+ All Categories
Home > Documents > Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic...

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic...

Date post: 27-Mar-2018
Category:
Upload: vudat
View: 294 times
Download: 3 times
Share this document with a friend
88
© Digital Integrated Circuits 2nd Memories Digital Integrated Digital Integrated Circuits Circuits A Design Perspective A Design Perspective Semiconductor Semiconductor Memories Memories Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic December 20, 2002
Transcript

© Digital Integrated Circuits2nd Memories

Digital Integrated Digital Integrated CircuitsCircuitsA Design PerspectiveA Design Perspective

SemiconductorSemiconductorMemoriesMemories

Jan M. RabaeyAnantha ChandrakasanBorivoje Nikolic

December 20, 2002

© Digital Integrated Circuits2nd Memories

Chapter OverviewChapter Overview

Memory ClassificationMemory ArchitecturesThe Memory CorePeripheryReliabilityCase Studies

© Digital Integrated Circuits2nd Memories

Semiconductor Memory ClassificationSemiconductor Memory Classification

Read-Write MemoryNon-VolatileRead-Write

MemoryRead-Only Memory

EPROM

E2PROM

FLASH

RandomAccess

Non-RandomAccess

SRAM

DRAM

Mask-Programmed

Programmable (PROM)

FIFO

Shift Register

CAM

LIFO

© Digital Integrated Circuits2nd Memories

Memory Timing: DefinitionsMemory Timing: Definitions

Write cycleRead access Read access

Read cycle

Write access

Data written

Data valid

DATA

WRITE

READ

© Digital Integrated Circuits2nd Memories

Memory Architecture: DecodersMemory Architecture: Decoders

Word 0

Word 1

Word 2

Word N2 2

Word N2 1

Storagecell

M bits M bits

N

w o r d s

S0

S1

S2

SN2 2

A 0

A 1

A K2 1

K 5 log2N

SN2 1

Word 0

Word 1

Word 2

Word N2 2

Word N2 1

Storagecell

S0

Input-Output(M bits)

Intuitive architecture for N x M memoryToo many select signals:

N words == N select signals K = log2NDecoder reduces the number of select signals

Input-Output(M bits)

D e c o d e r

© Digital Integrated Circuits2nd Memories

Row

Dec

oder

Bit line2L 2 K

Word line

AK

AK1 1

AL 2 1

A0

M.2K

AK2 1

Sense amplifiers / Drivers

Column decoder

Input-Output(M bits)

Storage cell

ArrayArray--Structured Memory ArchitectureStructured Memory ArchitectureProblem: ASPECT RATIO or HEIGHT >> WIDTH

Amplify swing torail-to-rail amplitude

Selects appropriateword

© Digital Integrated Circuits2nd Memories

Hierarchical Memory ArchitectureHierarchical Memory Architecture

Advantages:Advantages:1. Shorter wires within blocks1. Shorter wires within blocks2. Block address activates only 1 block => power savings2. Block address activates only 1 block => power savings

Globalamplifier/driver

Controlcircuitry

Global data busBlock selector

Block 0

Rowaddress

Columnaddress

Blockaddress

Block i Block P 2 1

I/O

© Digital Integrated Circuits2nd Memories

Block Diagram of 4 Block Diagram of 4 MbitMbit SRAMSRAM

Subglobalrow decoder

Global row decoder

Subglobalrow decoder

Block 30

Block 31

128 K Array Block 0

Block 1

Clockgenerator

CS, WEbuffer

I/Obuffer

Y-addressbuffer

X-addressbuffer

x1/x4controller

Z-addressbuffer

X-addressbuffer

Predecoder and block selectorBit line load

Transfer gateColumn decoder

Sense amplifier and write driverLocal row decoder

[Hirose90]

