+ All Categories
Home > Documents > Jaroslav Cermak, Institute of Hematology & Blood ... · 5/15/2012 1 Myelodysplastic syndromes - -...

Jaroslav Cermak, Institute of Hematology & Blood ... · 5/15/2012 1 Myelodysplastic syndromes - -...

Date post: 28-Jul-2018
Category:
Upload: lexuyen
View: 216 times
Download: 0 times
Share this document with a friend
23
5/15/2012 1 Myelodysplastic syndromes - - treatment. (Who, when, what drugs ?) Jaroslav Cermak, Institute of Hematology & Blood Transfusion, Prague, Czech Republic. Myelodysplastic syndromes Heterogeneous group of clonal hematological disorders arising from pluripotent progenitor stem cell. Different prognosis in terms of : - overall survival - leukemic transformation
Transcript

5/15/2012

1

Myelodysplastic syndromes -- treatment.

(Who, when, what drugs ?)

Jaroslav Cermak,

Institute of Hematology

& Blood Transfusion,

Prague, Czech Republic.

Myelodysplastic syndromes

• Heterogeneous group of clonal g g phematological disorders arising from pluripotent progenitor stem cell.

• Different prognosis in terms of :

- overall survival

- leukemic transformation

5/15/2012

2

Second and subsequent hits:Loss of gene function ( hypermethylation ‐ tumor suppressors )Gain of gene function ( oncogenes )

MDS - development

N l ll

MDS early stage

MDS late stage

AML

Noxa /insult:onkoproteinsradiation

First hit:Gene mutation :cell cycle transcription

Increased apoptosisImpaired differentiation

Decreased apoptosisImpaired differentiationIncreased proliferation

Normal stem cell

Dysplastic haemopoiesisPeripheral cytopeniasNo expansion of blasts

Dysplastic haemopoiesisPeripheral cytopeniasExpansion of blasts

Progress

AML = acute myeloid leukaemia. W.K.Hoffman / with permission /

Who should be treated ?Who should be treated ?

Prognostic factors :- traditional- traditional- new

5/15/2012

3

FAB classification

MDS subtype

Blast percentageAdditional features

AML transformation (%)Peripheral

bl t (%)Bone marrow

bl t (%)blasts (%) blasts (%)

RA Refractory anaemia ≤ 1 < 5 10–20

RARSRA with ringed sideroblasts

≤ 1 < 5> 15% ringed sideroblasts in bone marrow

10–35

RAEBRA with excess

blasts< 5 5–20 > 50

Bennett JM, et al. Br J Haematol. 1982;51:189‐99.

RAEB-TRAEB in

transformation≥ 5 21–29

Optional Auer rods

60–100

CMMLChronic

myelomonocyticleukaemia

< 5 ≤ 20Peripheral

monocytosis (> 103/µL)

> 40

Prognostic factors / traditionalFAB - 1992

5/15/2012

4

International Prognostic Scoring System (IPSS)

Score

0 0 5 1 0 1 5 2 00 0.5 1.0 1.5 2.0

Medullary blasts (%) < 5 5–10 – 11–20 21–30

Karyotype Good* Intermediate† Poor‡ – –

Cytopenia 0/1 2/3 – – –

Low risk 0 pointsp

Intermediate‐1 risk 0.5–1.0 points

Intermediate‐2 risk 1.5–2.0 points

High risk ≥ 2.5 points

Greenberg P, et al. Blood. 1997;89:2079‐88.

*Good: normal, ‐Y, del(5q), del(20q).†Intermediate: other abnormalities not seen in “good” or “poor”. ‡Poor: complex (≥ 3 abnormalities) or chromosome 7 anomalies.

