S BJ HB BL G SI CETSC

Page 39: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Problem B’

No gradient along one direction:

?

Page 40: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Solutions to A & B

• Possible solutions:– Manual intervention

LK BAHH ST S BJ HB BL G SI CETSC

Page 41: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

• Possible solutions:– Manual intervention– Zero motion default

LK BAHH ST S BJ HB BL G SI CETSC

Solutions to A & B

Page 42: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

• Possible solutions:– Manual intervention– Zero motion default– Coefficient “dampening”

LK BAHH ST S BJ HB BL G SI CETSC

Solutions to A & B

Page 43: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

• Possible solutions:– Manual intervention– Zero motion default– Coefficient “dampening”– Reliance on good features

LK BAHH ST S BJ HB BL G SI CETSC

Solutions to A & B

Page 44: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

• Possible solutions:– Manual intervention– Zero motion default– Coefficient “dampening”– Reliance on good features– Temporal filtering

LK BAHH ST S BJ HB BL G SI CETSC

Solutions to A & B

Page 45: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

• Possible solutions:– Manual intervention– Zero motion default– Coefficient “dampening”– Reliance on good features– Temporal filtering– Spatial interpolation / hierarchical estimation

LK BAHH ST S BJ HB BL G SI CETSC

Solutions to A & B

Page 46: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

• Possible solutions:– Manual intervention– Zero motion default– Coefficient “dampening”– Reliance on good features– Temporal filtering– Spatial interpolation / hierarchical estimation– Higher-order terms

LK BAHH ST S BJ HB BL G SI CETSC

Solutions to A & B

Page 47: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Original

h ) = x R

(E [I( x ) - (x ]2)+ h I

Page 48: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Original

• Transformations/warping of image

h ) = x R

(E [I( x ) -I(x ]2)+ h

Translations:

y

x

h

LK BAHH ST S BJ HB BL G SI CETSC

Page 49: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Problem C

What about other types of motion?

Page 50: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalization 2a

• Transformations/warping of image

A, h) = x R

(E [I(Ax ) - (x ]2)+h

Affine:

dc

baA

y

x

h

I

LK BAHH ST S BJ HB BL G SI CETSC

Page 51: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalization 2a

Affine:

dc

baA

y

x

h

Page 52: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalization 2b

• Transformations/warping of image

A ) = x R

(E [I( A x ) - (x ]2)

Planar perspective:

187

654

321

aa

aaa

aaa

A

I

LK BAHH ST S BJ HB BL G SI CETSC

Page 53: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalization 2b

Planar perspective:

187

654

321

aa

aaa

aaa

A

Affine +

Page 54: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalization 2c

• Transformations/warping of image

h ) = x R

(E [I( f(x, h) ) - (x ]2)

Other parametrized transformations

I

LK BAHH ST S BJ HB BL G SI CETSC

Page 55: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalization 2c

Other parametrized transformations

Page 56: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Problem B”

-(JTJ)-1 J (I(f(x,h)) - I0(x)) h ~

Generalized aperture problem:

LK BAHH ST S BJ HB BL G SI CETSC

- I0’(x)(I(x) - I0(x))x R h I0’(x)2

x R

Page 57: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Problem B”

?

Generalizedaperture problem:

Page 58: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Original

h ) = x R

(E [I( x ) - (x ]2)+ h I

Page 59: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Original

• Image type

h ) = x R

(E [I( x ) - (x ]2)+ h

Grayscale images

I

LK BAHH ST S BJ HB BL G SI CETSC

Page 60: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalization 3

• Image type

h ) = x R

(E ||I( x ) -I(x ||2)+ h

Color images

LK BAHH ST S BJ HB BL G SI CETSC

Page 61: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Original

h ) = x R

(E [I( x ) - (x ]2)+ h I

Page 62: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Original

• Constancy assumption

h ) = x R

(E [I( x ) -I(x ]2)+ h

Brightness constancy

LK BAHH ST S BJ HB BL G SI CETSC

Page 63: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Problem C

What if illumination changes?

Page 64: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalization 4a

• Constancy assumption

h, )=x R

(E [I( x ) - I(x ]2)++ h

Linear brightness constancy

LK BAHH ST S BJ HB BL G SI CETSC

Page 65: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalization 4a

Page 66: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalization 4b

• Constancy assumption

h,) = x R

(E [I( x ) - B(x]2)+ h

Illumination subspace constancy

LK BAHH ST S BJ HB BL G SI CETSC

Page 67: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Problem C’

What if the texture changes?

Page 68: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalization 4c

• Constancy assumption

h,) = x R

(E [I( x ) - ]2+ h

Texture subspace constancy

B(x)

LK BAHH ST S BJ HB BL G SI CETSC

Page 69: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Problem D

Convergence is slower as #parameters increases.

Page 70: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

• Faster convergence:– Coarse-to-fine, filtering, interpolation, etc.

