+ All Categories
Home > Documents > Japan Seismic Catastrophe 11 of March 2011. Long-term...

Japan Seismic Catastrophe 11 of March 2011. Long-term...

Date post: 12-Mar-2019
Category:
Upload: hanhi
View: 215 times
Download: 0 times
Share this document with a friend
15
When and Were the prediction was published Lyubushin A.A. Multi-fractal Properties of Low-Frequency Microseismic Noise in Japan, 1997-2008. - Book of abstracts of 7th General Assembly of the Asian Seismological Commission and Japan Seismological Society, 2008 Fall meeting, Tsukuba, Japan, 24- 27 November 2008, p.92. Lyubushin A.A. Synchronization Trends and Rhythms of Multifractal Parameters of the Field of Low-Frequency Microseisms – Izvestiya, Physics of the Solid Earth, 2009, Vol. 45, No. 5, pp. 381–394. http://alexeylyubushin.narod.ru/Trends_and_Rhythms_of_MicroSeisms_Synchronization.pdf http://www.springerlink.com/content/u0m8666021127077/ Lyubushin A.A. The Statistics of the Time Segments of Low-Frequency Microseisms: Trends and Synchronization – Izvestiya, Physics of the Solid Earth, 2010, Vol. 46, No. 6, pp. 544–554. http://alexeylyubushin.narod.ru/LowFrequency_Microseisms_Statistics.pdf http://www.springerlink.com/content/dg574m78q2861006/ Lyubushin A.A. Synchronization of multi-fractal parameters of regional and global low- frequency microseisms – European Geosciences Union General Assembly 2010, Vienna, 02-07 of May, 2010, Geophysical Research Abstracts, Vol. 12, EGU2010-696, 2010, http://meetingorganizer.copernicus.org/EGU2010/EGU2010-696.pdf Lyubushin A., Multifractal Parameters of Low-Frequency Microseisms // V. de Rubeis et al. (eds.), Synchronization and Triggering: from Fracture to Earthquake Processes, GeoPlanet: Earth and Planetary Sciences 1, DOI 10.1007/978-3-642-12300-9_15, Springer-Verlag Berlin Heidelberg, 2010, 388p., Chapter 15, pp.253-272. http://www.springerlink.com/content/hj2l211577533261/ Lyubushin A.A. Synchronization phenomena of low-frequency microseisms. European Seismological Commission, 32nd General Assembly, September 06-10, 2010, Montpelier, France. Book of abstracts, p.124, session ES6. http://www.esc2010.eu/cd/documents/Abstracts.pdf Lyubushin A.A. Cluster Analysis of Low-Frequency Microseismic Noise – Izvestiya, Physics of the Solid Earth, 2011, Vol. 47, No. 6, pp. 488-495 (received April 26, 2010) http://alexeylyubushin.narod.ru/Cluster_Analysis_LowFrequency_Microseisms.pdf http://www.springerlink.com/content/bp714871l218287m/ Japan Seismic Catastrophe 11 of March 2011. Long-term prediction by microseismic noise properties. Alexey Lyubushin Institute of Physics of the Earth, Moscow, Russia, [email protected] , http://alexeylyubushin.narod.ru/ Positions of F-net broadband seismic stations and their splitting into 5 clusters. Vertical seismic records with 1 Hz sampling rate were downloaded. 124 128 132 136 140 144 148 30 32 34 36 38 40 42 44 46 NKG TNK NOP SHR KNP NMR KSR HSS URH HID IMG KMU MMA TMR IYG GJM TYS KSN KSK SBT ADM WJM KZK HRO YMZ ASI TSK ONS IWT CHS SRN TTO KFU KNM SGN FUJ NAA TGA HKW SMZ TYM JIZ TNR KNY OHS WTR KZS HJO AOG SAG YAS YSI YZK ABU NRW NSK NOK ISI TGW KIS OKW KMT UMJ TSA YTY IZH SBR INN STM TKD FUK TMC SIB TKO TKA TAS KYK 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Cluster # Number of stations ---------------------------------------- 1 14 2 16 3 19 4 15 5 13 25.09.2003, M = 8.3 11.03.2011, M = 9.0
Transcript

