+ All Categories
Home > Documents > J. A. Alamo J. Joh*

J. A. Alamo J. Joh*

Date post: 29-Jan-2022
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
23
HighVoltage DC and RF Power Reliability of GaN HEMTs J. A. del Alamo and J. Joh* Microsystems Technology Laboratories, MIT, Cambridge, MA (USA) *presently with Texas Instruments, Dallas, TX (USA) ICNS 2011 Glasgow, July 10-15, 2011 Acknowledgements: ARL (DARPA-WBGS program), ONR (DRIFT-MURI program) Accel-RF Corporation
Transcript

High‐Voltage DC and RF Power Reliability of GaN HEMTs

J. A. del Alamo and J. Joh*Microsystems Technology Laboratories, MIT, Cambridge, MA (USA)

*presently with Texas Instruments, Dallas, TX (USA)

ICNS 2011Glasgow, July 10-15, 2011

Acknowledgements: ARL (DARPA-WBGS program), ONR (DRIFT-MURI program)Accel-RF Corporation

Micovic, Cornell Conf 201094‐95 GHz MMIC PAs:

Micovic, MTT‐S 2010

Pout>40 W/mm, over 10X GaAs! Wu, DRC 2006

Breakthrough RF‐mmw power in GaN HEMTs

2

3

GaN HEMTs in the field

Counter‐IED Systems (CREW)  200 W GaN HEMT for 

cellular base station Kawano, APMC 2005

100 mm GaN‐on‐SiCvolume manufacturingPalmour, MTT‐S 2010

Recent great strides in RF power reliability

4

28 V RF oper. life > 2 years (X‐band, 3 dB comp., ~150oC)Kolias, MTT‐S 2010

MTTF=1x107 h at 47 V (C‐band, 5 dB comp., ~150oC)Yamasaki, MTT‐S 2010

MTTF=7x107 h at 28 V (40 GHz, 1.5 dB comp., ~150oC)Heying, MTT‐S 2010

• In general: – RF stress  Pout↓, Gain↓, IDmax↓, |IG|↑, 

VT shift, dispersion↑– RF introduces more degradation than DC– RF stress accelerated by VDQ, Pin, Tj

Dominant degradation mechanismsunder RF stress?

5

Conway, IRPS 2007; Joh, ROCS 2008, IEDM 2010, ROCS 2011; Chini, IEDM 2009

• Indications of two competing mechanisms: – Trap creation and trapping?– Field‐driven structural degradation?

Chini, EUMW 2009

Rozman, ROCS 2009; Chini, IEDM 2009Dammann, IRPS 2010

Outline

1. RF power reliability concerns2. Methodology for RF reliability experiments3. Electrical and structural results4. Discussion: the role of gate placement5. Conclusions

6

RF power reliability concerns

7

OFF and semi‐ON high‐voltage DC stress :– Degradation of IDmax, RD, IGoff– VT shift– Electron trapping– Trap creation– Formation of grooves and pits under drain‐end of gate

High‐power DC stress:– Not accessible to DC stress experiments– Device blows up instantly

ON DC stress:– Mostly benign

RF experiment flowchart:conventional approach

8

Limitations:• Bias point shifts during stress• Limited RF characterization• No DC characterization• No trap characterization• If examining different RF 

conditions, RF characterization confusing

START

RF StressPout, PAE, Gain, IDQ, IGQ

END

Tstress

RF experiment flowchart: improved approach  (I)

New features:• RF and DC characterization under 

standardized conditions • At beginning, end and periodically 

through experiment

Limitations:• Limited characterization• Characterization temperature 

cannot be too different from stress temperature

• Cannot separate trapping from “permanent” degradation

9

START

RF Stress

Short Characterization (DC, RF)

End?

YES

NO

Tstress

Tbase

END

Short Characterization (DC, RF)

RF experiment flowchart: improved approach  (II)

New features:• Comprehensive DC, RF and 

pulsed characterization under standardized conditions (RT)

• At beginning, end, and during experiment

• Detrapping step to enable trap characterization

10

Full Characterization (DC, RF, CC)

START

RF Stress

Short Characterization (DC, RF)

Key Event?

