+ All Categories
Home > Documents > JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded...

JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded...

Date post: 12-May-2019
Category:
Upload: dangliem
View: 221 times
Download: 0 times
Share this document with a friend
42
1 JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project background……………………………………………………………………………………………………………………………..4 2. Objective of the FS……………………………………………………………………………………………………………………………….5 3. Project description: a. Project location……………………………………………………………………………………………………………………………..6 b. Indonesian partner(s) ….…………………………………………………………………………………………………………..……4 c. Description of the technology………………………………………………………………………………………………………..4 d. Project details…………………………………………………………………………………………………………………………………6 4. The result of the study a. Role of each participant………..………………………………………………………………………………………………………..7 b. Reference scenario setting………………………………………………………………………………………………………….….7 c. Monitoring methods……………………………………………………………………………………………………..……………….8 d. Quantification of GHG emissions and their reductions……………………………………………………………………9 e. MRV methodology…..………………………………………………………………………………………………………………..….10 f. Project site monitoring and emission reduction assessment………………………………………………………….16 g. Satellite based analysis………………………………………………………………………………………………………………….31 h. Scale of investment & financial viability……………………………………………………………………………………..…39 i. Contribution to Indonesian Sustainable Development……………………………………………………………..……39 j. Proposed implementation schedule…………………………………………………………………………………………..….40 k. Capacity building to the host country…………………………………………………………………………………………….40 5. Conclusion and Next Steps………………………………………………………………………………………………………………….40 References…………………………………………………………………………………………………………………………………………..41
Transcript
Page 1: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

1

JCM Feasibility Study 2015  

Summary Report  

Degraded peatland management in Jambi 

  

Table of Contents  

1. Project background……………………………………………………………………………………………………………………………..4 

2. Objective of the FS……………………………………………………………………………………………………………………………….5 

3. Project description: 

a. Project location……………………………………………………………………………………………………………………………..6 

b. Indonesian partner(s) ….…………………………………………………………………………………………………………..……4 

c. Description of the technology………………………………………………………………………………………………………..4 

d. Project details…………………………………………………………………………………………………………………………………6 

4. The result of the study 

a. Role of each participant………..………………………………………………………………………………………………………..7 

b. Reference scenario setting………………………………………………………………………………………………………….….7 

c. Monitoring methods……………………………………………………………………………………………………..……………….8 

d. Quantification of GHG emissions and their reductions……………………………………………………………………9 

e. MRV methodology…..………………………………………………………………………………………………………………..….10 

f. Project site monitoring and emission reduction assessment………………………………………………………….16 

g. Satellite based analysis………………………………………………………………………………………………………………….31 

h. Scale of investment & financial viability……………………………………………………………………………………..…39 

i. Contribution to Indonesian Sustainable Development……………………………………………………………..……39 

j. Proposed implementation schedule…………………………………………………………………………………………..….40 

k. Capacity building to the host country…………………………………………………………………………………………….40 

5. Conclusion and Next Steps………………………………………………………………………………………………………………….40 

References…………………………………………………………………………………………………………………………………………..41 

Page 2: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

2

1. Project background 

Tropical peatland covers approximately 250,000 km2 of  land  in Southeast Asia  including  Indonesia, and around 68.0 billion tons of carbon is estimated stored (Page et al., 2011). Over 80% of this is situated in Indonesia, and  it  is estimated that approximately 0.8 billion tons of CO2 per year  is being emitted as a result  of  peat  fires  and  peat  decomposition  (DNPI,  2010).  This  is  comparable  to  the  amount  of  CO2 emitted in Japan and accounts for around 5% of the world CO2 emissions. Peat decomposition as well as peat  fires  occur mainly  during  the  dry  season  due  to  the  decline  of  groundwater  levels  in  peatland caused by deforestation and associated drainage, and are especially severe in El Niño years (such as 1997, 2002 and 2006). To mitigate these problems, water  levels  in peatland need to be restored to rewet the peat,  and  corresponding MRV  (Measurable,  Reportable  and  Verifiable) methodology  to  quantify  the effects of such countermeasure is necessary to be developed. 

Project area is a rice farming coastal lowland in Berbak Delta region of Jambi province in Indonesia. Much of the area has peat soil, with a remaining thickness around 1m on average after decades of drainage and associated peat decomposition. The  area was deforested  in  the 1970s,  and water  channels  and  gates were built  in the 1980s for growing rice by trans‐immigrants. The water management facility has since been not well maintained, allowing drop of average water levels as low as ‐1m below ground level during the dry  season,  causing CO2  emissions due  to  aerobic peat decomposition.  The  low water  table  also cause oxidation of pyrite  layer beneath the peat  layer causing acidification of  the soil and  lower pH as low as 3‐4. During  the  rainy  season on  the other hand,  flooding condition due  to  failure of  the water table  control  prevents  timely manner  rice  farming  resulting  in  reduced  production  with  often  poor quality and quantity of rice. Because of these conditions, rice production  in the area  is very  low at 1‐2 tons/ha compared with normal 6 tons/ha in tropical area. To curb the situation, peat soil oxidation needs to be  suppressed by  restoring water  levels  through proper water management  including water  facility upgrade. 

Because  of  the  lack  of  proper water management,  the  area  has  been  suffered  low  rice  productivity; almost no production during the dry season due to dryness and lower yield during the rainy season due to the  flooding problem. Among various conditions to  increase rice productivity, water management  is the most fundamental key issue to be improved. 

Because of the low rice yield, farmers living in the lowlands with peat soil, a part of main rice production area of  Indonesia, have been  in poor conditions. Also there are farmers converting their  lands without enough knowledge from rice paddy to oil palm plantation to try to increase their income. Oil palm is not suitable  to  grow  in  lowlands  as  it  requires  low water  table  close  to  ‐1m below  the  ground  level  that enhance peat decomposition because of required low water table. This situation has been lowering rice production in Indonesia, making the country as the largest importer of some 2 million ton rice per year, causing food security problem of the country.   

An  integrted water and carbon management with consideration of  landscape approach  is necessary  to mitigate the situation. 

 

Page 3: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

3

2. Objective of the FS 

The following items are being studied in the current FS to develop MRV methodology and project 

formation. 

 

(1) Methodology development   

i) Monitoring tools development 

ii) Site monitoring 

iii) Methodology development and emission reduction evaluation 

 

(2) Host country situation for climate change and REDD+ projects 

i) Situation of central government 

ii) Situation of local government   

iii) Situation of peatland management 

 

(3) Project partnership and finance scheme 

i) Project partnership 

ii) Project finance scheme 

 

(4) Economical and other benefit of Project 

Page 4: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

4

3. Project description: 

a. Project location 

The project site covers an area of approximately 20,000 ha in the East Tanjung Jabung district of Jambi, Sumatra as seen in Fig. 3.1.  Site : Tanjung Jabung Timur Regency, Jambi Province 

Area: About    20,000ha (= 200km2)   

 

History of the site   

Developed canals for rice field during 1970s.   

Due to drainage, the lands became dry and rice yield is 1‐2 tons/ha.   

Peat not been conserved and decomposition and resulting subsidence are advancing   

 

Fig. 3.1 Project site (East Tanjung Jabung district of Jambi, Sumatra)  

 

b. Indonesian partner(s) 

The project counterparts are the Ministry of Public Works, the Jambi Provincial Government and Tanjung Jabung Timur Regency Government. 

 

 

c. Description of the technology 

Main scope of the project activity is to use best practice methods for water table control in the project area of degraded rice farming lands with peat soil by upgrading water canals and gates in 20,000ha of Berbak delta of Tanjung Jabung Timur in Jambi (Fig.4). Through the activity, it is expected to increase rice productivity (adaptation) and to mitigate peat CO2 emission due to its decomposition under JCM and NAMAs (Figs. 1 & 5).   

