+ All Categories
Home > Documents > Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range:...

Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range:...

Date post: 25-May-2018
Category:
Upload: vuongtruc
View: 245 times
Download: 0 times
Share this document with a friend
15
Folie 1 Interval Flutter Analysis using the Transformation Method > Schwochow Interval Flutter Analysis using the Transformation Method Jan Schwochow [email protected] DLR Göttingen, Institute of Aeroelasticity
Transcript
Page 1: Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method: ... MATLAB-Toolbox: MATCONT ...

Folie 1

Interval Flutter Analysis using the Transformation Method > Schwochow

Interval Flutter Analysis using the Transformation

Method

Jan Schwochow

[email protected]

DLR Göttingen, Institute of Aeroelasticity

Page 2: Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method: ... MATLAB-Toolbox: MATCONT ...

Folie 2

Interval Flutter Analysis using the Transformation Method > Schwochow

Contents

Definition of robust flutter stability

Interval modal analysis

Uncertainty propagation in flutter analysis

Direct solution of flutter equations

Interval flutter analysis

Conclusions

Page 3: Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method: ... MATLAB-Toolbox: MATCONT ...

Folie 3

Interval Flutter Analysis using the Transformation Method > Schwochow

Definition of Robust Flutter Stability

Dynamic aeroelastic problems attach great importance for new aircraftdesigns

Consideration of all possible aircraft configuration including failure cases for certification

Numerical simplification of aeroelastic models for simulation purposescaused by methological and economical constraints

Verification of dynamic models by comparison with results from Ground Vibration Test GVT � Deviations between model and experimentalresults

No available simulation models for small aircrafts, relying on experimental vibration data, measurement errors

� Robust flutter analysis propagates the effects of identified uncertainties towards aeroelastic stability of the aircraft to cover the uncertain-but-bounded parameter space.

� Robust stability is guaranteed when the uncertainties cannot destabilize the aeroelastic system.

Page 4: Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method: ... MATLAB-Toolbox: MATCONT ...

Folie 4

Interval Flutter Analysis using the Transformation Method > Schwochow

Uncertainty Propagation in Modal Analysis

Uncertain-but-bounded structural parameters cause

perturbation in physical stiffness and mass matrix of aircraft

Both are formulated as interval matrices with centrum and

perturbation (radius)

Interval eigenvalue problem:

For solution several perturbation or interval eigenvalue solver are

available

Uncertainty leads to centered eigenfrequencies and modeshapes with

perturbation:

Similiar formulation can be found for experimental GVT-results

[ ] [ ]

[ ] [ ]

,

,

I C C

I C C

K K K K K

M M M M M

= − ∆ + ∆

= − ∆ + ∆

( )( ){ } { }2

0C I C I

r rK K M Mω φ ± ∆ − ± ∆ =

{ } { } { } [ ],I C I Cω ω ω = ± ∆ Φ = Φ ± ∆Φ

Page 5: Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method: ... MATLAB-Toolbox: MATCONT ...

Folie 5

Interval Flutter Analysis using the Transformation Method > Schwochow

Uncertainty Propagation in Aerodynamic Loads

Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method:

Differential pressure of each aerodynamic box dependent on the downwash from

normal modeshapes:

Aerodynamic influence coefficient matrix AIC only depends on geometry, Mach

number and reduced frequency

Downwash w is calculated from structural mode shapes by multiplication of

transformation matrices

Modal aerodynamic loads are integrated pressures weigthed by modal

deflections

Propagation of interval mode shapes leads to interval generalized aerodynamic

loads:

{ } ( ) { },pc AIC M k w∞ ∆ =

( )[ ]

[ ],

FIC

T T T ikT

x cQ T S AIC M k∞

∂+

= Φ Φ

�����������������

[ ]

[ ] [ ] [ ][ ] [ ][ ] [ ] [ ]

[ ]

TI c c

T TT TC C C C

C

Q FIC

FIC FIC FIC FIC

QQ

= Φ ± ∆Φ Φ ± ∆Φ

= Φ Φ + ∆Φ ∆Φ ± Φ ∆Φ ± ∆Φ Φ

����������������� �����������������

Page 6: Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method: ... MATLAB-Toolbox: MATCONT ...

