+ All Categories
Home > Documents > Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule...

Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule...

Date post: 06-May-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
22
2/23/2014 1 Flower anatomy and pollination in tree crops Brooke Jacobs Associate Specialist Department of Plant Sciences, UC Davis Lecture outline 1. Flower anatomy Structures within a flower Perfect flowers, imperfect flowers, monoecy, and dioecy 3. Pollination Pollination and common modes of pollen transport What happens after pollination? Effective Pollination Period (EPP) Fruit and nut quality issues related to pollination Mechanisms that limit selfpollination 2. Flower and fruit development Vegetative and floral tissue Floral bud development and fruit quality problems 4. Link between flower and fruit anatomy Three primary flower “types” Fruit anatomy Flower anatomy Flower anatomy
Transcript
Page 1: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

1

Flower anatomy and pollination in tree crops

Brooke JacobsAssociate Specialist 

Department of Plant Sciences, UC Davis

Lecture outline1. Flower anatomy

– Structures within a flower– Perfect flowers, imperfect flowers, monoecy, and dioecy

3. Pollination– Pollination and common modes of pollen transport– What happens after pollination?– Effective Pollination Period (EPP)– Fruit and nut quality issues related to pollination– Mechanisms that limit self‐pollination

2. Flower and fruit development– Vegetative and floral tissue– Floral bud development and fruit quality problems

4. Link between flower and fruit anatomy– Three primary flower “types”– Fruit anatomy

Flower anatomy Flower anatomy

Page 2: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

2

Flower anatomy

receptacle

Pistil (style, stigma and ovary)

stamen (anther and filament)

Perfect and imperfect flowers

“Perfect” flower

Male flower

Female flower

Examples of imperfect flowers in tree crops

Walnut Pistachio Kiwifruit

Monoecious vs. dioecious species

OR

Monoecious species ‐ individuals are all hermaphrodites‐ can have perfect or imperfect flowers

Page 3: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

3

Monoecious vs. dioecious species

AND

Dioecious species ‐ individuals are eithermale or female

Pollen transfer in monoceious species

Pollen only has to travel short distances in monoecious species to fertilize an ovule. 

Pollen transfer in monoceious and dioecious species

Pollen travels longer distances in dioeciousspecies to fertilize an ovule. 

Lecture outline1. Flower anatomy

– Structures within a flower– Perfect flowers, imperfect flowers, monoecy, and dioecy

3. Pollination– Pollination and common modes of pollen transport– What happens after pollination?– Effective Pollination Period (EPP)– Fruit and nut quality issues related to pollination– Mechanisms that limit self‐pollination

2. Flower and fruit development– Vegetative and floral tissue– Floral bud development and fruit quality problems

4. Link between flower and fruit anatomy– Three primary flower “types”– Fruit anatomy

Page 4: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

4

Two primary tissue types

Peach

Almond

floral

vegetative 

Pistachio

vegetative 

floral

vegetative 

floral 

Two primary bud types

Pome fruits: mixed buds with leaves and several flowers borne on the terminal tips of shoots

Peach

Cherry

Stone fruits: simple buds are borne laterally with single (peach) or multiple (plum, cherry) flowers

Lateral bearing on shoots and spurs

Peach: lateral bearing on one year old shoots

Almond and cherry: lateral bearing on spurs

Spurs are like miniature branches

Page 5: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

5

Meristem produces vegetative and floral buds

Inside developing buds all growth comes from a terminal cluster of cells called apical meristem

Vegetative apical meristem form bud scales and leaves

Floral buds derive from vegetative meristem 

Vegetative meristem also develops into floral buds

A case study: Sweet cherry flower bud differentiation

Scanning electron microscope view of apical meristem in sweet cherry

Prof. Polito

A case study: Sweet cherry flower bud differentiation

In mid‐summer the shoot apex of a flower bud begins to produce primordial flowers

Page 6: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

6

A case study: Sweet cherry flower bud differentiation

As the flowers develop, sepal primordia initiate at the flanks of the floral meristem

A case study: Sweet cherry flower bud differentiation

About one week after sepals are initiated, petal primordia form inside the sepals

A case study: Sweet cherry flower bud differentiation

Stamens are initiated next, leaving a broad base of undifferentiated meristem where the pistil forms

A case study: Sweet cherry flower bud differentiation

Page 7: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

7

A case study: Sweet cherry flower bud differentiation

‐ Pistil begins as an open structure that grows at the margins

‐ Forms from the base of undifferentiated cells usually consuming all of the meristem.