When and Were the prediction was published

Lyubushin A.A. Multi-fractal Properties of Low-Freq uency Microseismic Noise in Japan, 1997-2008. - Book of abstracts of 7th General Assemb ly of the Asian Seismological Commission and Japan Seismological Society, 2008 Fa ll meeting, Tsukuba, Japan, 24-27 November 2008, p.92.

Lyubushin A.A. Synchronization Trends and Rhythms o f Multifractal Parameters of the Field of Low-Frequency Microseisms – Izvestiya, Phys ics of the Solid Earth, 2009, Vol. 45, No. 5, pp. 381–394.http://alexeylyubushin.narod.ru/Trends_and_Rhythms_ of_MicroSeisms_Synchronization.pdfhttp://www.springerlink.com/content/u0m866602112707 7/

Lyubushin A.A. The Statistics of the Time Segments of Low-Frequency Microseisms: Trends and Synchronization – Izvestiya, Physics of t he Solid Earth, 2010, Vol. 46, No. 6, pp. 544–554.http://alexeylyubushin.narod.ru/LowFrequency_Micros eisms_Statistics.pdfhttp://www.springerlink.com/content/dg574m78q286100 6/

Lyubushin A.A. Synchronization of multi-fractal par ameters of regional and global low-frequency microseisms – European Geosciences Union G eneral Assembly 2010, Vienna, 02-07 of May, 2010, Geophysical Research Ab stracts, Vol. 12, EGU2010-696, 2010, http://meetingorganizer.copernicus.org/EGU2010/EGU2 010-696.pdf

Lyubushin A., Multifractal Parameters of Low-Frequen cy Microseisms // V. de Rubeis et al. (eds.), Synchronization and Triggering: from Fr acture to Earthquake Processes, GeoPlanet: Earth and Planetary Sciences 1, DOI 10.1 007/978-3-642-12300-9_15, Springer-Verlag Berlin Heidelberg, 2010, 388p., Chapter 15, pp.253-272.http://www.springerlink.com/content/hj2l21157753326 1/

Lyubushin A.A. Synchronization phenomena of low-fre quency microseisms. European Seismological Commission, 32nd General Assembly, Se ptember 06-10, 2010, Montpelier, France. Book of abstracts, p.124, sessi on ES6.http://www.esc2010.eu/cd/documents/Abstracts.pdf

Lyubushin A.A. Cluster Analysis of Low-Frequency Mi croseismic Noise – Izvestiya, Physics of the Solid Earth, 2011, Vol. 47, No. 6, p p. 488-495 (received April 26, 2010) http://alexeylyubushin.narod.ru/Cluster_Analysis_Lo wFrequency_Microseisms.pdfhttp://www.springerlink.com/content/bp714871l218287 m/

Japan Seismic Catastrophe 11 of March 2011.Long-term prediction by microseismic noise propertie s.

Alexey LyubushinInstitute of Physics of the Earth, Moscow, Russia, [email protected] , http://alexeylyubushin.narod.ru/

Positions of F-net broadband seismic stations and their splitting into 5 clusters. Vertical seismic records with 1 Hz sampling rate were downloaded.