Prognostic factors / traditionalIPSS - 1997

5/15/2012

5

Prognostic factors / traditionalWHO - 2001

5/15/2012

6

Score

Prognostic Variable

1 2 3

WHO Classification-Based Prognostic Scoring System (WPSS)

Variable

WHO category

RA, RARS, 5q– RCMD, RCMD-RS RAEB-1 RAEB-2

Karyotype Good Intermediate Poor ––

Transfusion requirement

No Regular –– ––

V l i k 0 i t

Good: normal, ‐Y, del(5q), del(20q). Poor: complex (≥3 abnormalities) or chromosome 7 anomalies

Intermediate: other abnormalities Malcovati L et al, JCO, 25(23), 2007:3503‐351

Very low risk 0 pointsLow risk 1 pointsIntermediate 2 pointsHigh risk 3–4 pointsVery high risk 5–6 points

Prognostic factors / traditionalWPSS - 2007

5/15/2012

7

New prognostic factors

Revised cytogenetics,molecular cytogenetics

Revised IPSS

MDS

Molecular biology

Flow cytometry

New prognostic cytogenetic scoring system

Very goodn = 81 (2.9%)

Goodn = 1,809 (65.7%)

Intermediaten = 529 (19.2%)

Poorn = 148 (5.4%)

Very poorn = 187 (6.8%)

Single

del(11q)

−Y

Normal

Single

del(5q)

del(12p)

del(20q)

Single

del(7q)

+8

i(17q)

+19

any others

indep. clones

Single

der(3q)

−7

Double

incl. −7/7q−

Complex

Complex

> 3 abnormalities

Double

incl. del(5q)Double

any other

Complex

3 abnormalities

Schanz J, et al. J Clin Oncol. 2011;29:1963‐70.

60,8                      48,5                             25,0                          15,0                       5,7

Overall survival(months)

5/15/2012

8

Molecular cytogenetics

• No significant differencegin overall survival andprogression free survivalin patients withkaryotype abnormalitiesdiagnosed either by :

chromosomal bandingchromosomal bandingor

molecular cytogenetics

Tiu R V et al. Blood 2011;117:4552-4560

SNP microarray based karyotyping in MDS

5/15/2012

9

SNP array analysis – impact on outcome

High density SNP arrays have facilitated the detection of cryptic chromosomal aberrations(75% of MDS and AML have abnormal cytogenetics by SNP array) and are of prognostic importance but need to be evaluated in large prospective studies

Next generation sequencing in MDS

Mutated gene

No. of samples

Median survival (95% CI) (year)

p value

All samples 439 (100) 1.86 (1.60–2.14)

Hazard Ratios for Death in a Multivariable Model.*

Mutational statusp ( ) ( )

TET2 90 (20.5) 1.88 (1.26–2.55) 0.48

ASXL1 63(14.4) 1.33 (0.96–1.88) 0.003

RUNX1 38 (8.7) 1.16 (0.77–1.53) < 0.001

TP53 33 (7.5) 0.65 (0.44–1.10) < 0.001

EZH2 28 (6.4) 0.79 (0.67–1.40) < 0.001

NRAS 16 (3.6) 1.03 (0.44–1.98) 0.006

JAK2 13 (3.0) 2.14 (1.02–3.12) 0.96

ETV6 12 (2.7) 0.83 (0.62–2.29) 0.04

CBL 10 (2.3) 1.52 (0.14–1.71) 0.02

IDH2 9 (2 1) 1 58 (0 50–2 14) 0 03

TP53 mutation present vs. absent 2.48 (1.60–3.84) <0.001EZH2 mutation present vs. absent 2.13 (1.36–3.33) <0.001ETV6 mutation present vs. absent 2.04 (1.08–3.86) 0.03RUNX1 mutation present vs. absent 1.47 (1.01–2.15) 0.047ASXL1 mutation present vs. absent 1.38 (1.00–1.89) 0.049

Somatic point mutations are common in myelodysplastic syndromes and are associated with specific clinical features.IDH2 9 (2.1) 1.58 (0.50–2.14) 0.03

NPM1 8 (1.8) 2.18 (0.59–2.74) 0.43

IDH1 6 (1.4) 3.30 (0.35–9.52) 0.52

KRAS 4 (0.9) 0.89 (0.36–7.44) 0.54

GNAS 3 (0.7)

PTPN11 3 (0.7)

BRAF 2 (0.5)

PTEN 1 (0.2)

CDKN2A 1 (0.2)

associated with specific clinical features.

Mutations in TP53, EZH2, ETV6, RUNX1, andASXL1 are predictors of poor overall survival in patients with myelodysplastic syndromes,independently of established risk factors.