Rice production increase in sustainable manner in degraded lowland is the goal of the proposed project activity through the proper water management, which prevents water acidification in the dry season and flooding in the rainy season. The activity will be linked governmental program LP2B, which aims to 

Page 5: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

5

sustain existing rice‐farming area under the pressure of conversion to palm plantation. 

Through the activity, robust MRV (Measurebale, Reportable and Verifiable) methodology to evaluate GHG emission reductions as well as best practice guideline for water management will be developed. 

Develop policy and institutional mechanism including water association of local communitythat enable to sustain rice farming in degraded peat lowlands. Also partnership between national and    local governments,    private sector and research institutions    to promote large scale climate change adaptation and mitigation projects under NAMA and FVA (Framework for Various Approach) including JCM (Joint Crediting Mechanis) between Indonesia dn Japan. 

CO2 emissions by peat decomposition

Dry peatdrainage

Before

Rice husk

BiomassRice yield increaseWater control =

ash

Drying facility

Emissions reductions by water table increase

Water gate Peat in GroundwaterWater table

increase

After

Fig. 3.2 Project scheme of carbon and water management for rice‐farming degraded peat lowland 

Rice husk ahs and dry soil ration

Biomass dryer

After

Before

Fig. 3.3 Water control and rice‐husk utilization for energy and soil neutralization 

 

Page 6: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

6

d. Project details 

The project activity scenario includes water table control for rice‐farming in the peat soil of the lowlands with upgrade of water‐gates and canals and their improved operation to increase rice yield with reduced peat  decomposition.  Brief  description  of  the  project  componets  and  expected  outcomes  are  the followings.   

‐ Water controrol: Raise water table in suitable hydrogeological plots of rice farming peatlands in Jambi. Through stakeholders meeting of the plots, functions to grow rice during the dry season with tertiary canal and gates installation. This stage project exhibit how to rewet peatland to reduce peat oxidation and  its monitoring  (groundwater  level, subsidence etc), which become basis  for  future countrywide implementation. Through the water management, local farmers can produce rice even during the dry season and minimize damage  to  the  rice growth due  to pyrite oxidation as well as  reduce  flooding impact during the rainy season. 

‐ An integrated approach: To establish functional mechanism of proper water‐soil management for the above stage project and  its continued program, an  integrated approach to synchronize organizations functions at the  levels of  farmers,  local and central govrnments be taken  ;  i) support  to re‐organize water association by farmers to operate water control facility, ii) appropriate information for farmers to enable  timely manner  rice‐farming,  iii) proper water control  facility maintenance,  iv) continuous capacity building for rice‐farming improvement.   

‐  Dissemination:  Results  of  the  demonstration  project  be  compiled  in  a  guideline  and  easy understanding video, which shall be effectively utilized for the area development plan of East Tanjung Jabung Regency, which has a proposed plan of  raising productivity of existing 17,000ha paddy  field (LP2B:  Kondisi  Pendataan  Lahan  Pertanian  Pangan  Berkelanjutan,  Documenting  Condition  of Agricultural Land Sustainable Food). 

‐  Continues  monitoring  for  MRV  (Measurable/Reportable/Verifyable)  methodology:  Monitoring  of groundwater  level,  subsidence  and weather  conditions  shall  be  continued  in  the  Jambi  site with intense monitoring in the demonstration plots. The monitoring parameters be measured at more than 100 locations in the Jambi site and satellite data covering the site be utilized. These long term dataset shall  become  the  database  for  various  purpose  of  sustainability  of  degraded  peatlands.  A hydrogeological methematical model be applied to calculate water table in the site using the dataset to quantify the difference of water table before and after the project and emission reductions.  

‐ Capacity building & PPP: Concerned Indonesian organizations and their staff take part  in multi‐phase activities  in  the  Jambi  site  and  the  project  with  the  integrated  approach  for  effective  water management  and monitoring  techniques  as well  as  the MRV methodology.  Through  the  activities, basic  scheme  for  public  private  partnership  for  a  large  scale  emission  reduction  project  such  as peatland mitigation and adaptation under  JCM  (Joint Crediting Mechanism) between  Indonesia and Japan shall be established. 

 

Page 7: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

7

4.    The result of the study 

a. Role of each participants The project participants and their partnership is shown in Fig. 3.4. Function of each organization is 

summarized below. 

 

Project consortium 

- Private  companies  that  invest  to  the  project  and  receive  corresponding  carbon  credit.  The 

consortium make project agreement with Min. of Public Works. 

 

Government 

- Min. of Public Works: Plan and check the project activity along with the government policy. 

- Local  governments  (Jambi  Province,  East  Tanjung  Jabung Regency):  Plan  and  implement  the 

project activity along with the local government policy such as LP2B. 

 

Research Institutions 

-   Univ. of Jambi: Mainly involved in the peat characterization 

-   Univ. of Sriwijaya: Mainly involved in the farming activity 

-   Univ. of Tokyo, Japan: Mainly involved in satellite sensing monitoring 

 

Public-Private Joint Project

Min of Public Works

Local Government– Jambi province– Tanjung Jabung Timur

Project Consortium

SupervisionCooperation

 Fig. 4.1 Project partnership 

 

 

b. Reference scenario setting 

For CO2 emissions of peat oxidation, reference scenario is current condition that is no mitigation action has been taken in Indonesia. Therefore, there is no baseline project for farming peat lowland mitigation in Indonesia. 

 

 

Page 8: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

8

c. Monitoring methods 

Fig. 3.5 shows monitoring methods and base map made compiling the monitoring data. Frequency of the 

monitoring is shown below. 

On site monitoring 

- Groundwater level (GWL): Hourly with data loggers or biweekly by hand measured.   

- Peat depth: Once for initial mapping 

- Canal/gate survey: Once for initial mapping. Monitored at verification timing. 

- Stakeholders meeting:    Once for initial mapping. Be monitored at least once a year. 

Remote sensing:   

- Weather conditions: Daily data collection for weather data.   

- Topography and land cover/use: Monitored for initial and verification mappings. 

Hydrology modeling:   

- Reference GWL: Model be calibrated with at least one year groundwater data prior to the project 

start. 

- Project GWL: Model be calibrated with measured GWL after the project start in the monitoring 

report. 

 

 

Pipe installation

GWL data download

Remote sensing0

50

100

150

200

250

300

350

400

450

500

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pre

cip

itat

ion

(m

m/d

)

GW

L (

GL

-m)

Rainfall(mm/d)

Box Model

Obs. (Average)

Stakeholders mtg

Hydrology modeling Topography map

Peat depth

Project area map

Peat map

GWL map

On Site Monitoring

Gate/canal survey

  

Fig. 4.2 Monitoring methods 

 

 

Page 9: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

9

d. Quantification of GHG emissions and their reductions 

Fig. 3.6 summarize flowchart to calculate emission reductions. Based on the flowchart, the followings are 

the expected GHG reductions. 

 

414,000 tCO2/y be reduced with water table control 

  69 tCO2/ha/m/y x 20,000ha x 0.3m = 414,000 tCO2/y 

 

6 million tCO2/y can be reduced when applied nationwide 

  (assuming degraded peatland area of 280,000ha). 