© Digital Integrated Circuits2nd Memories

ContentsContents--Addressable MemoryAddressable Memory

A d d r e s s D e c o d e r

I / O B u f f e r s

C o m m a n d s

2

9

V a l i d i t y B i t s

P r i o r i t y E n c o d e r

A d d r e s s D e c o d e r

I / O B u f f e r s

C o m m a n d s

2

9

V a l i d i t y B i t s

P r i o r i t y E n c o d e r

Add

ress

Dec

oder

Data (64 bits)

I/O B

uffe

rs

Comparand

CAM Array29 words 3 64 bits

Mask

Control Logic R/W Address (9 bits)

Com

man

ds

29 Val

idity

Bits

Prio

rity

Enc

oder

© Digital Integrated Circuits2nd Memories

Memory Timing: ApproachesMemory Timing: Approaches

DRAM TimingMultiplexed Adressing

SRAM TimingSelf-timed

Addressbus

RAS

RAS-CAS timing

Row Address

AddressBus

Address transitioninitiates memory operation

Address

Column Address

CAS

© Digital Integrated Circuits2nd Memories

ReadRead--Only Memory CellsOnly Memory Cells

WL

BL

WL

BL

1WL

BL

WL

BL

WL

BL

0

VDD

WL

BL

GND

Diode ROM MOS ROM 1 MOS ROM 2

© Digital Integrated Circuits2nd Memories

MOS OR ROMMOS OR ROM

WL[0]

VDD

BL[0]

WL[1]

WL[2]

WL[3]

Vbias

BL[1]

Pull-down loads

BL[2] BL[3]

VDD

© Digital Integrated Circuits2nd Memories

MOS NOR ROMMOS NOR ROM

WL[0]

GND

BL [0]

WL [1]

WL [2]

WL [3]

VDD

BL [1]

Pull-up devices

BL [2] BL [3]

GND

© Digital Integrated Circuits2nd Memories

MOS NOR ROM LayoutMOS NOR ROM Layout

Programmming using theActive Layer Only

Polysilicon

Metal1

Diffusion

Metal1 on Diffusion

Cell (9.5λ x 7λ)

© Digital Integrated Circuits2nd Memories

MOS NOR ROM LayoutMOS NOR ROM Layout

Polysilicon

Metal1

Diffusion

Metal1 on Diffusion

Cell (11λ x 7λ)

Programmming usingthe Contact Layer Only

© Digital Integrated Circuits2nd Memories

MOS NAND ROMMOS NAND ROM

All word lines high by default with exception of selected row

WL [0]

WL [1]

WL [2]

WL [3]

VDD

Pull-up devices

BL[3]BL[2]BL[1]BL [0]

© Digital Integrated Circuits2nd Memories

MOS NAND ROM LayoutMOS NAND ROM Layout

No contact to VDD or GND necessary;

Loss in performance compared to NOR ROMdrastically reduced cell size

Polysilicon

Diffusion

Metal1 on Diffusion

Cell (8λ x 7λ)

Programmming usingthe Metal-1 Layer Only

© Digital Integrated Circuits2nd Memories

NAND ROM LayoutNAND ROM LayoutCell (5λ x 6λ)

Polysilicon

Threshold-alteringimplant

Metal1 on Diffusion

Programmming usingImplants Only

© Digital Integrated Circuits2nd Memories

Decreasing Word Line DelayDecreasing Word Line Delay

Metal bypass

Polysilicon word lineK cells

Polysilicon word lineWLDriver

(b) Using a metal bypass

(a) Driving the word line from both sides

Metal word line

WL

(c) Use silicides

© Digital Integrated Circuits2nd Memories

PrechargedPrecharged MOS NOR ROMMOS NOR ROM

PMOS precharge device can be made as large as necessary,but clock driver becomes harder to design.