Folie 6

Interval Flutter Analysis using the Transformation Method > Schwochow

Direct Solution of Flutter Equations

Flutter equations are formulated in Laplace domain

Eigenvector is one non-unique solution of parameter-dependent flutter coefficient matrix

Determination of unique solution requires additional constraints:

1. Normalization of complex eigenvector in value and phase

2. Relationship eigenvalue - reduced frequency:

System of expanded non-linear equations:

Application of available Numerical ContinuationMethods

Advantage in comparison to available solutions (e.g. p-k-methods):

eigenvalue + eigenvector are used to find new solutions for increasisng flight velocity

� no commutation of solution branches (important for interval analysis)

[ ] [ ] [ ] ( )

( )

{ } { }2 21, 0

2

, , , ,

M s C s K V Q M k q

F s V M k

ρ

ρ

∞ ∞ ∞

+ + − =

∞ ∞ ∞

�������������������

s iσ ω= +

{ }q

[ ]F

{ }( ){ }

( ) { }

{ } { }

( )

{ }

{ } { }{ }

, , , ,

1 0

Im

, , ,

T

TT T

F s V M k q

y x q q

Vs k

c

x q s k V

ρ∞ ∞ ∞

= − = −

=

Page 7: Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method: ... MATLAB-Toolbox: MATCONT ...

Folie 7

Interval Flutter Analysis using the Transformation Method > Schwochow

Numerical Continuation Method

Numerical Continuation: Method to find successively solutions along one

solution branch with predictor-corrector-algorithm

MATLAB-Toolbox: MATCONT (www.matcont.ugent.be)

Predictor step:

starting from estimated solution

extrapolation along normalized tangent with stepsize h

Corrector step: Newton-iteration finds the nearest point on the solution

curve using orthogonality between tangent and new solution:

{ }i

x

{ }i

dyv

dp=

{ } { } { }0

i ix x h v= +

{ }

{ } { }( ) { }{ }0

( )

0T

i

y x

x x v

= −

{ } { }{ }( ){ }

{ }

{ }( )

1

1

k

k

k k k

x

d y xx x y x

d x

Jacobian Matrix

+

= − ���������

Page 8: Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method: ... MATLAB-Toolbox: MATCONT ...

Folie 8

Interval Flutter Analysis using the Transformation Method > Schwochow

Determination of Tangent Vector / Jacobian Matrix

All free parameter are fixed, except flight velocity

Tangent vector of velocity is determined by Jacobian matrix { }( )

{ }( )

{ }

( ) ( ) { } { } { }

( ) ( ) { } { }

Re

Re Im Re Im Re

Im

Im Re Im Re

d x

dV

d qF F F

F F q q qdVs s k

d qF F

F F q qdVs s

d

dV

d

dV

dk

dV

σ

ω

=

∂ ∂ ∂− −

∂ ∂ ∂

∂ ∂

∂ ∂

�������

{ }

{ }( ) { }( )

{ }( ) { }( )

{ }{ }

{ }

{ }

1

1

Im

Re

Im

Re Im 0 0 00

Im Re 0 0 0 0

00 0 0 1

T T

T T

y

x

Fq

VF

qFk

qV

q q

q q

V

c

×

∂∂

∂∂∂

−����������������������������������� { }( )

[ ] [ ] [ ] [ ] ( )

[ ]

[ ]( )

[ ]

2 2

2

2

1,

2

1

2

2

1

2

y

V

F M s C s K V Q M k

F

V

F

s

F

k

QVV Q

a M

s M C

QV

k

ρ

ρρ

ρ

∞ ∞ ∞

∞ ∞

∞ ∞∞ ∞

∞ ∞

= + + −

∂ = ∂

∂= ∂

∂ =∂

∂+

+

∂−

���������

Same procedure can be applied

for tangent vector of each

interval parameter with fixed

velocity

Page 9: Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method: ... MATLAB-Toolbox: MATCONT ...