 

I. ON SITE MONITORING GWL Peat thickness Topography

II. REMOTE SENSING Topography (SRTM) Land Cover (Landsat) Rainfall (GSMaP)

III. HYDROLOGY MODELINGCalculate Ground Water Level with Lumped Model or 3D Model.

IV. GHG EMISSION CALCULATIONER = Σ Ai * EFPEAT * (RWL – PWL)

Ai : Plot areaEFPEAT : Emission factorRWL: Reference water levelPWL: Project water level

If RMSE < 10cm

Water gate

RWL

PWL

Reference

Project

No

Yes

 Fig. 4.3 GHG emission reduction calculation flowchart 

 

Page 10: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

10

e. MRV methodology 

The flowchart shown in Fig. e‐1.1 summarize steps in calculation of GHG emissions for degraded peatland rewetting methodology. Detail of the methodology is then described in the following.  

現地計測 水理モデリング

事業実施前(リファレンスケース)

事業実施後(プロジェクトケース)

既存の計測値・資料収集

(地形、地質、被覆、水利用他)

水理モデル構築

(集中型・分布型モデル)

プロジェクトバウンダリの設定

現況再現計算

計測値.vs.計算値

GHG 排出量算定(Ex-Ante)

OK

水面安定化の事後評価

新規の現地計測

(雨量、気温、地形、地質、土地利用・被覆、

水利用、水位、水質、水路流量他)

リファレンス水位の確定

GHG 排出量算定(Ex-Post)

計測値.vs.計算値

NG 水位

水位観測の継続

(水位他)

NG

衛星データの収集

(雨量、気温、地形、土地利用・被覆他)

OK

水位

Fig. e‐1.1 Steps in calculation of GHG emissions for degraded peatland rewetting methodology 

 

 

Hydrologic model Field measurements

Bef

ore

proj

ect (

refe

renc

e ca

se)

Aft

er p

roje

ct (

proj

ect c

ase)

Determination of project boundary

Compilation of satellite data(precipitation, temperature, topology, land

use, covering, etc.)

Continuation of water level monitoring

(water level, etc.)

Calculations to reproduce present situation

Development of hydrologic model

(box/dispersed models)

Compilation of existing measurements and data

(topography, geological features, covering, water use, etc.)

New field measurements

(precipitation, temperature, topography, geological features, land use, covering,

water use, water level, water quality, canal flow rate, etc.)

Water level

Ex-post assessment of water surface stabilization

Calculation of GHG emissions (ex ante)

Determination of reference water level

Calculation of GHG emissions (ex post)

Measured values vs.calculated values

Measured values vs.calculated values

Water level

Page 11: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

11

1. Title of the Methodology

“Mitigation of Peat Decomposition through Water Table Management for Drained Peatlands in the Republic of Indonesia”

2. Summary of the Methodology

The methodology can be applied to project activities of water table control to reduce aerobic decomposition of peat in drained tropical peatlands through rewetting using technical methods, such as installation of water gates in drainage channels in the Republic of Indonesia.

Related methodology: VCS Methodology, REWETTING OF DRAINED TROPICAL PEATLANDS IN SOUTHEAST ASIA.

3. Applicability Conditions

This methodology is applicable to projects that satisfy all of the following conditions. Condi -tion

Check

1 This project controls groundwater level for rewetting of peatlands by technical methods such as installation of water-gates in drainage channels in tropical peatlands where manmade drainage was implemented prior to January 1, 2014.

2 The project site is tropical peatlands located at altitude lower than 100 m in the Republic of Indonesia, where thickness of peat should be more than 0.5 m in average*.

3 The project area includes singular or multiple complete watersheds. It is clear that the project area has no hydrological relation to peatlands located outside of the project boundary, or if a relationship does exist it exerts no adverse impact on the environment or local citizens.

4 It can be demonstrated that the peatlands inside the project area are influenced by drainage, e.g. there is data indicating groundwater level lowering and/or peat subsidence.

5 Following project implementation, it is possible to evaluate the mean groundwater level by measurements or a hydraulic model confirmed with measurements. During project implementation, the reference groundwater level should be able to be calculated with the hydraulic model.

6 The project implementation shall not cause additional nature destruction. *1 Policy Memo: Peatland Definition Form Uncertainty to Certainty, 2012.08, Indonesia Climate Change Center

4 Necessary Data for Calculation

The data that needs to be set in advance in the project registration stage or data that requires monitoring after project implementation are as indicated below.

The calculation tool is attached to the methodology, so it is possible to calculate the emission reductions by inputting the following data.

Page 12: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

12

Explanation of data Symbol Value Unit

Area of plot Ai m2

Peat depth DPi mReference mean annual water level RWTi mMean annual water level when project is implemented

PWTi m

Emission factor for CO2 from peat decomposition EFPEAT-CO2 tCO2/ha/m/yEmission factor for N2O from rice cultivation EFPEAT-N2O tCO2/ha/m/yEmission factor for CH4 from water level raising EFPEAT-CH4 tCO2/ha/m/ySubscript i corresponds to a hydrogeological unit area, which is sub-region of the project area.

6 Terms and Definitions

Term DefinitionTropical peat Peatland is an area with an accumulation of partly decomposed organic

matter, with ash content equal to or less than 35%, peat depth equal to or deeper than 50 cm, and organic carbon content (by weight) of at least 12% (Policy Memo: Peatland Definition Form Uncertainty to Certainty, 2012.08, Indonesia Climate Change Center)

Peat decomposition control

In cases where peat is dried as a result of drainage by human activities, aerobic microbial decomposition of peat takes place. The decomposition rate can be reduced through restoring the groundwater level and thereby rewetting the dried peat. The reference mean annual water level (RWL) is the mean annual water level in the case where groundwater level management isn’t carried out. The mean annual water level when project is implemented is the mean annual water level following restoration of the groundwater level (PWL).

Plot This is the unit of hydraulic terrain at which the mean water level and peat characteristics are deemed to be uniform.

Emission factor of peat decomposition EFPEAT

This expresses the CO2 emissions per unit area of peat and at each annual groundwater level.

7 Project Boundaries

The project boundary shall include the following GHG emission sources and GHG emissions.

The project boundary is as described below.

Geographical Boundary

The geographical boundary of the project is one or more independent watershed, and each watershed should be hydrologically independent of peatlands in other watersheds. The watershed boundaries are set based on topographical characteristics, etc. and are clarified using electronic topographical information, etc.

Moreover, the project participants need to demonstrate the relationship between land inside the project boundary and position of peatland by using measured values and/or satellite images, etc.

Target GHGs

The following tables indicate the targeted GHG carbon pools and GHGs. Carbon Pool Included? Justification/Explanation

Aboveground tree biomass No It is conservative to omit. Aboveground non-tree biomass No It is conservative to omit. Underground (roots, etc.) biomass No It is conservative to omit.

Page 13: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

13

Litter No It is conservative to omit. Dead trees No It is conservative to omit. Soil Yes Main pool addressed by project activities. Wood products No It is conservative to omit.

Source Gas Included? Reason/Explanation

Reference scenario

Aerobic decomposition in peatland used as paddy field

CO2 Yes Main source and gas to be addressed by the project activities.

N2O No N2O emissions are conservatively not accounted for in the reference scenario by this methodology

Anaerobic decomposition CH4 No

Considered negligible in drained peatlands. CH4 emissions can be generated in drainage channels, but these are conservatively not accounted for in the reference scenario by this methodology.

After project implementation

Aerobic decomposition in peatland used as paddy field

CO2 Yes Main source and gas to be addressed by the project activities.

N2O Yes

When rice production exceeds national policy target 3 ton/ha in 2004-2014, 4 ton/ha in 2015-2019, 5-6 ton/ha after 2020), N2O emission shall be evaluated.

Anaerobic decomposition in peatland used as paddy field

CH4 Yes

When rice production exceeds national policy target (3 ton/ha in 2004-2014, 4 ton/ha in 2015-2019, 5-6 ton/ha after 2020), CH4 emission shall be evaluated.