WL [0]

GND

BL [0]

WL [1]

WL [2]

WL [3]

VDD

BL [1]

Precharge devices

BL [2] BL [3]

GND

pref

© Digital Integrated Circuits2nd Memories

NonNon--Volatile MemoriesVolatile MemoriesThe FloatingThe Floating--gate transistor (FAMOS)gate transistor (FAMOS)

Floating gate

Source

Substrate

Gate

Drain

n+ n+_p

tox

tox

Device cross-section Schematic symbol

G

S

D

© Digital Integrated Circuits2nd Memories

FloatingFloating--Gate Transistor ProgrammingGate Transistor Programming

0 V

- 5 V 0 V

DS

Removing programming voltage leaves charge trapped

5 V

- 2.5 V 5 V

DS

Programming results inhigher VT.

20 V

10 V 5 V 20 V

DS

Avalanche injection

© Digital Integrated Circuits2nd Memories

A A ““ProgrammableProgrammable--ThresholdThreshold”” TransistorTransistor

“ 0” -state “ 1” -state

DVT

VWL VGS

“ ON ”

“ OFF”

ID

© Digital Integrated Circuits2nd Memories

FLOTOX EEPROMFLOTOX EEPROMFloating gate

Source

Substratep

Gate

Drain

n1 n1

FLOTOX transistor Fowler-NordheimI-V characteristic

20–30 nm

10 nm

-10 V10 V

I

VGD

© Digital Integrated Circuits2nd Memories

EEPROM CellEEPROM Cell

WL

BL

VDD

Absolute threshold controlis hardUnprogrammed transistor might be depletion

2 transistor cell

© Digital Integrated Circuits2nd Memories

Flash EEPROMFlash EEPROM

Control gate

erasure

p-substrate

Floating gate

Thin tunneling oxide

n1 source n1 drainprogramming

Many other options …

© Digital Integrated Circuits2nd Memories

CrossCross--sections of NVM cellssections of NVM cells

EPROMFlashCourtesy Intel

© Digital Integrated Circuits2nd Memories

Basic Operations in a NOR Flash MemoryBasic Operations in a NOR Flash Memory――EraseErase

S D

12 VG

cell arrayBL 0 BL 1

open open

WL 0

WL 1

0 V

0 V

12 V

© Digital Integrated Circuits2nd Memories

Basic Operations in a NOR Flash MemoryBasic Operations in a NOR Flash Memory――WriteWrite

S D

12 V

6 VG

BL 0 BL 1

6 V 0 V

WL 0

WL 1

12 V

0 V

0 V

© Digital Integrated Circuits2nd Memories

Basic Operations in a NOR Flash MemoryBasic Operations in a NOR Flash Memory――ReadRead

5 V

1 VG

S D

BL 0 BL 1

1 V 0 V

WL 0

WL 1

5 V

0 V

0 V

© Digital Integrated Circuits2nd Memories

NAND Flash MemoryNAND Flash Memory

Unit Cell

Word line(poly)

Source line(Diff. Layer)

Courtesy Toshiba

GateONO

FGGateOxide

© Digital Integrated Circuits2nd Memories

NAND Flash MemoryNAND Flash Memory

Word linesSelect transistor

Bit line contact Source line contact

Active area

STI

Courtesy Toshiba

© Digital Integrated Circuits2nd Memories

Characteristics of StateCharacteristics of State--ofof--thethe--art NVMart NVM

© Digital Integrated Circuits2nd Memories

ReadRead--Write Memories (RAM)Write Memories (RAM)STATIC (SRAM)

DYNAMIC (DRAM)

Data stored as long as supply is appliedLarge (6 transistors/cell)FastDifferential

Periodic refresh requiredSmall (1-3 transistors/cell)SlowerSingle Ended

© Digital Integrated Circuits2nd Memories

66--transistor CMOS SRAM Cell transistor CMOS SRAM Cell

WL

BL

VDD

M5M6

M4

M1

M2

M3

BL

QQ

© Digital Integrated Circuits2nd Memories

CMOS SRAM Analysis (Read)CMOS SRAM Analysis (Read)WL

BL

VDD

M 5M 6

M 4

M1 VDDVDD VDD

BL

Q = 1Q = 0

Cbit Cbit

© Digital Integrated Circuits2nd Memories

CMOS SRAM Analysis (Read)CMOS SRAM Analysis (Read)