Bejar R, et al. N Engl J Med 2011;364:2496‐506. 

5/15/2012

10

Flow cytometry

Aberrant flow cytometry patterns well correlate with morphology, subclassificationof MDS and with prognostic systems, but prospective validation of the impact ofimmunophenotypic patterns is necessarry.

Loosdrecht et al., Haematologica 2008

Revised IPSS ( IPSS-R )• 7012 patients with primary MDS from 11 countries• Significant parameters for prognostic classification :

Hb, WBC, PLT (depth of cytopenias)new prognostic cytogenetic system (5 subgroups)percentage of bone marrow blastspercentage of bone marrow blasts

5 different prognostic subgroupssurvival leukemic transformation

P.Greenberg – with permission

5/15/2012

11

Conclusions :• all „traditional“ prognostic systems :

a significant difference in overall survival and riskof leukemic transformation between :very low, low, intermediate‐1  andintermediate‐2, high, very high subgroups.

• new prognostic parameters :may have a significant prognostic impactmay have a significant prognostic impact(SNP arrays, next generations sequencing ofgene mutations, FCM) but their impact needsto be validated.

When should we treat ?

5/15/2012

12

Very lowLow

Intermediate ‐1CONSERVATIVE TREATMENT

Favourable prognosis : prolonged survival, lowrisk of leukemic transformation

RISK TREATMENT

Intermediate ‐2High

Very high

INTENSIVE TREATMENT

Adverse prognosis : short survival, high risk of leukemic transformation

IPSS

risk SCT (+/- chemotherapy)

relapse TRM 3yDFS

nonSCT

3yDFS

INTENSIVE TREATMENT v.s. SUPPORTIVE CAREin MDS

grouprelapse TRM 3yDFS 3yDFS

LW 0 20 80 73

IM-1 6 30 64 54

IM-2 29 31 40 21

H 42 29 29 6

Degg et al., 2002, Greenberg et al., 1998

5/15/2012

13

How should we treat ?

Control and modification of behaviour  Eradication of the clone

of the clone

NON‐INTENSIVETREATMENT

INTENSIVETREATMENT

RBC and PLT transfusionschelation

growth factorsimmune supression

hypomethylating agents

chemotherapystem cell

transplantation

5/15/2012

14

Non-intensive treatment :correction of cytopenia

• RBC and PLT transfusions

0-1

0

1 2

2-3

>3

44 % of MDS patients2 TU of RBC

1-2

Iron overload – the most serious consequence ofrepeated RBC transfusions

only 14% of patients 0 TU of RBC 

Chelation treatment

• Removal of existing iron surplus from the body• Prevention of iron overload in MDS patients

• Who should be treated with chelators ?- no definitive consensus- patients with serum ferritin > 1000-1500 μg/l- patients who received > 20-25 TU of RBC- measurement of NMR of heart using T2* - probably the

best estimation of organ iron stores

• Who should receive chelators as a prophylaxis ?- patients with isolated erythroid dysplasia receiving > 2

TU of RBC/month- presence of comorbidities (coronary disease, rheumatic

disease) significantly increases risk of iron overload

5/15/2012

15

• Deferasirox- first line treatment of iron overloaded MDS patients- effectively decreases toxic iron (LPI level)y ( )- less effective than deferiprone in removal of iron from myocardium- chelation may lead to improvement in blood cell counts, ? improvement in survival

• Deferipronenot routinely used in MDS patients (risk of- not routinely used in MDS patients (risk of

granulocytopenia)- alternative treatment for patients not indicatedfor deferasirox (adverse effects, renalinsufficiency)

Non-intensive treatment : Erythropoietin (EPO)

MDSi h

Probability of erythroid response

Score: 0

Score: 1

74%

23%

High

Intermediate

Score

Serum EPO (U/L)

< 500 U/L 0

500 U/L 1

Transfusion requirement

< 2 pRBC per month

0

2 pRBC per month

1

Score: 2 7% Low

Hellström‐Lindberg E, et al. Br J Haematol. 1997;99:344‐51. Jädersten M,et al. Blood 2005;106 :803‐811.

per month

EPO may be combined with G‐CSF for treating anemia and granulocytopeniaAdministration of EPO may be connected with prolonged overall survival.