8 Reference Scenario

During the set project period, the rewetting of peat land is not carried out either as a policy or obligatory activity in the project area in the Republic of Indonesia.

9 Reference Emissions and Calculation

RE y = REPEAT, y

RE y CO2 emissions in the reference scenario [tCO2/y]

REPEAT, y Reference CO2 emissions due to peat decomposition [tCO2/y]

REPEAT, y = Σ Ai * min(RWTi,y, DPi,y ) * EFPEAT, y

Ai Unit of hydrogeological area (plot) [ha] at which the mean water level and peat depth are deemed to be uniform; the number of plots on the project site is N.

DPi, y Mean annual peat depth of unit i

RWTi, y Reference mean water level is the annual mean water level [m] in the case where groundwater management isn’t carried out.

i = 1

N

Page 14: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

14

EFPEAT, y CO2 emission factor [tCO2/ha/y/m] of peat decomposition. The default value set by the Government of Indonesia shall be used. If the default value is not available, the project participant can set an emission factor based on latest IPCC Guidelines or latest peer reviewed paper.

10 Project Emissions and Calculation

PE y = PEPEAT, y

PE y CO2 emissions arising from the project [tCO2/y]

PEPEAT, y CO2 emissions due to peat decomposition when the project is implemented [tCO2/y]

PEPEAT, y = Σ Ai * max (PWTi,y, DPi, y ) * EFPEAT-CO2 + EFPEAT-N2O + EFPEAT-CH4)

Ai Unit of hydrogeological area (plot) [ha] at which the mean water level and peat characteristics are deemed to be uniform; the number of plots on the project site is N.

PWTi, y Mean annual water level [m] when the project is implemented. This is calculated using the hydraulic model using satellite climate data (precipitation, air-temperature) and should be verified with continuously monitored in-situ water levels.

EFPEAT-N2O This is N2O emission factor associated with rice production. N2O emission should be evaluated using default number set by Indonesian government. If the default value is not available, the project participant can set an emission factor based on latest IPCC Guidelines or latest peer reviewed paper.

EFPEAT-CH4 This is CH4 emission factor associated with rice production. CH4 emission should be evaluated using default number set by Indonesian government. If the default value is not available, the project participant can set an emission factor based on latest IPCC Guidelines or latest peer reviewed paper.

11 Leakage emissions and Calculation

It is assumed there will be no leakage arising as a result of project implementation.

12 Calculation of Emission Reduction

Emission reductions are calculated from specific reference emissions and project emissions.

ERy = REy - PEy

ERy Emission reductions in year y [tCO2/y]

REy Reference emissions in year y [tCO2/y]

PEy Project emissions in year y [tCO2/y]

13 Monitoring

The project developers must monitor the parameters described in the table below based on the calculation method of the selected GHG emission reductions.

Parameter Description Measurement Method A Area of plot, where

hydrology and peat conditions can be assumed identical in each plot.

The plot area shall be determined in PDD before project start, and updated every year based on satellite data and/or land survey.

RWTi Reference mean water level is the annual

This is calculated using the hydraulic model

i = 1

N

Page 15: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

15

mean water level [m] in the case where groundwater management isn’t carried out.

using in-situ or satellite measured climate data (precipitation, air-temperature) and should be verified with monitored in-situ water levels at least for one year when the water level lower more than 50cm below the ground level in prior to the project implementation.

After the project implementation, this should be calculated using in-situ or satellite measured climate data (precipitation, air-temperature).

PWT Mean annual water level when the project is implemented

Calculated using a hydraulic model* using satellite climate data (precipitation, air-temperature) and confirmed with groundwater levels measured at specified points in PDD.

DP Mean annual peat depth

Peat depth of each plot shall be measured before project implementation. During project activity, peat depth shall be measured before each Verification, and DP can be determined assuming its annual change rate to be constant.

T limiti Maximum period (year) of possible credit claiming in each plot

Existing carbon stock in terms of CO2 shall be calculated using 1) peat depth, 2) peat bulk density and 3) carbon amount of the peat in each plot. The total amount of CO2 emission during the project period shall not exceed the existing carbon stock in terms of CO2. T limit can be determined by comparison of the two numbers of calculated CO2.

Page 16: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

16

f.  Project site monitoring and emission reduction assessment 

f‐1.  Area covered 

The area of coastal peatland  in  Jambi,  Indonesia, shown  in Figure  f‐1.1 was monitored using  the MRV 

method described in Chapter e.   

Utilizing the monitoring data set obtained, water table depth (WTD) was experimentally restored through 

water level management of plots by means of improvement of water gates and excavation of canals. The 

reduction in CO2 emissions achieved by controlling aerobic decomposition of peat due to drying caused 

by artificial drainage was assessed. 

 

Figure f‐1.1    Project site (agricultural land in East Tanjung Jabung region of Jambi Province, Sumatra) 

 

f‐2  Monitoring 

f‐2.1  Hydro‐topography units 

As explained under  the monitoring  items below,  the peat  layer  in  the project area varies  in  thickness 

according to location, and it is thinly and unevenly distributed in thicknesses of up to approximately 3 m. 

WTD is generally shallower than GL‐1 m. WTD in peat layer and water level in canals change in response 

to tide level across almost the entire area. Some areas become poorly drained and are submerged during 

the  rainy  season. As  regards vegetation  in  the area  concerned,  cleared  low‐lying  land  covers  the area 

alongside  the  southern  reaches of  the Berbak River, and plantation  farming  is distributed  in a mosaic 

pattern inland. 

The project area thus exhibits a complex spatial distribution characterized by diverse heterogeneity. It is 

Rantau Rasau

Berbak river

Canals

Simpang Puding

▲Kampung Simpang

Page 17: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

17

therefore  difficult  to  define  hydro‐topographical  units  simply  by  identifying  watersheds  from  the 

topography.  Watersheds  are,  moreover,  unlikely  to  always  remain  the  same  due  to  the  effects  of 

subsidence of the peat layer, operation of water gates, tidal canals, and other factors. However, the site 

also exhibits certain common characteristics. For example, almost the entire site forms a canal‐mediated 

tidal  zone,  differences  in  thickness  of  the  peat  layer  due  to  location  are  minor  (not  more  than 

approximately 3 m), and the topography is largely flat. While these commonalities suggest that the entire 

project  site  could  be  treated  as  a  single  hydro‐topographical  unit,  the  representativeness  of  the 

monitoring data is not evident. 

There  exist  no  guidelines  on  how  to  determine  reasonable  hydro‐topographical  units  or  go  about 

planning surveys of coastal peatlands of this kind, and there have also been no past studies that might 

provide useful points of reference. 

For the present survey, therefore, an approximately 100 ha area surrounded by primary and secondary 

canals was  first  identified  and  plots  selected  for  intensive  surveying.  These  plots were  established  at 

multiple  locations  in  the project area  (Figure  f‐2.1). Numerous  survey points were also established at 

fixed points in the project area beyond these plots. 

The  monitoring  data  obtained  from multiple  points  in  the  same  plot  were  used  to  analyze  spatial 

distribution and dispersion within that plot. Monitoring data from among different plots were in addition 

used  to  analyze  spatial  distribution  and  dispersion  across  the  project  area  as  a whole. Based  on  the 

results of these analyses, the representativeness of measurements from coastal peatland was examined 

and a study performed to identify hydro‐topographical units. 