124 128 132 136 140 144 148

30

32

34

36

38

40

42

44

46

NKGTNK

NOPSHR

KNP

NMR

KSRHSS URHHID

IMGKMU

MMA TMR

IYGGJM

TYS

KSN

KSKSBTADM

WJM KZK HROYMZ

ASI

TSKONSIWT

CHS

SRN

TTOKFUKNMSGN

FUJNAATGA HKWSMZ TYMJIZTNRKNYOHS

WTRKZS

HJO

AOG

SAG

YAS

YSI YZKABUNRW

NSKNOKISITGW KISOKWKMTUMJ

TSA

YTYIZH

SBR INN

STM TKDFUK TMC

SIB TKO

TKATAS

KYK

555 5

5 55 55 5

55

5

44

4 4 444 444 44 44

4

3333 3333 33 33333

3 3

33

2222

222

2 2 22

222 2 2

111 1

11

11 111 1

1 1

Cluster # Number of stations---------------------------------------- 1 14 2 16 3 19 4 15 5 13

25.09.2003, M = 8.3

11.03.2011, M = 9.0

Synchronization increasing as a flag for approachin g to catastrophe:Decreasing of mean multi-fractal singularity spectr a support width ∆α∆α∆α∆α and increasing of multiple correlation κκκκ between variations of mean ∆α∆α∆α∆α from different groups of stations.

Strength Prediction

Thus, after the Hokkaido earthquake of September 25, 2003 (M = 8.3), a considerable synchronization of the variations in the multi-fractal parameters of the microseisms took place and was preserved at the same level up to the seismic catastrophe of March 11, 2011 (M = 9.0).

This fact allowed to make a hypothesis at 2008 that the Hokkaido 2003 event, notwithstanding its power, could be only a foreshock of a still stronger earthquake forming in the region of Japan’s islands .

Estimates for ∆t = 1minwithin adjacent time windowsof the length 1 day after Gaussiankernel smoothing with radius 1 year

Estimates for ∆t = 1s withinadjacent time windows of thelength 30 minutes after Gaussiankernel smoothing with radius 0.5 year

1998 2000 2002 2004 2006 2008 20100.0

0.2

0.4

0.6

0.8

0.300

0.305

0.310

0.315

0.320

0.325

0.330

0.42

0.44

0.46

0.48

0.50

0.5225.09.2003M = 8.3 11.03.2011

M = 9.0

Estimates of linear multiple correllationcoeff. κ∆α within moving time windowof the length 1 year between daily meanvalues of ∆α from 5 groups of stations.

Smoothingof mean ∆αvalues fromall stations

1998 2000 2002 2004 2006 2008 2010

0.3

0.4

0.5

0.6

0.7

0.8

Mean value of ∆α∆α∆α∆α from all stations after coming to ∆∆∆∆t = 1min, estimated within moving time window of the length 40 days since the beginning of 1997 till 26 of May 2011.

The jump in ∆α∆α∆α∆α values after seismic catastrophe is evident.

1998 2000 2002 2004 2006 2008 2010

0.3

0.4

0.5

0.6

0.7

0.8

Right-hand end of moving time window of the length 1 year

Squared correlation between mean values of multi-fractal parameters

∆α and α∗ of microseisms from all F-net stations estimatedwithin 1 year moving time window.

25.09.2003, M = 8.3 11.03.2011, M = 9.0Strong earthquake isnevertheless only a foreshock

Blue arrows were plotted at the April of 2010.The 2-nd arrow indicates the middle of 2010as the l ower estimate of catastrophe time moment.

Multi-fractal singularity spectrum

δ

t

µX(t,δ )

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

α

F(α)

αmaxαmin ∆α=αmax−αmin

α∗

Time Prediction

F(αααα) – fractal dimensionality of time moments t which have the same Holder-Lipschitzexponent α α α α , i.e. for whichµµµµX(t,δδδδ) ∼∼∼∼ (δδδδ)αααα when δδδδ →→→→ 0.

αααα* = argmax F(αααα) – generalized Hurst exponent.

Maps of multi-fractal singularity spectra support width ∆α∆α∆α∆α

Low ∆α∆α∆α∆α values indicate synchronization.

128 130 132 134 136 138 140 142 144 146E, deg

(b) 01.01.2004 - 10.03.2011, Mean =

30

32

34

36

38

40

42

44

46

N, d

eg

0.3950.4000.4050.4100.4150.4200.4250.4300.4350.4400.4450.4500.4550.460

0.44

From the beginning of 1997 till 25 of September 2003: the area of future seismic catastrophe is characterized by relatively low ∆α∆α∆α∆α and it is not split into North and South parts.