5/15/2012

16

Non-intensive treatment : Immune suppression

• Total of 88 patients with MDS

R d i d t i l

ATG+CSA

BSC

Crossovere

1.0

0.8• Randomized trial

– 45 patients with ATG+CSA

– 43 patients with BSC (RBC; Epo)

• Response rates

– ATG+CSA: 13/45 (29%)

– BSC: 4/43 (9%)

Proportion remaining alive

0.6

0.4

0.0

0.2

0 1 2 3 4 5 6 7

Indication for immunosuppressive treatment :requested criteria – LW or IM‐1 IPSS score, patients

who are indicated for treatment but not eligible forSCT.recommended criteria – hypoplastic MDS, HLA‐Dr

15, PNH like MDS

• Overall survival at 2 years

– ATG+CSA: 49%

– BSC: 63%

– p = 0.828

Passweg JR, et al. J Clin Oncol. 2011;29:303‐9.BSC = best standard of care; OS = overall survival.

Time from randomization (years)

Non-intensive treatment : Lenalidomide

PATHOGENESIS OF 5q‐ syndrome

Jädersten et al.,Haematologica 2010; 85, 328‐581.

Lenalidomide in del 5q  : reversion of SPARC gene function, ↑ expression of miRNA 145, miRNA 156a.stimulation of Cdc25c, PPAcα (regulation of cell cycle)

5/15/2012

17

Non-intensive treatment : Lenalidomide (MDS 003,004)

Transfusion independence :

• MDS 003 :*

Transfusion independence (MDS 004)

• MDS 003 :

69 % ‐ isolated del 5q

67% ‐ del 5q + complex abberations

52% ‐ del 5q + 1 abberation

• MDS 004 :

56% ‐ LW + IM1 patients +

*

30

40

50

60

70

RBC‐TI (%) 41

56

56%  LW + IM1 patients +  lenalidomide 10 mg/day x 28

41% ‐ LW + IM1 patients + lenalidomide 5 mg/day x 28

6% ‐ placebo

List A, et al. N Engl J Med 2006; 355: 1456‐65,  Fenaux P, et al. Blood. 2011;118:3765‐76.

52 weeks of treatment

0

10

20

6

Risk analysis of outcome in del(5q) MDS treated or not with lenalidomide

ce on

Untreated

LEN-treated

1.0

0.8

Cu

mu

lati

ve in

cid

eno

f A

ML

pro

gre

ssio

0 1 2 3 4 5 6

0.6

0.4

0.2

0

Kuendgen A, et al. Blood. 2011;118:[abstract 119].

LEN-treated Untreated2-year cumulative incidence 7% 12%

5-year cumulative incidence 23% 20%

Median time to AML progression not reached not reached

Time (years)

125 79 58 39 24 18 9

53 97 119 128 120 98

Number of patients at risk, n

5/15/2012

18

DNA hypermethylation and MDS

NH2 NH2DNA

• DNA methylation is regulated by DNA

O

N

N O

N

N

CH3

DNA methyltransferase

Cytosine Cytosine + methyl group

DNA methylation is regulated by DNA methyltransferases (DNMTs)

• Methylation occurs at CpG dinucleotides in DNA

Esteller M. N Engl J Med 2008;358:1148–59

DNMTs hypermethylate cytosine bases of DNA in gene promoters

MDS

Repressed transcription of tumour suppressor genes

Dysregulated proliferation/differentiation of haematological precursor llcells

HYPOMETHYLATING AGENTSMethyl transferase inhibitiors : azacytidine, deoxyazacytidineHiston deacytelase inhibitors : vorinostat, valproic acid

5/15/2012

19

AZA – 001 overall Survival: Azacitidine vs CCR

Log‐Rank  p=0.0001

HR = 0.58 [95% CI: 0.43, 0.77]

Deaths: AZA = 82, CCR = 1130 8

0.9

1.0

,

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Proportion Surviving

CCRAZA

Difference: 9.4 months

24.4 months

15 months

50.8%

26.2%

0 5 10 15 20 25 30 35 40

Time (months) from Randomization

0.0

0.1

0. CCR

Fenaux et al., Lancet Oncol. 2009;10,223‐232. 

