+ All Categories
Home > Documents > J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S....

J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S....

Date post: 29-Jan-2016
Category:
Upload: berniece-walsh
View: 215 times
Download: 0 times
Share this document with a friend
Popular Tags:
25
J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang, A. Mandlekar, T.O. Raubenheimer, M. Rowen, S. Spampinati, J. Welch, G. Yu… LCLS-II Accelerator Physics meeting October 05, 2011 TW FEL simulations and uncertainties LCLS-II Accel. Phys. , J.
Transcript
Page 1: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

J. WuIn collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai,

A.W. Chao, Y. Ding, X. Huang, A. Mandlekar, T.O. Raubenheimer, M. Rowen, S. Spampinati, J. Welch, G. Yu…

LCLS-II Accelerator Physics meeting October 05, 2011

TW FEL simulations and uncertainties

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 2: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

LAYOUT

A 1 Å Terawatts FEL @ LCLS-II

Simulation results for a TW FEL @ LCLS-II1.5 Å (8 keV), 1 Å (13 keV)

Helical, Planar

Start-to-end

Uncertainties: jitter, error, fluctuation…

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 3: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

PREVIOUS PRESENTATIONS

J. Wu @ FEL R&D meeting, June 30, 2011Y. Jiao @ LCLS-II Accelerator Physics meeting, July 27, 2011J. Wu @ FEL 2011 conference, August 24, 2011W.M. Fawley, J. Frisch, Z. Huang, Y. Jiao, H.-D. Nuhn, C. Pellegrini, S. Reiche, J. Wu, paper submitted to proceedings of FEL 2011 conference, August 22—26, 2011 (also LCLS-TN-11-3; SLAC-PUB-14616).

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 4: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

A SASE FEL is characterized by the FEL parameter, ρ

1. the exponential growth, P = P0 exp(z/LG) , where LG ~ λU / 4πρ

2. The FEL saturation power Psat ~ ρ Pbeam

SCALING

For the LCLS-II electron beam: Ipk ~ 4 k A, E ~ 14 GeV , Pbeam~ 56 TW, FEL: ρ ~ 5 x 10-4, Psat. ~ 30 GW << 1 TW

Overall, the peak power at saturation is in the range of 10 to 50 GW for X-ray FELs at saturation. The number of coherent photons scales almost linearly with the pulse duration, and is ~1012 at 100 fs, 1011 at 10 fs.

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 5: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

What happens when the FEL saturation is achieved

Centroid energy loss and energy spread reaches ρ.

Exponential growth is no longer possible, but how about coherent emission? Electron microbunching is fully developed

As long as the microbunching can be preserved, coherent emission will further increase the FEL power

Maintain resonance condition tapering the undulator

Coherent emission into a single FEL mode – more efficient with seeding scheme -- self-seeding

Trapping the electrons

BEYOND SATURATION

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 6: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

FIRST DEMONSTRATION OF TAPERING AT 30 GHZ*

* T.J. Orzechowski et al. Phys. Rev. Lett. 57, 2172 (1986)

The experiment was done at LLNL with a seeded, 10 cm wavelength FEL and a tapered undulator.

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 7: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

EXAMPLE OF TAPERING: LCLS

W.M. Fawley, Z. Huang, K.-J. Kim, and N.A. Vinokurov , Nucl. Instr. And Meth. A 483, 537 (2002)

Effect of tapering LCLS at 1.5 Å,1 nC, 3.4 kA. The saturation power at 70 m ~20 GW. A 200 m, un-tapered undulator doubles the power. Tapering for SASE FEL generates about 200 GW. A monochromatic, seeded, FEL brings the power to 380 GW, corresponding to 4 mJ in 10 fs (2 x 1012 photons at 8 keV). The undulator K changes by ~1.5 %.

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 8: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

OVERVIEW

To overcome the random nature of a SASE FEL, which will set a limit to the final tapered FEL power, we study seeded FEL

Producing such pulses from the proposed LCLS-II, employing a configuration beginning with a SASE amplifier, followed by a "self-seeding" crystal monochromator, and finishing with a long tapered undulator.

Results suggest that TW-level output power at 8 keV is feasible, with a total undulator length below 200 m including interruption.

We use a 40 pC electron bunch charge, normalized transverse emittance of 0.3-mm-mrad, peak current of 4 kA, and electron energy about 14 GeV.

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 9: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

LCLS-II BASELINE UNDULATOR STRUCTURE

Undulator section

Undulator period lu = 3.2 cm,Undulator length per section Lu= 3.4 m, Number of the undulator periods NWIG = Lu/ lu = 106,Break length per section Lb = 1 mBreak length in unit of undulator periods NBREAK = Lb/ lu = 32.Filling factor = NWIG/(NWIG + NBREAK) = 77%.

Break: Quad, BPM, phase shifter etc.

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 10: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

Start with a SASE FEL, followed by a self-seeding scheme (Genoli et al., 2010), and end up a tapered undulator

SCHEME: WITHIN 200 M TOTAL LENGTH

1.3 TW

Spectrum: close to transform limited

e- chicane

1st undulator 2nd undulator with taper

SASE FEL Self-seeded FELe- dumpe-

Single crystal: C(400)

~ 1 GW

30 m160 m

4 m ~ 5 MW~ 1 TW

e-

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 11: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

Resonant condition

With the tapering model

TAPERING PHYSICS AND MODEL (LONGITUDINAL PLANE)

)(2

)(12

2

z

zAwur

))(1()()( 00b

ww zzazAzA The order b is not necessarily an integer.