Project area (approx. 10,000 ha) Plots (approx. 100 ha) 

A, B, B’, and C plots 

Figure f‐2.1 Project area and hydro‐topographical units (plots) 

B

B'

C

Page 18: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

18

f‐2.2  Precipitation 

GSMaP satellite data were obtained to monitor precipitation in the project area. Data were obtainable on 

a 0.1o mesh, and the data for four  images (AO212, AO213, AP212, AP213) corresponded to the Berbak 

Delta area being surveyed. Figure f‐2.2 shows the hourly rainfall data from March 2014 (AO212 in upper 

right of figure). A comparison of cumulative rainfall during this period to confirm the differences from the 

other images (bottom right of figure) reveals that cumulative rainfall during an approximately 10‐month 

period was 1,800 mm, and no difference between scenes was observed. 

 

Figure f‐2.2    GSMaP precipitation data 

f‐2.3  Air temperature 

In  line with the methodology, daily air temperature data were obtained from the National Oceanic and 

Atmospheric Administration’s (NOAA) Global Historical Climatology Network (GHCN) ‐ Daily. Figure f‐2.3 

shows the air temperature data for points in Jambi from January 2013. The solid line of the figure shows 

the 14‐day moving average. Trends in the rainy season and dry season were observed to differ, and the 

average temperature during this period was 26.6°C. 

経度 / 緯度 (WGS 84)座標 0.1度×0.1度のグリット

GSMAP_NRT データ抽出位置

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Precipitation (mm/h)

AO212

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Cumulative height (m

m)

AO212

AO213

AP212

AP213

AO212

AO213

AP212

AP213

Latitude/longitude (WGS 84) coordinates 0.1o x 0.1o grid

GSMAP_NRT data extraction points

Page 19: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

19

20

21

22

23

24

25

26

27

28

29

30

J F M A M J J A S O N D J F M A M J J A S

Air temperature (degC)

 

Figure f‐2.3    Air temperature monitoring data (NOAA GHCN‐Daily) 

 

f‐2.4  Topography 

Topography was surveyed mainly along five survey  lines (A to E) and  in plots A, B, and C  in the project 

area. Figure f‐2.4 shows the  locations of the survey points and survey  lines, and Figure f‐2.5 shows the 

elevations on survey lines BB’ and CC’. From these it can be seen that the topography of the project area 

is characterized by being higher to the north and lower to the south. Elevation is around 1 m to 3 m, and 

the area is generally flat with practically no topographical gradient. 

A

A’B

B’

C’

C

D

D’

E

E’

 

Figure f‐2.4    Topographical survey points and lines 

 

2013 2014

Page 20: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

20

0

1

2

3

4

5

6

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

標高

(m

距離(m)

B B’  

0

1

2

3

4

5

6

0 1000 2000 3000 4000 5000 6000 7000 8000

標高

(m

距離(m)

C C’  

Figure f‐2.5    Results of topographical surveying of survey lines BB’ and CC’ (elevation) 

 

f‐2.5  Land use and coverage 

Figure  f‐2.6 depicts changes  in  land coverage  in  the Berbak Delta  in 1973, 1989, 1998, and 2008. The 

maps were prepared  in approximately 10‐year  intervals by  Jambi University, allowing changes over  the 

past 30 years  to be ascertained. As  can be  seen,  the  land was  largely  covered  in  “forest” and  “paddy 

field” in 1973. “Garden mix” and “shrub groves” then emerged, followed by “coconut,” “rubber, and “oil 

palm,” so that, by 2008, the land use distribution formed a heterogeneous mosaic‐like pattern.   

A‐A’ C‐C’

Distance (m)

B‐B’

Ele

vatio

n (m

)E

leva

tion

(m)

Distance (m)

Page 21: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

21

1973  1989 

1998  2008  

Area (ha) Year

Vegetation 1973*  1989**  1998**  2008*** 

1    Forest  16,302.58 1,704.33 186.46  166.662    Rice  11,198.34 18,457.90 10,610.65  12,425.463    Shrub groves  569.79 1,144.30 6,274.77  1,351.504    Garden mix  4,126.25 4,953.23  729.625    Coconuts  2,504.71 5,584.63  9,526.746    Village  133.22 460.97  198.657    Rubber  1,046.668    Oil palm        2,625.43

    Total  28,070.71 28,070.71 28,070.71  28,070.72

*  1973 Berbak Delta survey and satellite data **  Landsat TM analysis and information from farmers ***  Landsat TM analysis, information from farmers, and in‐situ survey 

Figure f‐2.6    Berbak Delta vegetation map (Asmadi, 2010) 

Page 22: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

22

f‐2.6  Water gates and canals 

An in‐situ survey was conducted to confirm the locations, state of use, and basic specifications of existing 

water gates in the project area. 

Table f‐2.1 shows excerpts from the results of this survey. Basic data including information on type (“gate 

control type”), state of use (“status”), width (“W”) and height (“H”), water depth (“D”), and availability 

for use  (“available of gate operation”) were obtained  for approximately 200 water gates. Photographs 

were also taken of gates in their entirety and the surroundings to confirm the state of flow in canals and 

state of surrounding vegetation. 

The survey confirmed that most of the water gates are open and many cannot be completely closed due 

mainly  to scouring of channel beds by  the  flow of water or deformation of  their embankments. Some 

rural units know about  tidal variations  in  flow  from  tide  tables, and open and close gates accordingly. 

However, gates are not systematically operated in collaboration with neighboring areas that benefit from 

their use, and instead use appears more customary in scope. 

Table f‐2.1    Results of survey of basic specifications and operational status of water gates (excerpt) 

X Y W H OPEN CLOSE1 24-Nov-11 sk 20 -1.14459 104.09723 11 Wheel manual OPEN 100 288 95 125 OPEN CLOSE2 21-Nov-11 simpang puding -1.22234 104.07850 18 Wheel manual OPEN 100 559 260 222 OPEN CLOSE3 21-Nov-11 simpang puding -1.22234 104.07850 18 Wheel manual OPEN 100 559 110 222 OPEN CLOSE4 21-Nov-11 simpang alahan -1.22318 104.07882 20 Wheel manual OPEN 100 445 140 200 OPEN N.G5 21-Nov-11 simpang alahan -1.22318 104.07882 20 Wheel manual OPEN 100 445 150 200 OPEN N.G6 21-Nov-11 sk 3 -1.22678 104.08069 15 Wheel manual OPEN 100 287 88 123 OPEN CLOSE7 21-Nov-11 sk 4 -1.23836 104.08252 18 Wheel manual OPEN 100 305 98 175 OPEN CLOSE8 21-Nov-11 sk 5 -1.24475 104.08230 17 Wheel manual OPEN 100 306 80 137 OPEN CLOSE9 21-Nov-11 sk 6 -1.24956 104.08491 17 Wheel manual OPEN 100 287 80 95 OPEN CLOSE