00

0.2

0.4

0.6

0.8

1

1.2

0.5

V o l t a g e r i s e [ V ]

1 1.2 1.5 2Cell Ratio (CR)

2.5 3

Vol

tage

Ris

e (V

)

© Digital Integrated Circuits2nd Memories

CMOS SRAM Analysis (Write) CMOS SRAM Analysis (Write)

BL = 1 BL = 0

Q = 0Q = 1

M1

M4

M5

M6

VDD

VDD

WL

© Digital Integrated Circuits2nd Memories

CMOS SRAM Analysis (Write)CMOS SRAM Analysis (Write)

© Digital Integrated Circuits2nd Memories

6T6T--SRAM SRAM —— Layout Layout VDD

GND

QQ

WL

BLBL

M1 M3

M4M2

M5 M6

© Digital Integrated Circuits2nd Memories

ResistanceResistance--load SRAM Cellload SRAM Cell

Static power dissipation -- Want RL largeBit lines precharged to VDD to address tp problem

M3

RL RL

VDD

WL

Q Q

M1 M2

M4

BL BL

© Digital Integrated Circuits2nd Memories

SRAM CharacteristicsSRAM Characteristics

© Digital Integrated Circuits2nd Memories

33--Transistor DRAM CellTransistor DRAM Cell

No constraints on device ratiosReads are non-destructiveValue stored at node X when writing a “1” = VWWL-VTn

WWL

BL1

M1 X

M3

M2

CS

BL2

RWL

V DD

VDD 2 VT

DVV DD 2 VTBL 2

BL 1

X

RWL

WWL

© Digital Integrated Circuits2nd Memories

3T3T--DRAM DRAM —— LayoutLayout

BL2 BL1 GND

RWL

WWL

M3

M2

M1

© Digital Integrated Circuits2nd Memories

11--Transistor DRAM CellTransistor DRAM Cell

Write: CS is charged or discharged by asserting WL and BL.Read: Charge redistribution takes places between bit line and storage capacitance

Voltage swing is small; typically around 250 mV.

M1

CS

WL

BL

CBL

VDD 2 VT

WL

X

sensing

BL

GND

Write 1 Read 1

VDD

VDD /2 VDD /2

ΔV BL VPRE– VBIT VPRE–CS

CS CBL+------------= =V

© Digital Integrated Circuits2nd Memories

DRAM Cell ObservationsDRAM Cell Observations1T DRAM requires a sense amplifier for each bit line, due

to charge redistribution read-out.DRAM memory cells are single ended in contrast to

SRAM cells.The read-out of the 1T DRAM cell is destructive; read

and refresh operations are necessary for correct operation.

Unlike 3T cell, 1T cell requires presence of an extra capacitance that must be explicitly included in the design.

When writing a “1” into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value than VDD

© Digital Integrated Circuits2nd Memories

Sense Amp OperationSense Amp Operation

DV(1)

V(1)

V(0)t

VPRE

VBL

Sense amp activatedWord line activated

© Digital Integrated Circuits2nd Memories

11--T DRAM CellT DRAM Cell

Uses Polysilicon-Diffusion CapacitanceExpensive in Area

M1 wordline

Diffusedbit line

Polysilicongate

Polysiliconplate

Capacitor

Cross-section Layout

Metal word line

Poly

SiO2

Field Oxiden+ n+

Inversion layerinduced byplate bias

Poly

© Digital Integrated Circuits2nd Memories

SEM of polySEM of poly--diffusion capacitor 1Tdiffusion capacitor 1T--DRAMDRAM

© Digital Integrated Circuits2nd Memories

Advanced 1T DRAM CellsAdvanced 1T DRAM Cells

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench Cell Stacked-capacitor Cell