From the beginning of 2004 till 10 of March 2011: the area of future seismic catastrophe is characterized by relatively low ∆α∆α∆α∆α and is split into North and South parts .

From 12 of March 2011 till 17 of June 2011: the Nor th part of the relatively low ∆α∆α∆α∆α values before 25.09.2003 was realized as the area of Great Japan Earthquake 11 o f March 2011, M=9.0, whereas the South part is still characterized by relatively low ∆α∆α∆α∆α values.

128 130 132 134 136 138 140 142 144 146E, deg

(a) 01.01.1997 - 25.09.2003, Mean =

30

32

34

36

38

40

42

44

46

N, d

eg

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.48

Place predictionMean map of multi-fractal singularity spectra support width ∆α∆α∆α∆α spatial distribution created using data from the beginning of 1997 up to the end of February 2011. Domain of aftershocks at the right panel is clearly distinguished as the region of low mean ∆α∆α∆α∆α values . 128 130 132 134 136 138 140 142 144 146

E, deg

30

32

34

36

38

40

42

44

46

N, d

eg

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

128 130 132 134 136 138 140 142 144 146E, deg

(c) 12.03.2011 - 17.06.2011, Mean =

30

32

34

36

38

40

42

44

46

N, d

eg

0.57

0.59

0.61

0.63

0.65

0.67

0.69

0.62

?

128 130 132 134 136 138 140 142 144 146E, deg

1997.0000-1998.0000

30

32

34

36

38

40

42

44

46

N, d

eg

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

1997.4438-1998.4438

30

32

34

36

38

40

42

44

46

N, d

eg

0.380.390.400.410.420.430.440.450.460.470.480.490.50

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

1997.8877-1998.8877

30

32

34

36

38

40

42

44

46

N, d

eg

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

1997.0000-1998.0000

30

32

34

36

38

40

42

44

46

N, d

eg

0.230.240.250.260.270.280.290.300.310.320.33

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

1997.4438-1998.4438

30

32

34

36

38

40

42

44

46

N, d

eg

0.230.240.250.260.270.280.290.300.310.320.330.340.35

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

1997.8877-1998.8877

30

32

34

36

38

40

42

44

46

N, d

eg

0.240.250.260.270.280.290.300.310.320.330.340.350.360.370.38

-map for time interval:α∗

The next pages present the sequence of pairs of ∆α∆α∆α∆α and αααα∗ maps estimated within the same overlapping time int ervals of the length 1 year. Mostly the spatial patterns of ∆α∆α∆α∆α and αααα∗ are strongly correlated – except time fragment from the beginning of 2008 till the 11 of March 2011 – the da y of seismic catastrophe, M=9.0.