Folie 9

Interval Flutter Analysis using the Transformation Method > Schwochow

Solution of Interval Flutter Problem

Formulation of flutter equations as non-linear system of equations including

additional interval parameters:

Solution process using predictor-corrector steps :

1. Continuation of one modal dof of the central flutter equations for increasing

flight speed to find a new nominal solution (all interval parameters are fixed)

2. Application of Transformation Method (Hanss: Applied Fuzzy Arithmetic,

2005) to evaluate all combinations of lower and upper bounds of interval

matrix to scan hypercube corners

3. Direct solution of perturbed flutter equations

for fixed velocity with Newton-method

from corrector step

4. Searching the identified set of eigenvalues

for minimum and maximum of

damping and frequency

[ ]{ } { } ( ) ( ) { } { }

( ) ( )( )( ) { } { }

1 2

22 2

0 , , , , , , 0

10

2

C

C C C C

i i i i i i

F q F s V M k F u u q

diag m m s diag m m V Q Q q

ρ

ω ω ρ

∞ ∞ ∞

∞ ∞

= ⇒ ± ∆ =

± ∆ + ± ∆ ± ∆ − ± ∆ =

ɶ ɶ …

[Hanss 2005]

Page 10: Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method: ... MATLAB-Toolbox: MATCONT ...

Folie 10

Interval Flutter Analysis using the Transformation Method > Schwochow

Continuation Method: V,g- V,f – Diagrams

Application to flutter analysis of glider aircraft

damping and frequency curves for 30 modal dof

adaptive stepsize small steps for

- strong curvature

- solutions neighboured in frequency

coupling of rudder and

ant. fuselage bending

suspicious for

„hump mode flutter“

rudder rotation – 0.5Hz fuselage bend. – 3.7Hz

0 20 40 60 80 100-5

0

5

10

15

20

25

V∞∞∞∞ TAS / m/s

da

mp

ing

/ %

cri

t.

0 20 40 60 80 1000

5

10

15

20

25

30

V∞∞∞∞ TAS / m/s

fre

qu

en

cy

/ H

z

Page 11: Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method: ... MATLAB-Toolbox: MATCONT ...

Folie 11

Interval Flutter Analysis using the Transformation Method > Schwochow

Interval Flutter Analysis using

Continuation/Transformation Method

Uncertainty in rudder mass +/-20% + aerodyn. hinge moment +/-20%

1. Step: continuation of centered flutter equations for velocity

2. Step: continuation of interval flutter equations for interval uncertainties

Page 12: Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method: ... MATLAB-Toolbox: MATCONT ...

Folie 12

Interval Flutter Analysis using the Transformation Method > Schwochow

Hump-Mode Flutter

Flutter might occur for heavy rudder + reduced aerodyn. efficiency

Are the interval bounds correct?

Page 13: Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method: ... MATLAB-Toolbox: MATCONT ...

Folie 13

Interval Flutter Analysis using the Transformation Method > Schwochow

Hump-Mode Flutter

Flutter might occur for heavy rudder reduced aerodyn. efficiency

Are the interval bounds correct?

Evaluation of all deterministic combinations shows exact

agreement

Page 14: Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method: ... MATLAB-Toolbox: MATCONT ...

Folie 14

Interval Flutter Analysis using the Transformation Method > Schwochow

Summary

Uncertain-but-bounded parameters in structural aircraft model cause

intervals of eigenfrequencies and modeshapes

These modal structural uncertainties must be propagated through the

flutter analysis process

The solution with Numerical Continuation Method finds solution branches

of modal dof for parameter dependent flutter equations

No commutation of solution branches, because both complex eigenvalue

and vector are used for continuation.

Interval flutter analysis is performed in parallel to central flutter solution

by application of Transformation Method.

The lower and upper bounds of complex eigenvalues are evaluated

exactly (no extrapolation).

� V,g and V,f diagrams may include uncertainty bounds in addition

Page 15: Jan Schwochow jan.schwochow@dlr - CFD4Aircraft · Unsteady aerodynamic theory in subsonic range: Doublet-Lattice-Method: ... MATLAB-Toolbox: MATCONT ...

Folie 15

Interval Flutter Analysis using the Transformation Method > Schwochow

References

Eigenvalues of interval matrices

Deif, A.S.: The Interval Eigenvalue Problem, ZAMM Zeitschrift angew.

Math. Mech. 71 (1991), pp. 61-64.

Continuation method

Cardani, C.; Mantegazza, P.: Continuation and Direct Solution of the

Flutter Equation. Computers & Structures, Vol. 8 (1978) No. 3, pp.

185-192.

Meyer, E. E.: Application of a New Continuation Method to Flutter

Equations. 29th Structures, Structural Dynamics and Materials

Conference, April 18-20, 1988, Williamsburg, VA, Part 3, pp.1118-

1123.

Transformation method

Hanss, M.: Applied Fuzzy Arithmetic. Springer Verlag, 2005.


Recommended