Capacitor dielectric layerCell plateWord line

Insulating Layer

IsolationTransfer gateStorage electrode

© Digital Integrated Circuits2nd Memories

Static CAM Memory CellStatic CAM Memory Cell

• • • • • •

CAM

BitWord

Bit

••• CAM

Bit Bit

CAM

Word

Wired-NOR Match Line

Match M1

M2

M7M6

M4 M5M8 M9

M3int

SWord

••• CAM

Bit Bit

S

© Digital Integrated Circuits2nd Memories

CAM in Cache MemoryCAM in Cache Memory

A d d r e s s D e c o d e r

H i t L o g i c

CAM

ARRAY

Input Drivers

Tag HitAddress

SRAM

ARRAY

Sense Amps / Input Drivers

DataR/W

© Digital Integrated Circuits2nd Memories

PeripheryPeriphery

DecodersSense AmplifiersInput/Output BuffersControl / Timing Circuitry

© Digital Integrated Circuits2nd Memories

Row DecodersRow DecodersCollection of 2M complex logic gatesOrganized in regular and dense fashion

(N)AND Decoder

NOR Decoder

© Digital Integrated Circuits2nd Memories

Hierarchical DecodersHierarchical Decoders

• • •

• • •

A2A2

A2A3

WL 0

A2A3A2A3A2A3

A3 A3A0A0

A0A1A0A1A0A1A0A1

A1 A1

WL 1

Multi-stage implementation improves performance

NAND decoder usingNAND decoder using22--input preinput pre--decodersdecoders

© Digital Integrated Circuits2nd Memories

Dynamic DecodersDynamic Decoders

Precharge devices

VDD φ

GND

WL3

WL2

WL1

WL0

A0A0

GND

A1A1φ

WL3

A0A0 A1A1

WL 2

WL 1

WL 0

VDD

VDD

VDD

VDD

2-input NOR decoder 2-input NAND decoder

© Digital Integrated Circuits2nd Memories

44--input passinput pass--transistor based column transistor based column decoderdecoder

Advantages: speed (tpd does not add to overall memory access time)Only one extra transistor in signal path

Disadvantage: Large transistor count

2 - i n p u t N O R d e c o d e r

A0S0

BL 0 BL 1 BL 2 BL 3

A1

S1

S2

S3

D

© Digital Integrated Circuits2nd Memories

44--toto--1 tree based column decoder1 tree based column decoder

Number of devices drastically reducedDelay increases quadratically with # of sections; prohibitive for large decoders

buffersprogressive sizingcombination of tree and pass transistor approaches

Solutions:

BL 0 BL 1 BL 2 BL 3

D

A 0

A 0

A1

A 1

© Digital Integrated Circuits2nd Memories

Decoder for circular shiftDecoder for circular shift--registerregister

V DD

V DD

R

WL 0

V DD

f

ff

f

V DD

R

WL 1

V DD

f

ff

f

V DD

R

WL 2

V DD

f

ff

f• • •

© Digital Integrated Circuits2nd Memories

Sense AmplifiersSense Amplifiers

tpC ΔV⋅

Iav----------------=

make ΔV as smallas possible

smalllarge

Idea: Use Sense Amplifer

outputinput

s.a.smalltransition

© Digital Integrated Circuits2nd Memories

Differential Sense AmplifierDifferential Sense Amplifier

Directly applicable toSRAMs

M 4

M 1

M 5

M 3

M 2

VDD

bitbit

SE

Outy

© Digital Integrated Circuits2nd Memories

Differential Sensing Differential Sensing ―― SRAMSRAMVDD

VDD

VDD

VDD

BLEQ

Diff.SenseAmp

(a) SRAM sensing scheme (b) two stage differential amplifier

SRAM cell i

WL i

2xx

VDD

Output

BL

PC

M3

M1

M5

M2

M4

x

SE

SE

SE

Output

SE

x2x 2x

y

y

2y

© Digital Integrated Circuits2nd Memories

LatchLatch--Based Sense Amplifier (DRAM)Based Sense Amplifier (DRAM)

Initialized in its meta-stable point with EQOnce adequate voltage gap created, sense amp enabled with SEPositive feedback quickly forces output to a stable operating point.