END: detrapping +Full characterization

YES

Detrapping

NO

Tstress

RT

Tbase

Setup for RF reliability studies

11

DC/Pulsed Characterization‐ KeithleySources‐ Agilent B1500A

Windows‐based PC

Accel‐RF System

Hardware

MIT RF/DC Characterization Suite‐ DC FOMs‐ Current collapse

DUTSwitching Matrix

RF/DC Units

Accel‐RF Software‐ RF measurement‐Temperature control‐ Stressing

TbaseHeater

Augmented with:• external instrumentation for DC/pulsed characterization• software to control external instrumentation and extract DC and RF FOMs 

Accel‐RF AARTS RF10000‐4/S system:• two 2‐4 GHz channels• two 7‐12 GHz channels • Max Pin=30 dBm• Tbase=50‐200 °C

RF‐stress experiments

12

Full Characterization (DC, RF, CC)

START

RF (DC) Stress

Short Characterization (DC, RF)

Key Event?

END: detrapping +Full characterization

YES

Detrapping

NO

Tstress

RT

Tbase=50°C

Tbase=100°C for 30 mins

– Full DC I‐V sweeps– RF power sweep @ VDS=28 V, IDQ=100 mA/mm– Current collapse (after 1” VDS=0, VGS=‐10 V pulse)– Room temperature

– DC FOMs: IDmax, RS, RD, VT, IGoff, …– RF FOMs @ VDS=28 V, IDQ=100 mA/mm

• Saturated conditions (Pin=23 dBm): Pout,sat, Gsat, PAE• Linear conditions (Pin=10 dBm): Glin

– Every few minutes at Tbase=50°C

0

5

10

15

20

25

0

2

4

6

8

10

12

14

10 15 20 25 30

PAE (%

)

Gain (d

B)

Pin (dBm)

PAE

Gain

RF stress experiments: Pin step‐stress

13

• Motivation: – higher Pin larger V waveform at output

• MMIC: – single‐stage internally‐matched– 4x100 μm GaN HEMT  (OFF-state Vcrit >60 V at RT)– Gate centered in S‐D gap

• Step Pin stress:– VDS = 40 V, IDQ = 100 mA/mm– Pin = 0 (DC), 1, 20‐27 dBm– 300 min stress at each step– Tstress=50 °C (Tj=110‐230°C) VDS=40 V, IDQ=100 mA/mm

Joh, ROCS 2011

0 10 20 30 40 50 6029

30

31

32

33

Time (hr)P

out (d

Bm

)0 10 20 30 40 50 60

0

5

10

15

20

25

30

Time (hr)

Pin (d

Bm

)

Evolution of RF stress

14

• Pin changing  RF FOMs changing• Degradation apparent but not easily quantifiable 

Pout

Gain

Pin Pout

IDQ PAE

Full Characterization (DC, RF, CC)

START

RF (DC) Stress

Short Characterization (DC, RF)

Key Event?

END: detrapping +Full characterization

YES

Detrapping

NO

Tstress

RT

Tbase=50°CDC DC

0 20 40 60-100

0

100

200

300

400

Time (hr)

I DQ (m

A/m

m)

0 10 20 30 40 50 600

5

10

15

20

25

30

Time (hr)

PA

E (%

)

RF FOM during short characterization

15

• Mild degradation under DC and low Pin• Adding RF increases degradation: Pin ↑  Pout ↓

Full Characterization (DC, RF, CC)

START

RF (DC) Stress

Short Characterization (DC, RF)

Key Event?

END: detrapping +Full characterization

YES

Detrapping

NO

Tstress

RT

Tbase=50°C

Pout at Pin=23 dBm, Glin at Pin=10 dBmVDS=28 V, IDQ=100 mA/mm, Tbase=50°C

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0.8

0.9

1

1.1

1.2

0 1000 2000 3000

|I Gof

f| (m

A/m

m)

I Dm

ax/I D

max

(0),

R/R

(0)

Time (min)

IDmax

RS

RD

IGoff

DC|Pin=1  20  21   22   23    24    25    26   27 dBm

DC FOM during short characterization

16

• Mild degradation under DC and low Pin• At Pin=20 dBm, step degradation in IGoff• Beyond Pin=20 dBm, increasing degradation of IDmax and RD

Tbase=50°C

Full Characterization (DC, RF, CC)

START

RF (DC) Stress

Short Characterization (DC, RF)

Key Event?