A case study: Sweet cherry flower bud differentiation

Eventually the margins grow together to form a closed locule that defines the ovary.

A case study: Sweet cherry flower bud differentiation

• When the margins come into contact they fuse, forming a suture. 

• Developmental failures lead to aberrant fruits.

• Abnormal development typically occurs when trees are stressed during these stages of flower development.

Timing of floral bud development

Summer Fall Winter Spring

Page 8: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

8

Spurred and double fruits occur when multiple pistils develop within a bud.

Flower developmental stage Fruit developmental abnormality

Flower bud development and fruit quality

“Zippering” and “incomplete sutures” occur when two sides of the carpel do not fuse properly.

Flower developmental stage Fruit developmental abnormality

Flower bud development and fruit quality

Lecture outline1. Flower anatomy

– Structures within a flower– Perfect flowers, imperfect flowers, monoecy, and dioecy

3. Pollination– Pollination and common modes of pollen transport– What happens after pollination?– Effective Pollination Period (EPP)– Fruit and nut quality issues related to pollination– Mechanisms that limit self‐pollination

2. Flower and fruit development– Vegetative and floral tissue– Floral bud development and fruit quality problems

4. Link between flower and fruit anatomy– Three primary flower “types”– Fruit anatomy

Pollination and pollen transfer

Pollination: transfer of pollen from anther to a stigma

Insects and wind are the two primary modes of pollen transport in fruit and nut tree crop species grown in California.

Page 9: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

9

Insect pollinated flowers

Almond Pomegranate

Plum Kiwifruit

Insect pollinated flowers typically have showy petals, nectar and scent

Wind pollinated flowers

Olive WalnutWind pollinated flowers typically:‐ Lack petals, nectar and scent‐ Large feathery stigmas to catch pollen from air flow‐ Large exerted anthers

Pollen capture in wind pollinated flowers

Microscale wind tunnel experiments

‐ pollen is not captured at random

‐ shape and form of the flower structures create air flow patterns that direct the pollen to the stigma surfaces

Similarities between walnut and peach flowers

Walnut (wind pollinated) Prunus (insect pollinated)

Page 10: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

10

Crop Flower type Dioecious or monoecious? Pollen transport

Almond Perfect monoecious insect (supplemental pollinator required)

Apple perfect monoecious insect (supplemental pollinator required)

Apricot perfect monoecious insect

Cherry perfect monoecious insect (supplemental pollinator required)

Fig imperfect dioecious wasp (supplemental pollinator required)

Kiwifruit imperfect* dioecious* insect (supplemental pollinator required)

Olive both perfect & imperfect** monoecious wind

Peach &       Nectarine perfect monoecious insect

Pear perfect monoecious insect (supplemental pollinator required)

Pecan imperfect monoecious wind

Persimmon both perfect & imperfect monoecious & dioecious*** insect

Plum perfect monoecious insect (supplemental pollinator required)

Prune perfect monoecious insect (supplemental pollinator required)

Pistachio imperfect dioecious wind

Pomegranate perfect monoecious insect (supplemental pollinator required)

Quince perfect monoecious insect

Walnut imperfect monoecious wind

Pollen and pollination

Pollen is released from the anther as a dehydrated cell.

When pollen lands on a stigma it rapidly hydrates in the fluid present on the stigma surface.

What happens after pollination?

Pollination: pollen lands on stigma1. Pollen tube germinates

2. Pollen tube grows down style3. Pollen fertilizes an ovule

Effective Pollination Period (EPP)

Effective Pollination Period: Term used to describe the timing of three separate conditions required for the successful fertilization of an ovule.

Page 11: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

11

Effective Pollination Period (EPP)

1. Stigma receptivity: ability of the stigma to support pollen germination

stigma

style

2. Pollen tube growth rate: time required for pollen tubes to grow through the style

Effective Pollination Period (EPP)

3. Ovule viability: time period when the ovule is capable of being fertilized

Stone fruit2 ovules

Pome fruit10 ovules in 5 ovaries

Effective Pollination Period (EPP)

Pollen tube growth from stigma to ovule = 5 days 

March 1st March 5th March 10th March 15th March 20th

EPP

Stigma receptivity

Ovule receptivity

Pollen dispersal

X

Effective Pollination Period (EPP)