EQ

VDD

BL BL

SE

SE

© Digital Integrated Circuits2nd Memories

Reliability and YieldReliability and Yield

© Digital Integrated Circuits2nd Memories

Sensing Parameters in DRAMSensing Parameters in DRAM

From [Itoh01]

4K

10

100

1000

64K 1M 16M 256M 4G 64GMemory Capacity (bits /chip)

C

D

,

Q

S

,

C

S

,

V

D D

,

V

s m a x

CD(1F)

CS(1F)

Q S(1C)

V smax (mv)

VDD (V)Q S 5 CS V DD /2V smax 5 Q S / (CS 1 CD)

© Digital Integrated Circuits2nd Memories

Noise Sources in 1T Noise Sources in 1T DRamDRam

Ccross

electrode

a-particles

leakage CS

WL

BL substrate Adjacent BLCWBL

© Digital Integrated Circuits2nd Memories

AlphaAlpha--particles (or Neutrons)particles (or Neutrons)

1 Particle ~ 1 Million Carriers

WL

BL

V DD

n1

a-particle

SiO 21

11

11

12

22

22

2

© Digital Integrated Circuits2nd Memories

YieldYield

Yield curves at different stages of process maturity(from [Veendrick92])

© Digital Integrated Circuits2nd Memories

RedundancyRedundancy

MemoryArray

Column Decoder

R o w D e c o d e r

Redundantrows

Redundantcolumns

RowAddress

ColumnAddress

FuseBank:

© Digital Integrated Circuits2nd Memories

ErrorError--Correcting CodesCorrecting CodesExample: Hamming Codes

with

e.g. B3 Wrong

1

1

0

= 3

© Digital Integrated Circuits2nd Memories

Redundancy and Error CorrectionRedundancy and Error Correction

© Digital Integrated Circuits2nd Memories

Case StudiesCase Studies

Programmable Logic ArraySRAM Flash Memory

© Digital Integrated Circuits2nd Memories

PLA versus ROMPLA versus ROMProgrammable Logic Arraystructured approach to random logic“two level logic implementation”

NOR-NOR (product of sums)NAND-NAND (sum of products)

IDENTICAL TO ROM!

Main differenceROM: fully populatedPLA: one element per minterm

Note: Importance of PLA’s has drastically reduced1. slow2. better software techniques (mutli-level logic

synthesis)But …

© Digital Integrated Circuits2nd Memories

Programmable Logic ArrayProgrammable Logic Array

GND GND GND GND

GND

GND

GND

V DD

V DD

X 0X 0 X 1 f0 f1X 1 X 2X 2

AND-plane OR-plane

Pseudo-NMOS PLA

© Digital Integrated Circuits2nd Memories

Dynamic PLADynamic PLAGND

GNDVDD

VDD

X 0X 0 X 1 f0 f1X 1 X 2X 2

ANDf

ANDf

ORf

ORf

AND-plane OR-plane

© Digital Integrated Circuits2nd Memories

Clock Signal Generation Clock Signal Generation for selffor self--timed dynamic PLAtimed dynamic PLA

f

tpre teval

f AND

f

f AND

f AND

f OR

f OR

(a) Clock signals (b) Timing generation circuitry

Dummy AND row

Dummy AND row

© Digital Integrated Circuits2nd Memories

PLA LayoutPLA LayoutVDD GNDφ

And-Plane Or-Plane

f0 f1x0 x0 x1 x1 x2 x2Pull-up devices Pull-up devices

© Digital Integrated Circuits2nd Memories

4 4 MbitMbit SRAMSRAMHierarchical WordHierarchical Word--line Architectureline Architecture

Global word line

Sub-global word line

Block groupselect

Blockselect

Blockselect

Memory cell

Localword line

Block 0

•••

Localword line

Block 1

•••

Block 2...