10 21-Nov-11 sk 7 alahan -1.25243 104.08568 17 Wheel manual OPEN 100 603 313 293 OPEN N.G11 21-Nov-11 sk 7 alahan -1.25243 104.08568 17 Wheel manual OPEN 100 603 151 293 OPEN N.G12 21-Nov-11 sk 6 -1.23781 104.09840 14 Wheel manual OPEN 120 353 70 126 OPEN CLOSE13 21-Nov-11 sk 6 -1.23702 104.09944 17 Wheel manual OPEN 100 287 8 101 OPEN CLOSE14 21-Nov-11 sk 5 -1.23413 104.09570 16 Wheel manual OPEN 100 287 85 130 OPEN CLOSE15 21-Nov-11 sk 5 -1.23336 104.09661 19 Wheel manual OPEN 100 287 115 115 OPEN CLOSE16 22-Nov-11 sk 4 -1.23008 104.09245 14 Wheel manual OPEN 100 301 120 161 OPEN CLOSE17 22-Nov-11 sk 4 -1.22939 104.09324 13 Wheel manual CLOSE 100 287 0 119 OPEN CLOSE18 25-Nov-11 sk 3 -1.22604 104.08835 14 Wheel manual OPEN 100 287 124 122 OPEN N.G19 22-Nov-11 sk 3 -1.22504 104.08948 14 Wheel manual OPEN 100 287 112 164 OPEN CLOSE20 22-Nov-11 sk 2 -1.22181 104.08673 15 Wheel manual OPEN 100 284 91 158 OPEN CLOSE21 22-Nov-11 sk 1 -1.21928 104.08412 12 Wheel manual OPEN 100 548 270 270 OPEN CLOSE22 22-Nov-11 sk 1 -1.21928 104.08412 12 Wheel manual CLOSE 100 548 0 270 N.G N.G23 22-Nov-11 sk 1 -1.21928 104.08412 12 Wheel manual CLOSE 100 548 0 270 N.G N.G

COORDINATE SIZENO DATE CODE ELEVATION STATUS

GATE CONTROLTYPE

HEIGHT OFOVERFLOW

WATERDEPTH

AVAILABLE OFGATE

 

 

f‐2.7  Water table depth 

(1)  In‐situ monitoring results 

WTD  observation  wells  were  installed  at multiple  locations  inside  and  outside  the  plots  in  the 

project area. Their locations are as shown in Figure f‐2.7. 

To  ascertain  the  dispersion  and  representativeness  of measurements,  several  observation  wells 

were  installed  in each plot. Observation wells were also  installed  in  several  locations outside  the 

plots in order to confirm the dispersion and representativeness of measurements across the project 

area as a whole. The monitoring period commenced  in November 2011 and  is ongoing, and WTD 

Page 23: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

23

measurements are taken once every two weeks. 

Figures f‐2.8 shows the monitoring results. Each shows the distance from ground surface to water 

level, and is classified by plot (Plot A, Plot B, and Plot C) and non‐plot (transections). Positive values 

indicate the water level is above the ground surface, and negative ones indicate that it is below the 

ground surface. The thick red line in each plot indicates the average for monitoring data obtained at 

the same time in the same plot. 

These monitoring results clearly reveal different patterns of water level fluctuation in the dry season 

and the rainy season, and confirm that water level declines during the dry season from September 

of each year. During the 2013 dry season, the decline  in water  level was very slight due  to higher 

precipitation  relative  to neighboring years. The average water  level  in each plot  (indicated by  the 

thick red line) fluctuates according to almost the same pattern as the monitoring data for each plot, 

and  hydrological  heterogeneity  within  them  is  not  pronounced.  This  trend  holds  for  all  plots, 

irrespective of plot.   

Figure  f‐2.9  shows  the  correlations between  the  aggregated  average WTD  for  each plot  and  the 

average WTD over a wide area beyond  the plots. The  correlation with average WTD beyond  the 

plots is high, with all plots having a coefficient of determination of between 0.7 and 0.8. WTD thus 

exhibits almost the same pattern of fluctuation throughout the project area, and there is no marked 

difference  according  to  location.  This  suggests  that  the  spatial  distribution  of  the  hydrological 

characteristics of coastal peatlands is almost uniform.   

 

Page 24: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

24

 

Figure f‐2.7    Locations of WTD monitoring points at project site 

 

 

Figure f‐2.8    WTD monitoring results 

020406080100120140160180200220240260280300320340360380400

‐2‐1.9‐1.8‐1.7‐1.6‐1.5‐1.4‐1.3‐1.2‐1.1‐1

‐0.9‐0.8‐0.7‐0.6‐0.5‐0.4‐0.3‐0.2‐0.1

00.10.20.30.40.50.60.70.80.91

2011/11/1

2011/12/1

2012/1/1

2012/2/1

2012/3/1

2012/4/1

2012/5/1

2012/6/1

2012/7/1

2012/8/1

2012/9/1

2012/10/1

2012/11/1

2012/12/1

2013/1/1

2013/2/1

2013/3/1

2013/4/1

2013/5/1

2013/6/1

2013/7/1

2013/8/1

2013/9/1

2013/10/1

2013/11/1

2013/12/1

2014/1/1

2014/2/1

2014/3/1

2014/4/1

2014/5/1

2014/6/1

2014/7/1

2014/8/1

2014/9/1

2014/10/1

2014/11/1

2014/12/1

Precipitation (mm/d)

Water level (GL.m)

020406080100120140160180200220240260280300320340360380400

‐2‐1.9‐1.8‐1.7‐1.6‐1.5‐1.4‐1.3‐1.2‐1.1‐1

‐0.9‐0.8‐0.7‐0.6‐0.5‐0.4‐0.3‐0.2‐0.1

00.10.20.30.40.50.60.70.80.91

2011/11/1

2011/12/1

2012/1/1

2012/2/1

2012/3/1

2012/4/1

2012/5/1

2012/6/1

2012/7/1

2012/8/1

2012/9/1

2012/10/1

2012/11/1

2012/12/1

2013/1/1

2013/2/1

2013/3/1

2013/4/1

2013/5/1

2013/6/1

2013/7/1

2013/8/1

2013/9/1

2013/10/1

2013/11/1

2013/12/1

2014/1/1

2014/2/1

2014/3/1

2014/4/1

2014/5/1

2014/6/1

2014/7/1

2014/8/1

2014/9/1

2014/10/1

2014/11/1

2014/12/1

Precipitation (mm/d)

Water level (GL.m)

020406080100120140160180200220240260280300320340360380400

‐2‐1.9‐1.8‐1.7‐1.6‐1.5‐1.4‐1.3‐1.2‐1.1‐1

‐0.9‐0.8‐0.7‐0.6‐0.5‐0.4‐0.3‐0.2‐0.1

00.10.20.30.40.50.60.70.80.91

2011/11/1

2011/12/1

2012/1/1

2012/2/1

2012/3/1

2012/4/1

2012/5/1

2012/6/1

2012/7/1

2012/8/1

2012/9/1

2012/10/1

2012/11/1

2012/12/1

2013/1/1

2013/2/1

2013/3/1

2013/4/1

2013/5/1

2013/6/1

2013/7/1

2013/8/1

2013/9/1

2013/10/1

2013/11/1

2013/12/1

2014/1/1

2014/2/1

2014/3/1

2014/4/1

2014/5/1

2014/6/1

2014/7/1

2014/8/1

2014/9/1

2014/10/1

2014/11/1

2014/12/1

Precipitation (mm/d)

Water level (GL.m)

020406080100120140160180200220240260280300320340360380400

‐2‐1.9‐1.8‐1.7‐1.6‐1.5‐1.4‐1.3‐1.2‐1.1‐1

‐0.9‐0.8‐0.7‐0.6‐0.5‐0.4‐0.3‐0.2‐0.1

00.10.20.30.40.50.60.70.80.91

2011/11/1

2011/12/1

2012/1/1

2012/2/1

2012/3/1

2012/4/1

2012/5/1

2012/6/1

2012/7/1

2012/8/1

2012/9/1

2012/10/1

2012/11/1

2012/12/1

2013/1/1

2013/2/1

2013/3/1

2013/4/1

2013/5/1

2013/6/1

2013/7/1

2013/8/1

2013/9/1

2013/10/1

2013/11/1

2013/12/1

2014/1/1

2014/2/1

2014/3/1

2014/4/1

2014/5/1

2014/6/1

2014/7/1

2014/8/1

2014/9/1

2014/10/1

2014/11/1

2014/12/1

Precipitation (mm/d)

Water level (GL.m)

Plot A Plot B

Transections Plot C

Average water level Average water level

Average water level

Plot B

Plot B’

Plot C

Plot A

Berbak River

Primary Canal

Secondary Canal

Page 25: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

25

(measured once per two weeks, November 2011 to December 2014) 

 

Figure f‐2.9    Correlations between WTD for each plot (x‐axis) and wider WTD beyond plots (y‐axis) 

Page 26: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

26

(2)  Results of analysis using the hydrological model 

In line with the methodology, WTD fluctuations were analyzed using the lumped hydrological model 

to calculate WTD before and after the project (reference water level and project water level). 