Temperature effects on stigma receptivity and pollen tube length in almond and peach

55 6855 68 80 F

80 F

Page 12: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

12

Effective Pollination Period (EPP)

Pollen tube growth: 55 – 95oFOptimum temperature:75o F

Pollen germination: 50 – 90oFOptimum temperature: 72o F

Temperature effects on stigma receptivity and pollen tube growth rates in two varieties of prune

Effective Pollination Period (EPP)

Pollen tube growth from stigma to ovule = 5 days 

March 1st March 5th March 10th March 15th March 20th

Stigma receptivity

Ovule receptivity

Pollen dispersal

X

EPP

Effective Pollination Period (EPP)

Pollen tube growth from stigma to ovule = 5 days 

March 1st March 5th March 10th March 15th March 20th

Stigma receptivity

Ovule receptivity

Pollen dispersal

High temperatures can reduce stigma and ovule receptivity

Effective Pollination Period (EPP)

Pollen tube growth from stigma to ovule = 5 days 

March 1st March 5th March 10th March 15th March 20th

Stigma receptivity

Ovule receptivity

Pollen dispersal

X X X

EPP This can dramatically reduce the EPP in a given year

Page 13: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

13

Effective Pollination Period (EPP)

Pollen tube growth from stigma to ovule = 5 days 

March 1st March 5th March 10th March 15th March 20th

Stigma receptivity

Ovule receptivity

Pollen dispersal

X X X

High heat during bloom is associated with poor fruit set in prune

EPP

Effective Pollination Period (EPP)

Pollen tube growth from stigma to ovule = 5 days 

March 1st March 5th March 10th March 15th March 20th

Stigma receptivity

Ovule receptivity

Pollen dispersal

X X X

Temperature can also affect pollen dispersal timing and pollen tube growth rate.

EPP

Relationship between pollination and quality

Insufficient pollination: 

‐ Developing seeds provide signals to accessory tissue to develop

‐ Insufficient pollination results in small and/or asymmetrical fruit

Parthenocarpy

Parthenocarpy: Production of fruit without fertilization of ovules (seedless fruit)

‐ Persimmon is commonly planted in solid blocks far away from other trees to encourage parthenocarpy

Page 14: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

14

Parthenocarpy

‐ Bartlett pears in Sacramento Delta and Clearlake , CA and produce parthenocarpic fruit

‐ In other growing regions, including Oregon, Bartlett requires cross pollination and fertilization to produce fruit

‐ Consistent differences in fruit shape between California and Oregon Bartlett pears

California Oregon Pistillate Flower Abortion (PFA) in walnutPFA results in a loss of fruitlets early in the season (2‐3 weeks after bloom)

Prof. Polito

Effect of excessive pollination on fruit set

Effect of excessive pollination on fruit set

5 days after bloom

Pistillate Flower Abortion (PFA) in Serr walnut

Effect of excessive pollination on fruit set

12 days after bloom

Pistillate Flower Abortion (PFA) in Serr walnut

Page 15: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

15

PFA decreases with distance from pollen source

PFA positively correlated with pollen load

Effect of excessive pollination on fruit set

Pistillate Flower Abortion (PFA) in walnut

% PFA

PFA greatest in Serr, but also occurs in Chandler and Vina varieties

Self pollination: pollen is transferred from the anther to a stigma within the same individual

1. Flower anatomy

2. Spatial separation of imperfect flowers

3. Temporal separation 

4. Self incompatibility

Why might it be advantageous for plants to have mechanisms which prevent pollination/fertilization?

Mechanisms that limit self pollination in plants

Chasmogamous flowers: anatomy that limits self‐pollination

Mechanism to limit self‐pollination: Flower anatomy

Example: “heterostyly”Example: prune

Page 16: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

16

Mechanism to limit self‐pollination: Flower anatomy

Cleistogamous flowers: anatomy that facilitates self‐pollination

Spatial separation: separate male and female individuals (technical term: dioecy)ex. pistachio, kiwifruit, and some persimmon

Mechanism to limit self‐pollination: Dioecy

Temporal separation: male and female organs mature at different times (technical term: dichogamy)example: walnuts

Mechanism to limit self‐pollination: Dichogamy

Chart from www.BurchellNursery.com

Does all pollen transferred to a  stigma result in fertilization and fruit development?