•••

© Digital Integrated Circuits2nd Memories

BitBit--line Circuitryline CircuitryBit-lineload

Blockselect ATD

BEQ

Local WL

Memory cell

I/O lineI/O

B /T

CD

Sense amplifier

CD CD

I/O

B /T

© Digital Integrated Circuits2nd Memories

Sense Amplifier (and Waveforms)Sense Amplifier (and Waveforms)

BS

I /O I /O

DATA

Blockselect ATD

BSSA SA

BS

SEQ

SEQ

SEQ

SEQSEQ

Dei

I/O Lines

Address

Data-cut

ATD

BEQ

SEQ

DATA

Vdd

GND

SA, SAVdd

GND

© Digital Integrated Circuits2nd Memories

1 1 GbitGbit Flash MemoryFlash Memory

Sense Latches(10241 32) 3 8

Data Caches(10241 32) 3 8

Sense Latches(10241 32) 3 8

Data Caches(10241 32) 3 8

Wor

d Li

ne D

river

Wor

d Li

ne D

river

Wor

d Li

ne D

river

Wor

d Li

ne D

river

512Mb Memory Array 512Mb Memory ArrayBL0 BL1 ····· BL16895 BL16996 BL16897··· BL33791

SGDWL31

WL0SGS

Block0

BLT0Block1023

Block0

Block1023

Bit Line Control CircuitBLT1

I/O I/O

From [Nakamura02]

© Digital Integrated Circuits2nd Memories

Writing Flash MemoryWriting Flash MemoryN

umbe

r of m

emor

y ce

lls

0V 1V 2VVt of memory cells

Verify level 5 0.8 V Word-line level 5 4.5 V

3V 4V

Result of 4 timesprogram

R e a d l e v e l ( 4 . 5 V )

N u m b e r o f c e l l s

1000V 1V 2V

Vt of memory cells

3V 4V

102

104

106

108

Evolution of thresholds Final Distribution

From [Nakamura02]

© Digital Integrated Circuits2nd Memories

125125mmmm22 1Gbit NAND Flash Memory1Gbit NAND Flash Memory

10.7

mm

11.7mm

2kB

Pag

e bu

ffer &

cac

heC

harg

e pu

mp

16896 bit lines

32 word lines x 1024 blocks

From [Nakamura02]

© Digital Integrated Circuits2nd Memories

125125mmmm22 1Gbit NAND Flash Memory1Gbit NAND Flash MemoryTechnology 0.13μm p-sub CMOS triple-well

1poly, 1polycide, 1W, 2AlCell size 0.077μm2Chip size 125.2mm2Organization 2112 x 8b x 64 page x 1k blockPower supply 2.7V-3.6VCycle time 50nsRead time 25μsProgram time 200μs / pageErase time 2ms / block

Technology 0.13μm p-sub CMOS triple-well1poly, 1polycide, 1W, 2Al

Cell size 0.077μm2Chip size 125.2mm2Organization 2112 x 8b x 64 page x 1k blockPower supply 2.7V-3.6VCycle time 50nsRead time 25μsProgram time 200μs / pageErase time 2ms / block

From [Nakamura02]

© Digital Integrated Circuits2nd Memories

Semiconductor Memory TrendsSemiconductor Memory Trends(up to the 90(up to the 90’’s)s)

Memory Size as a function of time: x 4 every three years

© Digital Integrated Circuits2nd Memories

Semiconductor Memory TrendsSemiconductor Memory Trends(updated)(updated)

From [Itoh01]

© Digital Integrated Circuits2nd Memories

Trends in Memory Cell AreaTrends in Memory Cell Area

From [Itoh01]

© Digital Integrated Circuits2nd Memories

Semiconductor Memory TrendsSemiconductor Memory Trends

Technology feature size for different SRAM generations


Recommended