+ All Categories
Home > Technology > IV WTON 2015 - Strategies for Future Flexible Optical Transceivers

IV WTON 2015 - Strategies for Future Flexible Optical Transceivers

Date post: 24-Jul-2015
Category:
Upload: cpqd
View: 60 times
Download: 0 times
Share this document with a friend
Popular Tags:
19
IV International Workshop on Trends in Optical Technologies 28/05/2015 Strategies for Flexible Optical Transceivers Jacklyn D. Reis, PhD CPqD, Division of Optical Technologies, Campinas – SP, Brazil
Transcript

IV International Workshop on Trends in Optical Technologies

28/05/2015

Strategies for Flexible Optical Transceivers

Jacklyn D. Reis, PhDCPqD, Division of Optical Technologies, Campinas – SP, Brazil

Division of Optical Technologies at CPqD

Technological TrendsTechnological Trends

Transmission and NetworksTransmission and Networks

Product Technologies

Product Technologies MicroelectronicsMicroelectronics Integrated

PhotonicsIntegrated Photonics

TransmissionTransmission

DSPDSP

AccessAccess

AmplificationAmplification

ROADMROADM

NetworksNetworks

HardwareHardware

SoftwareSoftware

FirmwareFirmware

TestsTests

MechanicsMechanics

RequirementsRequirements

Front EndFront End

Back EndBack End

DesignDesign

AlignmentAlignment

PackagingPackaging

SystemsSystems

SYSTEMS

DEVICESTransportTransport

Optical transmission team

Team Supporters/Partners

1 – Andrea Chiuchiarelli2 – Daniel Moutinho Pataca3 – Eduardo de Souza Rosa4 – Fábio Donati Simões5 – Flávio de Andrade Silva6 – Gabriel Suzigan7 – Glauco César C. Pereira Simões8 – Júlio Cesar Medeiros Diniz9 – Sandro Marcelo Rossi10 – Stenio Magalhães Ranzini11 – Tatiani Piven12 – Tiago Carneiro de Lima13 – Valery Nobl Rozental14 – Victor Emanuel Saraiva Parahyba

Optical Fiber Networks• The backbone of any network infrastructure worldwide• Optical line interfaces• Transceiver• Optical transport system• Optical channel

P.J. Winzer, “Scaling Optical Fiber Networks: Challenges and Solutions”, Optics&Photonics News, March 2015.

Outline

• Flexible Transceiver• Transmitter DSP

• Spectrally-Sliced Receivers

• Receiver DSP

• 400G Superchannel transmission

• NL fiber channel compensation

Flexible Tx

Synchronous Rate / Bandwidth Switching

• Digital Interpolator Filter

V.N. Rozental et al, “Synchronous Rate and Bandwidth Switching for Flexible Optical Transceivers”.

• Flexible Tx

Experimental DemonstrationV.N. Rozental et al, “Synchronous Rate and Bandwidth Switching for Flexible Optical Transceivers”.

Spectrally-Sliced Rx

• Several receiver optical front-ends with narrower bandwidth balanced detectors and TIAs

• Several ADCs with slower sampling rate, lower bandwidth, but enhanced ENOB;

BW

(i) Arbitrary signalat the Virtualized Rx input

BW1 BW2 BWn(ii) Digital signal after each ADC stage

~BW(iii) DSP is applied to reconstruct the original signal

Spectrally-Sliced Coherent RxSpectrally-Sliced Coherent Rx

λ1, 2, …, n

MUX

ADC

ADC

ADC

ADC

ADC

ADC

I

Q

CoherentReceiver

(1)

I

Q

CoherentReceiver

(2)

I

Q

CoherentReceiver

(n)

λ1

λ2

λn

Receiver Controller

D

S

P

BWBWBWBW1

BW2

BWn

BW

BW

BW

Spectrally-Sliced Receiver

Experimental Demonstration

• Flexible Rx Single-Carrier 200G – QPSK

CPqD Proprietary & Confidential – All rights reserved

J.C.M. Diniz et al, “Digital Signal Processing for Spectrally-Sliced Coherent Optical Receivers”.

400G Superchannel

Optical 400G Superchannels

• 2x31.5 GBd – PDM – 16QAM• 3x21 GBd – PDM – 16QAM• Maximum Transmission Distance with Inter-Sub-Carrier NL Post-

Compensation

Experimental Demonstration

• 5x400G Nyquist WDM Transmission 75 GHz Grid• 63 GSa/s (14 GHz) DACs• 5x50 km – 0.16 dB, 21 ps/nm/km, 112 um2

• 80 GSa/s (35 GHz) ADCs• Digital Back-Propagation• Coupled Equations DBP• Total Field DBP

F.P. Guiomar et al, “Ultra-Long-Haul 400G Superchannel Transmission with Multi-Carrier Nonlinear Equalization”.

Experimental Demonstration

Ultra-Long-Haul Transmission

F.P. Guiomar et al, “Ultra-Long-Haul 400G Superchannel Transmission with Multi-Carrier Nonlinear Equalization”.

ASIC Physical Implementation

28 nm HP TSMC

16 nm FF+ TSMC

Difference (%)

Latency 69 clocks 32 clocks -53.6

Placeable Instances

4.54 M 2.85 M -37.1

Logic Synthesis

Area5.82 mm² 1.88 mm² -67.7

Core Area (P&R)

8.31 mm² 2.68 mm² -67.7

Estimated Catapult®

Area 9.10 mm² 2.86 mm² -68.5

Estimated DC Power

2.256 W 1.146 W -49.2

S.M. Ranzini et al, “Deep Submicron Multimillion Gates Implementation of Fiber-Optic Nonlinear Equalizer using High Level Synthesis”.

Jacklyn Dias Reis
Incluir aqui as figuras do P&N para 16nm e 28nm... As figuras podem destacar os blocos do algoritmo, com valores de área, gate count etcNo corpo do slide, podemos acrescentar mais info do design

ASIC View after P&RS.M. Ranzini et al, “Deep Submicron Multimillion Gates Implementation of Fiber-Optic Nonlinear Equalizer using High Level Synthesis”.

Final Remarks

• Digital Signal Processing

• Multiplexing Techniques

• Optical Transmission Technologies

• What is next?• More Capacity?• More Flexibility?• Magical devices

[email protected]

www.cpqd.com.br


Recommended