The averages of all WTD monitoring data for the entire project area (2012‐2014) were obtained and 

compared with the results of the lumped hydrological model (Figure f‐2.10). 

Further  to  calibration  of  the  hydrological  model  using  average  inflow/output  R,  the  R  best 

reproducing  the  average  observed water  level was  found  to  be  0.025 mm/d  (where  under  the 

ground)  and  5 mm/d  (where  above  the  ground).  RMSE  at  this  time was  0.156 m.  The  accuracy 

required  by  the  methodology  is  0.1  m  or  less.  Here,  average  outflow  was  expressed  by  the 

precipitation dependent function R = A x PrB and recalibrated. This improved accuracy and resulted 

in RMSE = 0.142 m. Similarly representing average outflow by the observed water level dependent 

function R = A x RWTB resulted  in RMSE = 0.141 m. However, accuracy still has to be  improved by 

approximately  0.04  m  to  meet  the  accuracy  required  by  the  methodology.  Improvements  in 

techniques  such  as  calibration  against monitoring  data  for  each  rainy  season  and  dry  season  in 

multiple years (average precipitation and average WTD in multiple years) are needed. 

For WTD monitoring data after the project, the results obtained by trial water level management in 

Plot A were used. An analysis was similarly performed using the lumped hydrological model, and the 

results compared to monitoring data (Figure f‐2.11). The R best reproducing the average observed 

water level was ‐0.4 mm/d, which is less than the pre‐project figure. This points to the effectiveness 

of restricting drainage from cultivated land to canals by means of water level management. 

 

 

Figure f‐2.10    Results of calculation of reference water level by lumped hydrological model (pre‐project) 

Page 27: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

27

 

Figure f‐2.11    Results of calculation of project water level by lumped hydrological model (post‐project) 

 

f‐2.8  Peat depth 

A sampling survey was performed at approximately 200 points in the project area to determine the peat 

distribution. This  is  the number of  survey points  required by  the methodology  (at  least one point per 

hydro‐topographical unit, i.e., plot). Figure f‐2.12 shows the sampling locations and the thickness of the 

peat layer (categorized as 0‐1 m, 1‐2 m, or 2‐4 m) in each location. The distribution of the peat layer in 

the  project  area was  estimated  by  interpolating  from  thickness  at  these  points  (Figure  f‐2.13).  This 

showed peat to be distributed in a non‐uniform mosaic pattern, with thickness in most areas being less 

than 2 m. Although the peat layer is over 2 m thick in some areas, these represent isolated spots rather 

than continuous expanses. 

 

Page 28: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

28

 

Figure f‐2.12    Sampling points for surveying peat thickness 

 

 

Figure f‐2.13    Results of estimation of distribution of peat thickness 

 

f‐2.9  Emission factor 

Hooijer et al.’s (2012) emission factor EFPEAT‐CO2=69 tCO2/ha/y/m determined based on site measurement 

Peat thickness (cm)

Peat thickness (m)

Page 29: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

29

in Indonesia is used in various studies. It should be noted that the site consists of coastal peatland, and 

the applicability of existing emission factors for other regions  is unknown. The subsidence measured  in 

peatlands  includes  volumetric  changes  other  than  due  to  decomposition,  including  drainage  and 

absorption due to the effects of tides, and compaction underground surface load due to farming. It is not 

easy  to  quantify  solely  long‐term  trends  in  subsidence  due  to  drainage  from  cultivated  land.  For  the 

present survey, therefore, the local emission factor at present was determined by measuring subsidence 

in  conjunction  with  the  above WTD monitoring.  Figure  f‐2.14  shows  the  relationship  between  CO2 

emissions  and  average  WTD  obtained  by  the  subsidence  measuring  method.  Despite  somewhat 

considerable dispersion,  the emission  factor was  found  to be 76.7  tCO2/ha/y/m, which  is  close  to  the 

above mentioned Hooijer et al.’s (2012) value. 

 

 

Figure f‐2.14    Relationship between CO2 emissions and average WTD determined by the subsidence 

measuring method 

 

As noted above, not all measurements of the amount of subsidence are attributable to decomposition. 

CO2 emissions are arranged in Figure f‐2.15 after excluding the data from points where there is practically 

no peat and points where no tendency to subside is observed (likely due mainly to expansion in volume 

resulting from absorption of water), and using annual average WTD as the drainage depth. Here, 40% of 

the measured values were assumed to represent subsidence caused by decomposition. The lower graph 

shows  Joosten et al.’s  (2009) data. From  this  it  can be  seen  that, despite differences  in measurement 

period  and number of  samples, CO2  emissions  are  currently  approximately  75  tCO2/ha/y/m, which  is 

largely consistent with Joosten et al.’s data. 

Page 30: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

30

 

Figure f‐2.15    Relationships between CO2 emissions, subsidence, and drainage depth determined by the 

subsidence measuring method 

Joosten et al.,2009

Period: Nov.2011 to Oct. 2013Volumetric carbon content: 0.068 gC/cm3

40% oxidative component to total subsidence

This study

Page 31: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

31

g. Satellite based analysis  g‐1   Provision of satellite data 

Satellite data  (on precipitation, air  temperature,  topography, vegetation, etc.) will be provided  for  the Berbak Delta in Jambi, Indonesia. A satellite data set covering a rectangular area extending from latitude 6o North  to  6o  South,  and  from  longitude  97o  to  105o  East, was  developed with  the  ultimate  aim  of developing a tool applicable to the whole of the Sumatra region. 

 

  

Figure g‐1.1    Geographical extent of satellite data set provided (rectangular area from lat. N. 6o to S 6o and long. E. 97o to 105o) 

 

Page 32: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

32

g‐1.1    Precipitation 

GSMap1 provided by  the  Japan Aerospace Exploration Agency  (JAXA) was used  for  the precipitation data. Hourly data were collected for the period from January 1, 2007, to December 31, 2014, and then geometrically corrected and segmented. Spatial resolution is 10 km and time resolution is 1 hour. 

 

 g‐1.2    Air temperature 

Air  temperature  data  were  obtained  using  thermal  infrared  images  from  the  Himawari meteorological satellite received and processed by the University of Tokyo’s  Institute of  Industrial Science. Ground surface temperature was calculated from hourly data for the period from January 1, 2007,  to December 31, 2014, using  an  existing  estimation  algorithm  (Oyoshi  et al., 2010).  To eliminate  the  impact  of  cloud,  the  peaks  of  the  24  observations  for  each  day were  selected  as representative  daily  values  for  each  pixel  in  order  to  create  cloudless  images.  These  were geometrically corrected and segmented. Spatial resolution is 4 km. 

  

g‐1.3    Topography 

Topographical  data  analysis was  performed  using  PALSAR  on  Japan’s  Advanced  Land Observation Satellite (ALOS). From among the  images taken of an area  including the site area  in Jambi between December 2007 and November 2010, six deemed  to meet sufficient of the orbital conditions were selected. These were subjected to InSAR analysis using imagery for March 2009 as the master image (Tsunoda et al., 2014). This resulted in a distribution map of subsidence of the peat layer caused by submergence in the rainy season and decomposition of peat in the dry season. Figure 2.2 shows an image of  Jambi and  the  surrounding area used  for  InSAR analysis. The pin near  the middle of  the figure marks the location of a landing place (a fixed point). 