Undulator parameter Aw is function of z, after z0, to maintain the resonant condition.

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 12: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

For the tapered undulator, before Lsat, the exponential region, strong focusing, low beta function helps produce higher power (M. Xie’s formula).

After Lsat, the radiation rms size increases along the tapered undulator due to less effectiveness of the optical guiding. The requirement is different.

We empirically found that a variation in beta function instead of a constant beta function will help produce higher power. In most cases, optimal beta function will help extract up to 15% more energy even with optimal tapering parameters.

The beta function is varied by linearly changing the quad gradient

OPTIMAL BETA FUNCTION (TRANSVERSE, SECONDARY)

))(1()()( 11 zzczKzK The coefficient c can be positive or negative value.

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 13: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

8.3 keV -- 1.5 Å (13.64 GeV)40-pC charge; 4-kA peak current; 10 fs FWHM; 0.3-mm emittanceOptimized tapering starts at 16 m with 13 % K decreasing from 16 m to 200 m, close to quadratic taper b ~ 2.03Und. lw = 3.2 cm, 3.4 m undulator each section, with 1 m break; average bx,y = 20 m

Longitudinal: close to transform limited

1.0 x 10-4 FWHMBW

TW FEL @ LCLS-II NOMINAL CASE

1.3 TW

After self-seeding crystal

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 14: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

TW FEL @ LCLS-II NOMINAL CASE

1.5 Å FEL at end of undulator (160 m)

y (red); x (blue)x

y Ey (red); Ex (blue)

5.0E+06 V/m

~ 80 % in fundamental ModeTransverse: M2 ~ 1.3

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 15: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

SIDE-BAND INSTABILITY, TAPERED FEL SATURATION

Even though the strong seed well dominates over the shot noise in the electron bunch, the long (160 m) undulator can still amplify the shot noise and excite side-band instability [Z. Huang and K.-J. Kim, Nucl. Instrum. Methods A 483, 504 (2002)].

the SASE component in the electron bunch and the residual enhanced SASE components in a self-seeding scheme can then couple and excite such a side-band instability, which together with other effects leads to the saturation as seen around 160 m

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 16: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

NOISE EXCITE SIDE-BAND INSTABILITY

Spectrum evolution @ 5 m

With SASE(red); S-2-E(blue);

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 17: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

NOISE EXCITE SIDE-BAND INSTABILITY

Spectrum evolution @ 160 m

With SASE(red); S-2-E(blue);

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 18: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

SATURATION OF TAPERED FEL

Steady state (red), time-dependent with “natural” SASE (blue), and start-to-end (green)

Steady state (red); With SASE (blue);S-2-E (green)

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 19: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

START-TO-END BEAM

Electron beam

FEL temporal and spectrum @ 165 m

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 20: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

SENSITIVITY TO INPUT SEED POWER

The seed power should be larger than a few MWs

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 21: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

STATISTICS OF A TW FEL POWER

The statistical fluctuation increases, but not dramatically

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 22: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

0 1 2 3 4 5 6

x 10-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Undulator parameter error

No

rma

lize

d p

ow

er

SENSITIVITY TO UNDULATOR PARAMETER ERROR

Red : Maximum power with tapered undulator.Blue: Saturation power with untapered undulator.

The maximum power of the tapered undulator is more sensitive to the undulator parameter errors than saturation power.

sK/K = 0.01%, average power reduction ~15%

Average power reduction ~ 3.5%

40 %

66 %

80 %

6 %7 %

4 %

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 23: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

Shorten the system, higher FEL power

Extend to 13 keV

HELICAL UNDULATOR ENHANCE PERFORMANCE

8 keV

13 keV

Second undulator

Helical: (dashed)Planar: (solid)

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 24: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

POWER VS. FILLING FACTOR (CHANGE NBREAK)

0 20 40 60 800.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of undulator periods in the gap

Fill

ing

fact

or &

nor

mal

ized

pow

er

Filling factorNormalized power

Based on Genesis time-independent simulation.Normalized power = P / P(100% filling factor).

LCLSII baseline,NWIG = 106, NBREAK = 32,Filling factor 77%P = 2.77 TWPnorm = 0.57

Reduce break length, one can obtain larger filling factor and higher power.

LCLSII baseline,NWIG = 106, NBREAK = 20,Filling factor 84%P = 3.45 TWPnorm = 0.71Increase ~ 25%.

LCLS-II Accel. Phys. , J. Wu, SLAC

Page 25: J. Wu In collaboration with Y. Jiao, W.M. Fawley, J. Frisch, Z. Huang, H.-D. Nuhn, C. Pellegrini, S. Reiche (PSI), Y. Cai, A.W. Chao, Y. Ding, X. Huang,

A 1 – 1.5 Å TW FEL is feasible High power, hundreds GW at 3rd

harmonic, tens GW at 5th harmonic, allowing to reach higher energy photon.

This novel light source would open new science capabilities for coherent diffraction imaging and nonlinear science.

? Beyond 1 TW: helical undulator, high peak current, short interruption, fresh bunch…

CONCLUSIONS

LCLS-II Accel. Phys. , J. Wu, SLAC


Recommended