Experience from treatment withazacytidine

• AZA signifcantly prolongs survival in comparison withconventional treatment regimens.conventional treatment regimens.

• Median number cycles to the first response is 2, to the bestresponse is 3-4, 90% of responding patients respond within6 cycles of treatment.

• Patients with poor-risk cytogenetics including abnormalities ofchromosome 7 showed good response to AZA (not confirmed inmore recent studies))

• AZA is well tolerated even in patients of age 75 and older.

• A significant effect on survival may be present even in patientswho did not achieve CR or PR.

5/15/2012

20

Intensive treatment :Combination chemotherapy

(anthracycline + cytosin arabinoside)100

Combination chemotherapyf

20

40

60

80

Su

rviv

al (

%)

not followed by SCT :

• limited impact on prolongedsurvival

• 3 years overall survival < 15%

• less efficient than

0 20 40 60 80 100 120 1400

20

Wattel E. et al., Br J Haematol, 1997;98:983-991.

less efficient thanhypomethylating agents(AZA 001 study :  OS  25,1 monhts for AZA v.s. 15,7 months for combinationchemotherapy).

Stem cell transplantation in MDS

• Which patients should be transplanted i di t l h b SCT immediately , when can be SCT delayed ?

• Should the patients with advanced MDS receive chemotherapy prior to SCT ?SCT ?

• What is the role of reduced conditioning regimens in MDS ?

5/15/2012

21

Stem cell transplantation :timing of SCT in relation to IPSS

Low1 0

1.5Cutler CS, et al. Blood. 2004;104:579‐85.

High

Int‐1

s of discounted 

ctan

cy

Years of delay

−1.0

−0.5

0

0.5

1.0

1 2 3 4 5 6 7 8 9 10

Int‐2

Gain/loss

life expec

−2.5

−2.0

−1.5

LW‐ and INT‐1‐risk patients may benefit from delaying transplantation

Patients with early MDS with profound pancytopenia and poor‐risk karyotype are indicated for immediate SCT (IM‐2 risk score)

Stem cell transplantation :effect of pretreatment with chemotherapy

<10% blasts> 10% blasts

Reduction of bone marrow blasts prior SCT may prolong survival of MDS patientswith advanced disease.

Randomized trials comparing upfront SCT and SCT after combination chemotherapyare needed.

Cermak et al., Blood 2010; 116: 1638De Witte et al. Blood 2001; 98:2326‐2331.

5/15/2012

22

Stem cell transplantation :effect of reduced conditioning

standard conditioning

reducedconditioning

3 years OS3 years OS (%) 48 41

3 yearsDFS (%) 38 33

relapseincidence 27 45incidence

(%)27 45

non-relapsemortality

(%)

32 22

Martino et al.,Blood 2006;108,836‐846

Reduced conditioning regimens :low transplantation related mortality,higher incidence of relapses

But :  > 40% of patients survive > 3 yearsin recent studies

FAB subtype

(type of SCT +

conditioning)

DFS

3 years(%)

TRM

(%)

Relapse

(%)

RA ll SCT 60 70 25 40 0 5RA alloSCT 60 - 70 25 - 40 0 - 5

RAEB allo/stand

RAEB-T allo/stand

35 - 45

30 - 40

30 - 40

30 - 40

30 - 50

40 - 50

RAEB + RAEB-T

ll / d d30 - 40 5 - 20 50 - 60

allo/reduced

RAEB + RAEB-T

auto15 - 30 10 - 20 70 - 75

Degg et. al. (2005), Sierra et al. (2002), Martino et al. (2005), Mufti et al. (2005).

5/15/2012

23

Conclusions• Percentage of bone marrow blasts and karyotypeabnormities are still the most important prognosticfactors in MDS patients and play the most importantl i th t t t d i i (i t irole in the treatment decision (intensive v.s. 

conservative approach)

• Stem cell transplantation still represents the onlycurative treatment in MDS

• New factors e.g. molecular genetics changes may affectprognosis and choice of the appropriate treatmentprognosis and choice of the appropriate treatment

• New drugs targeting the molecular basis of the disease(e.g. hypomethylating agents) represent promisingtherapeutic modalities in MDS.


Recommended