END: detrapping +Full characterization

YES

Detrapping

NO

Tstress

RT

Tbase=50°C

29

30

31

32

33

0123456789

‐10 0 10 20 30

Saturated P o

ut(dBm

)

Perm

anen

t IDmaxDegrada

tion (%

)Cu

rren

t Collapse (%

)

Stress Input Power Pin (dBm)

Initial

DC RF

Pout

CurrentCollapse

Δ|IDmax|

Tbase=RT

DC/RF/CC full characterization

17

• Beyond Pin=20 dBm:― Sharp Pout degradation― Permanent degradation of IDmax― Increased CC  evidence of new trap creation

Full Characterization (DC, RF, CC)

START

RF (DC) Stress

Short Characterization (DC, RF)

Key Event?

END: detrapping +Full characterization

YES

Detrapping

NO

Tstress

RT

Tbase=50°C

100 °C

Structural degradation (planar view)

• Pit formation along drain end of gate edge• Similar to DC high voltage OFF‐state stress

18

SEM AFM

DC OFF‐state stress,  VDG=50 V, 1000 min, ~150oCMakaram, APL 2010

HV OFF‐state DC vs. RF power degradation

19

Similar pattern of degradation:

High V end of load line responsible for degradation

HV OFF‐state DC RF power

IDmax ↓ beyond Vcrit ↓ beyond Pin‐critRD ↑ beyond Vcrit ↑ beyond Pin‐critRS small increase small increase

IGoff ↑ beyond Vcrit ↑ beyond Pin‐critCurrent Collapse ↑ beyond Vcrit ↑ beyond Pin‐critPermanent IDmax ↓ beyond Vcrit ↓ beyond Pin‐crit

Pits under drain end of gate Yes YesPits under source end of gate No No 

Step Pin stress: Offset Gate

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0

0.5

1

1.5

2

2.5

3

0 300 600 900 1200

|I Gof

f| (m

A/m

m)

I Dm

ax/I D

max

(0),

R/R

(0)

Time (min)

IDmax

RS

RD

IGoff

Inner loop (50°C)

DC         RF Pin=20         23           26 dBm

13

13.5

14

14.5

15

30

30.5

31

31.5

32

32.5

0 300 600 900 1200

Small Signa

l Gain Glin(dB)

Saturated P o

ut(dBm

)

Time (min)

Gain

Pout

DC     RF Pin=20      23    26 dBm

Inner loop (50°C)

RF FOMs DC FOMs

Joh, IEDM 2010

• Increased degradation under high Pin• No IGoff degradation• Degradation of IDmax and RS, not RD

20

Offset gate devices (LGS<LGD): OFF-state Vcrit > 80 V at T=150°C

Tj~170°C by adjusting Tbase

HV OFF‐state DC vs. RF power degradation

21

Different pattern of degradation:

High V end of load line NOT responsible for 

degradation

HV OFF‐state DC RF power

IDmax ↓ beyond Vcrit ↓ beyond Pin‐critRD ↑ beyond Vcrit ↑ beyond Pin‐critRS small increase ↑↑ beyond Pin‐critIGoff ↑ beyond Vcrit No

Current Collapse ↑ beyond Vcrit ↑ beyond Pin‐critPermanent IDmax ↓ beyond Vcrit ↓ beyond Pin‐crit

Pits under drain end of gate Yes NoPits under source end of gate No No 

High‐power pulsed stress

22

• Pulsed stress reproduces RS degradation in offset gate device• No RS degradation in centered gate

1

1.1

1.2

1.3

1.4

0 20 40 60 80

Normalized

 RS, R D

Stress VDS (V)

Offset gate

Centered gate

RS

RD

RDRS1

1.1

1.2

1.3

1.4

0 20 40 60 80

Normalized

 RS, R D

Stress VDS (V)

Offset gate

Centered gate

RS

RD

RDRS

100 pulses, 500 μs, 0.05% dutyIDpulse=950 mA/mm

• High‐power stress not accessible in DC  pulsed stress• Offset‐gate and centered‐gate devices on same wafer:

High power region of load line responsible for 

degradation

Summary

• New RF reliability testing methodology  developed

• Under RF stress, degradation worse than at DC bias point

• Different patterns of RF degradation observed:– In some device designs, it reproduces HV OFF‐state DC degradation (field driven)

– In other device designs, degradation pattern correlates with high‐power pulsed stress (power driven?) 

DC reliability not good predictor for RF reliability

Need for fundamental studies of RF reliability

23


Recommended