128 130 132 134 136 138 140 142 144 146E, deg

1998.3315-1999.3315

30

32

34

36

38

40

42

44

46

N, d

eg

0.380.400.420.440.460.480.500.520.540.560.580.60

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

1998.7753-1999.7753

30

32

34

36

38

40

42

44

46

N, d

eg

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

1999.2192-2000.2186

30

32

34

36

38

40

42

44

46

N, d

eg

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

1998.3315-1999.3315

30

32

34

36

38

40

42

44

46

N, d

eg

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

1998.7753-1999.7753

30

32

34

36

38

40

42

44

46

N, d

eg

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

1999.2192-2000.2186

30

32

34

36

38

40

42

44

46

N, d

eg

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

1999.6630-2000.6612

30

32

34

36

38

40

42

44

46

N, d

eg

0.420.440.460.480.500.520.540.560.580.600.620.640.66

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2000.1066-2001.1041

30

32

34

36

38

40

42

44

46

N, d

eg

0.460.480.500.520.540.560.580.600.620.640.660.680.70

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2000.5492-2001.5479

30

32

34

36

38

40

42

44

46

N, d

eg

0.420.440.460.480.500.520.540.560.580.600.620.64

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

1999.6630-2000.6612

30

32

34

36

38

40

42

44

46

N, d

eg

0.260.280.300.320.340.360.380.400.420.44

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2000.1066-2001.1041

30

32

34

36

38

40

42

44

46

N, d

eg

0.280.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2000.5492-2001.5479

30

32

34

36

38

40

42

44

46

N, d

eg

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2000.9918-2001.9918

30

32

34

36

38

40

42

44

46

N, d

eg

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2001.4356-2002.4356

30

32

34

36

38

40

42

44

46

N, d

eg

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2001.8795-2002.8795

30

32

34

36

38

40

42

44

46

N, d

eg

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2000.9918-2001.9918

30

32

34

36

38

40

42

44

46

N, d

eg

0.220.240.260.280.300.320.340.360.380.400.420.440.460.48

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2001.4356-2002.4356

30

32

34

36

38

40

42

44

46

N, d

eg

0.25

0.30

0.35

0.40

0.45

0.50

0.55

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2001.8795-2002.8795

30

32

34

36

38

40

42

44

46

N, d

eg

0.240.260.280.300.320.340.360.380.400.420.440.460.480.50

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2002.3233-2003.3233

30

32

34

36

38

40

42

44

46

N, d

eg

0.400.420.440.460.480.500.520.540.560.580.600.620.640.66

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2002.7315-2003.7315

30

32

34

36

38

40

42

44

46

N, d

eg

0.380.400.420.440.460.480.500.520.540.560.58

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2003.2110-2004.2104

30

32

34

36

38

40

42

44

46

N, d

eg

0.390.400.410.420.430.440.450.460.470.480.490.500.51

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2002.3233-2003.3233

30

32

34

36

38

40

42

44

46

N, d

eg

0.220.240.260.280.300.320.340.360.380.400.42

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2003.2110-2004.2104

30

32

34

36

38

40

42

44

46

N, d

eg

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2002.7315-2003.7315

30

32

34

36

38

40

42

44

46

N, d

eg

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2003.6548-2004.6530

30

32

34

36

38

40

42

44

46

N, d

eg

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2004.0984-2005.0959

30

32

34

36

38

40

42

44

46

N, d

eg

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2004.5410-2005.5397

30

32

34

36

38

40

42

44

46

N, d

eg

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2003.6548-2004.6530

30

32

34

36

38

40

42

44

46

N, d

eg

0.220.220.230.230.240.240.250.250.260.260.270.27

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2004.0984-2005.0959

30

32

34

36

38

40

42

44

46

N, d

eg

0.220.220.230.230.240.240.250.250.260.260.270.270.280.280.29

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2004.5410-2005.5397

30

32

34

36

38

40

42

44

46

N, d

eg

0.230.240.240.250.250.260.260.270.270.280.28

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2004.9836-2005.9836

30

32

34

36

38

40

42

44

46

N, d

eg

0.390.400.410.420.430.440.450.460.470.480.49