Mechanism to limit self‐pollination: Self incompatibility

Page 17: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

17

Does all pollen transferred to a  stigma result in fertilization and fruit development? Not necessarily

Self incompatibility: the inability of a flower to support growth of pollen from the same tree or cultivar

‐ Gametophytic self incompatibility determined by the “S” locus

‐ Pollination occurs when the allele carried by a pollen grain is different from either of the alleles in the stigma

‐ Pollen with the same allele as those in the stigma is rejected

Mechanism to limit self‐pollination: Self incompatibility

Example of gametophytic self incompatibility

Mechanism to limit self‐pollination: Self incompatibility

None S1S3, S1S4, S2S3, S2S4S1S3, S2S3

Possible Progeny:

Self incompatibility in fruit and nut tree crops

Stone fruit

‐ Peach, nectarine and apricot are self compatible

‐ Sweet cherry, almond and plum are self‐incompatible

Pome fruit

‐ Apples are partially self incompatible and require pollinizers for optimum fruit size and quality. 

‐ Some apple cultivars accept self pollen at the end of bloom.

‐ Pears are self‐incompatible (but in some areas most fruit produced is parthenocarpic)

Other

‐ Olives are self compatible at low temperatures but reject self‐pollen at high temperatures

Managing self incompatibility

Pollinizer cultivar grafted onto center of fruiting cultivar

Pollinizer row trained to a single upright trunk

1. Plant compatible pollinizer cultivars along with the primary fruit bearing cultivar

Page 18: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

18

Managing self incompatibility

2. Select compatible cultivars with sufficient overlap in bloom time.

Managing self incompatibility

Main Variety

Compatible Variety 1

Compatible Variety 2

Example almond orchard layout

3. Orchard layout must facilitate pollen flow. Honeybees tend to fly up and down rows, not across.

Managing self incompatibility

Main Variety

Compatible Variety 1

Compatible Variety 2

4. Supplemental honey bees to ensure effective movement of pollen among compatible cultivars.

Managing self incompatibility

New release, success to be determined.

Page 19: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

19

Managing self incompatibility

Pollen for sale!

Lecture outline1. Flower anatomy

– Structures within a flower– Perfect flowers, imperfect flowers, monoecy, and dioecy

3. Pollination– Pollination and common modes of pollen transport– What happens after pollination?– Effective Pollination Period (EPP)– Fruit and nut quality issues related to pollination– Mechanisms that limit self‐pollination

2. Flower and fruit development– Vegetative and floral tissue– Floral bud development and fruit quality problems

4. Link between flower and fruit anatomy– Three primary flower “types”– Fruit anatomy

Link between flower and fruit anatomy Three primary flower types

Three primary flower types in California tree crops:

1.Perigynous

2.Epigynous

3.Hypogynous

Hypanthium: tissue composed of fused petals, sepals, and stamen

Page 20: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

20

1. Perigynous flowers

Hypanthium forms a cup‐like structure surrounding, but not attached to, the ovary

After fertilization the hypanthium is shed when the ovary develops into fruit tissue.

As a result, petals and stamen do not remain attached to the fruit.

1. Perigynous flowers

1. Perigynous flowers Fruit associated with perigynous flowers

Perigynous fruit develop from a single carpel and contain one or two seeds.

Examples: peach, olive, cherry, plum, apricot and almond

Page 21: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

21

2. Epigynous flowers

The ovary is inferior and fused to the hypanthium tissue.

2. Epigynous flowers

After fertilization the hypanthium develops into fruit tissue. 

Remnants of the sepals, stamen and style remain attached to the fruit.

2. Epigynous flowers

Epigynous fruit develop from multiple fused carpels and contain more than two seeds and accessory tissue.

Examples: apple, pear and quince

2. Epigynous flowers

Page 22: Jacobs Feb 2014 lecture slide handoutfruitandnuteducation.ucdavis.edu/files/184234.pdf · 3. Ovule viability: time period when the ovule is capable of being fertilized Stone Pomefruit

2/23/2014

22

3. Hypogynous flowers

Hypogynous flowers lack a hypanthium.

Instead, the petals, stamen and sepals arise from the receptacle below the ovary. 

3. Hypogynous flowers

After fertilization the ovary develops into fruit tissue. 

The sepals remain attached to the base of the fruit and receptacle.

3. Hypogynous flowers 3. Hypogynous flowers

Hypogynous fruit develop from multiple fused carpels and contain more than two seeds.

Examples: persimmon and kiwifruit


Recommended