LK BAHH ST S BJ HB BL G SI CETSC

Solutions to D

Page 71: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

• Faster convergence:– Coarse-to-fine, filtering, interpolation, etc. – Selective parametrization

Solutions to D

LK BAHH ST S BJ HB BL G SI CETSC

Page 72: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

• Faster convergence:– Coarse-to-fine, filtering, interpolation, etc. – Selective parametrization – Offline precomputation

Solutions to D

LK BAHH ST S BJ HB BL G SI CETSC

Page 73: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

• Faster convergence:– Coarse-to-fine, filtering, interpolation, etc. – Selective parametrization – Offline precomputation

• Difference decomposition

LK BAHH ST S BJ HB G SI CETSC

Solutions to D

BL

Page 74: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Solutions to D

• Difference decomposition

Page 75: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Solutions to D

• Difference decomposition

Page 76: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

• Faster convergence:– Coarse-to-fine, filtering, interpolation, etc. – Selective parametrization – Offline precomputation

• Difference decomposition

– Improvements in gradient descent

LK BAHH ST S BJ HB G SI CETSC

Solutions to D

BL

Page 77: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

• Faster convergence:– Coarse-to-fine, filtering, interpolation, etc. – Selective parametrization– Offline precomputation

• Difference decomposition

– Improvements in gradient descent• Multiple estimates of spatial derivatives

LK BAHH ST S BJ HB G SI CETSC

Solutions to D

BL

Page 78: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Solutions to D

• Multiple estimates / state-space sampling

Page 79: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalizations

x R

[I( x ) - (x ]2)+ h I

Modifications made so far:

Page 80: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Original

• Error norm

h ) = x R

(E [I( x ) -I(x ]2)+ h

Squared difference:

LK BAHH ST S BJ HB BL G SI CETSC

Page 81: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Problem E

What about outliers?

Page 82: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalization 5a

• Error norm

h ) = x R

(E (I( x ) -I(x ))+ h

Robust error norm:

22

2

)(uk

uuρ

LK BAHH ST S BJ HB BL G SI CETSC

Page 83: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Original

h ) = x R

(E [I( x ) - (x ]2)+ h I

Page 84: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Original

• Image region / pixel weighting

h ) = x R

(E [I( x ) -I(x ]2)+ h

Rectangular:

LK BAHH ST S BJ HB BL G SI CETSC

Page 85: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Problem E’

What about background clutter?

Page 86: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalization 6a

• Image region / pixel weighting

h ) = x R

(E [I( x ) -I(x ]2)+ h

Irregular:

LK BAHH ST S BJ HB BL G SI CETSC

Page 87: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Problem E”

What about foreground occlusion?

Page 88: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalization 6b

• Image region / pixel weighting

h ) = x R

(E [I( x ) -I(x ]2)+ h

Weighted sum:

w(x)

LK BAHH ST S BJ HB BL G SI CETSC

Page 89: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalizations

x R

[I( x ) - (x ]2)+ h I

Modifications made so far:

Page 90: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Generalizations: Summary

= x R

(I( ) - w(x) (x ))h )(E f(x, h)

h ) = x R

(E [I( x ) - (x ]2)+ h I

Page 91: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Foresight

• Lucas & Kanade (IUW 1981)

• Bergen, Anandan, Hanna, Hingorani (ECCV 1992)

• Shi & Tomasi (CVPR 1994)

• Szeliski & Coughlan (CVPR 1994)

• Szeliski (WACV 1994)

• Black & Jepson (ECCV 1996)

• Hager & Belhumeur (CVPR 1996)

• Bainbridge-Smith & Lane (IVC 1997)

• Gleicher (CVPR 1997)

• Sclaroff & Isidoro (ICCV 1998)

• Cootes, Edwards, & Taylor (ECCV 1998)

LK BAHH ST S BJ HB BL G SI CETSC

Page 92: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Summary

• Generalizations– Dimension of image– Image transformations / motion models– Pixel type– Constancy assumption– Error norm– Image mask

L&K ?Y

Y

n

Y

n

Y

Page 93: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Summary

• Common problems:– Local minima– Aperture effect– Illumination changes– Convergence issues– Outliers and occlusions

L&K ?Y

maybe

Y

Y

n

Page 94: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

• Mitigation of aperture effect:– Manual intervention– Zero motion default– Coefficient “dampening”– Elimination of poor textures– Temporal filtering– Spatial interpolation / hierarchical – Higher-order terms

Summary

L&K ?n

n

n

n

Y

Y

n

Page 95: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Summary

• Better convergence:– Coarse-to-fine, filtering, etc.– Selective parametrization – Offline precomputation

• Difference decomposition

– Improvements in gradient descent• Multiple estimates of spatial derivatives

L&K ?Y

nmaybe

maybe

maybe

maybe

Page 96: Iterative Image Registration: Lucas & Kanade Revisited Kentaro Toyama Vision Technology Group Microsoft Research.

Hindsight

• Lucas & Kanade (IUW 1981)

• Bergen, Anandan, Hanna, Hingorani (ECCV 1992)

• Shi & Tomasi (CVPR 1994)

• Szeliski & Coughlan (CVPR 1994)

• Szeliski (WACV 1994)

• Black & Jepson (ECCV 1996)

• Hager & Belhumeur (CVPR 1996)

• Bainbridge-Smith & Lane (IVC 1997)

• Gleicher (CVPR 1997)

• Sclaroff & Isidoro (ICCV 1998)

• Cootes, Edwards, & Taylor (ECCV 1998)


Recommended