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2005.4274-2006.4274

30

32

34

36

38

40

42

44

46

N, d

eg

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2005.8712-2006.8712

30

32

34

36

38

40

42

44

46

N, d

eg

0.3800.3850.3900.3950.4000.4050.4100.4150.4200.4250.4300.4350.4400.445

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2004.9836-2005.9836

30

32

34

36

38

40

42

44

46

N, d

eg

0.220.220.230.230.240.240.250.250.260.260.270.270.28

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2005.4274-2006.4274

30

32

34

36

38

40

42

44

46

N, d

eg

0.20

0.21

0.21

0.22

0.22

0.23

0.23

0.24

0.24

0.25

0.25

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2005.8712-2006.8712

30

32

34

36

38

40

42

44

46

N, d

eg

0.21

0.22

0.22

0.23

0.23

0.24

0.24

0.25

0.25

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2006.3151-2007.3151

30

32

34

36

38

40

42

44

46

N, d

eg

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2006.7589-2007.7589

30

32

34

36

38

40

42

44

46

N, d

eg

0.380.390.400.410.420.430.440.450.460.470.480.490.500.510.52

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2007.2027-2008.2022

30

32

34

36

38

40

42

44

46

N, d

eg

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2006.3151-2007.3151

30

32

34

36

38

40

42

44

46

N, d

eg

0.220.220.230.230.240.240.250.250.260.260.270.27

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2006.7589-2007.7589

30

32

34

36

38

40

42

44

46

N, d

eg

0.220.230.240.250.260.270.280.290.300.310.32

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2007.2027-2008.2022

30

32

34

36

38

40

42

44

46

N, d

eg

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2007.6466-2008.6448

30

32

34

36

38

40

42

44

46

N, d

eg

0.420.430.440.440.450.450.460.460.470.470.480.480.490.49

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2008.0902-2009.0877

30

32

34

36

38

40

42

44

46

N, d

eg

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2008.5328-2009.5315

30

32

34

36

38

40

42

44

46

N, d

eg

0.400.400.410.410.420.420.430.430.440.440.450.45

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2007.6466-2008.6448

30

32

34

36

38

40

42

44

46

N, d

eg

0.24

0.25

0.25

0.26

0.26

0.27

0.27

0.28

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2008.0902-2009.0877

30

32

34

36

38

40

42

44

46

N, d

eg

0.240.250.250.260.260.270.27

0.280.280.290.29

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2008.5328-2009.5315

30

32

34

36

38

40

42

44

46

N, d

eg

0.23

0.23

0.24

0.24

0.25

0.25

0.26

0.26

0.27

-map for time interval:α∗

Correlation between ∆α∆α∆α∆α and α∗α∗α∗α∗ spatial patterns are destroyed.The initial stage started from 2008.

128 130 132 134 136 138 140 142 144 146E, deg

2009.8630-2010.8630

30

32

34

36

38

40

42

44

46

N, d

eg

0.23

0.24

0.24

0.25

0.25

0.26

0.26

0.27

0.27

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2008.9754-2009.9753

30

32

34

36

38

40

42

44

46

N, d

eg

0.380.390.390.400.400.410.410.420.420.430.430.440.440.450.45

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2009.4192-2010.4192

30

32

34

36

38

40

42

44

46

N, d

eg

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2009.8630-2010.8630

30

32

34

36

38

40

42

44

46

N, d

eg

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2008.9754-2009.9753

30

32

34

36

38

40

42

44

46

N, d

eg

0.22

0.23

0.23

0.24

0.24

0.25

0.25

0.26

0.26

0.27

-map for time interval:α∗

Precursor : correlation between ∆α∆α∆α∆α and α∗α∗α∗α∗ spatial patterns are strongly destroyed

128 130 132 134 136 138 140 142 144 146E, deg

2009.4192-2010.4192

30

32

34

36

38

40

42

44

46

N, d

eg

0.22

0.22

0.23

0.23

0.24

0.24

0.25

0.25

-map for time interval:α∗

128 130 132 134 136 138 140 142 144 146E, deg

2010.1890-2011.1890

30

32

34

36

38

40

42

44

46

N, d

eg

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

-map for time interval:∆α

128 130 132 134 136 138 140 142 144 146E, deg

2010.1890-2011.1890

30

32

34

36

38

40

42

44

46

N, d

eg

0.230.240.240.250.250.260.260.270.270.280.28

-map for time interval:α∗

Precursor : this slide shows that strictly 1 year before the seismic catastrophe correlation between ∆α∆α∆α∆α and α∗α∗α∗α∗ spatial patterns was destroyed already.

This destruction started from the beginning of 2008 (look 2 previous slides).


Recommended