  

g‐1.4    Vegetation 

Vegetation data were obtained from MODIS polar operating satellite data furnished by the National Aeronautics  and  Space  Administration  (NASA).  Normalized  difference  vegetation  index  (NDVI) values  were  calculated  from  eight‐day  composite  images  (MOD13Q1)  for  January  1,  2007,  to December 31, 2014, and then geometrically corrected and segmented. Spatial resolution is 250 m. An example of a visible MODIS image is shown in Figure g‐1.2.  

1 GSMaP website: http://sharaku.eorc.jaxa.jp/GSMaP/ 

Page 33: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

33

  

Figure g‐1.2    Example of visible MODIS image of Sumatra   

g‐1.5    WTD analysis 

Water table depth (WTD) was calculated for analysis by first creating a drought index—the Keetch‐Byram Drought Index (KBDI)—from information on precipitation, air temperature, vegetation index values, and land  coverage,  and  then  comparing  the  results with WTD  readings  taken  at  the  site  (Takeuchi  et  al., 2010). This approach employs an algorithm developed  for analysis of peatland  in  central Kalimantan, which is also located in Indonesia on the island of Borneo, and was initially applied without modification. Figure g‐1.3 shows a comparison of the WTD estimates obtained based on satellite data for the Berbak Delta in Jambi and site readings. Between February and May, which corresponds to the rainy season, the ground appears  to be almost submerged. Although  the satellite‐based estimates  tend  to overestimate WTD on  the dry  side,  the match  is generally good over  the  course of a  year. Parameters obtained  in Palangkaraya  were  applied  unmodified.  These  produced  a  good  match  when  compared  with  the estimates for the Jambi site, which suggests that WTD behavior at the approximately 2 m depth that  is estimable from satellite data may be regarded as equivalent. 

 Figure g‐1.4 shows the results of estimation of WTD from satellite data for the Berbak Delta (latitude 1.2o South,  longitude  104.1o  East).  The  solid  black  lines  represent  WTD,  and  the  straight  vertical  lines represent  precipitation.  It  is  evident  from  this  that  there  occurs  little  rainfall  each  year  in August  to September, which corresponds to the dry season, and WTD declines considerably. When there is rainfall, WTD recovers relatively quickly, but the drop in WTD due to drying is modest in comparison.  There was extremely little rainfall during the dry season in 2011‐2012, which is considered to have been an  El  Niño  year,  and  this  is  quantitatively  corroborated  by  the  fact  that WTD  is  estimated  to  have declined almost 90 cm in mid‐September. As there is reportedly greater vulnerability to fire when WTD drops more  than 60 cm,  this approach provides a potential means of observation  for determining  the risk of fire (Takeuchi et al., 2011). 

Page 34: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

34

 

 Figure g‐1.3    Comparison of WTD estimates based on satellite data for Berbak Delta   

and site readings  

  

Page 35: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

35

Figure g‐1.4    WTD in the Berbak Delta (lat. S 1.2o, long. E 104.1o) estimated from satellite data (solid black lines represent WTD and straight vertical lines represent precipitation) 

 g‐1.6    Rice yield analysis 

Rice yield was determined by regression analysis of MODIS NDVI vegetation data against rice yield data at the level of cultivated land. Figure g‐1.5 shows rice yield data at the level of cultivated land in Jambi and MODIS NDVI values. From this, it can be seen that single cropping in the rainy season is practiced on cultivated  land  in  the  Jambi  region,  yields  vary  widely  between  1  and  4  tons  per  1  ha,  and  rice productivity is generally poor. Wide variation is observable from year to year, with the harvest good in in 2012‐2013 and poor in 2013‐2014.  It was confirmed that yields in poor years sank to around 40% of the level in good years.   Figure g‐1.6 shows the MODIS NDVI values from 2010 to 2014 for three of the sample plots shown in Figure 2.6—namely, 2, 4, and 11—which were selected as representative points.  It can be seen from this that, in all three cases, the NDVI values for November to February (which corresponds to the rainy season) rise, peak, and decline. As a decline  in the NDVI due to cloud was observed, the averages of these values were used for analysis against yields.  Figure g‐1.7 shows the results of a regression analysis of MODIS NDVI against rice yield data at the level of  cultivated  land.  The  MODIS  NDVI  represents  the  averages  for  November  to  February,  which corresponds to the rainy‐season harvest. A regression analysis using an exponential function revealed a strong correlation, with the coefficient of determination (R2) being 0.728.  

 Figure g‐1.5    Rice yield data at the level of cultivated land in Jambi (example) 

 

Page 36: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

36

Figure g-1.6 MODIS NDVI values at plot 2,4,11 during 2010 and 2014  

Page 37: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

37

  Figure g‐1.7    Results of regression analysis of MODIS NDVI against rice yield data at the 

level of cultivated land  

   

Page 38: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

38

g‐1.7    MRV methodology tool 

A portal  site was created  to enable  the above WTD/rice yield analysis model  to be used as an MRV methodology tool. Figure g‐1.8 shows the MRV methodology tool. 

The  top  page  provides  up‐to‐date  data  information  on  the  distribution  of WTD  in  the  whole  of Sumatra (Figure g‐1.8(A)). Historical data can be traced by accessing a menu classified by year, month, and date from Figure g‐1.8(B). For WTD in the Berbak Delta in Jambi, it is possible to access time‐series graphs and original data for 2007 up to the latest year from Figure g‐1.8(C). 

 

  

Figure g‐1.8    MRV methodology tool (http://webgms.iis.u‐tokyo.ac.jp/GWT/) 

 

Page 39: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

<39>

h. Scale of investment & financial viability The project cost breakdown is shown in Fig. 4.5.   

Considering project period of 20 years, total investment cost becomes 3milions USD + 0.2 millions x 20 

years = 7 millions USD. Financial viability depends on how the credit be valued in JCM, including the 

credit market viability. 

 

1. Capex: 3 million USD

Gate/canal improve/install Tertiary gate/canal installMonitoring equipment Validation

2. Opex: 0.2 million USD Gate/canal operation/maintenanceMonitoring equipmentMonitoring & data process Verification

Phased Project Cost (10,000ha)

 

Figure h‐1.1    Project cost breakdown  

 

i. Contribution to Indonesian Sustainable Development 

‐ Adaptation  and mitigation:  By  implementing  proposed  project  activities  to  improve water  and carbon management for rice‐farming peatland, an effective method for adaptation and mitigation of climate change under JCM be developed; 

‐ CO2 emission  reductions: Water management of  the project  activity  can achieve CO2 emission reductions,  about  400,000  ton‐CO2/y  in  Berbak  Delta  and  6  million  ton‐CO2/y  when  applied nationwide; 

‐  Improved  food  security: Rice productivity  can be doubled  to 4  ton/ha  compared  to  current 1‐2 ton/ha;   

‐ Poverty combat: Through the improved productivity of rice, poor life conditions of farmers should be improved largely: 

‐ Subsidence & Fire Prevention: In water managed project areas, water table being kept shallower than 40cm  can prevent peat  fires.  For  future project  areas,  satellite based water  level  analysis system can detect possible peat fires and send pre‐warning to local governments and communities. Based  on  these  activities,  land  subsidence  of  the  coastal  lowlands  currently  2‐4  cm/y  can  be mitigated, and 

‐ Best practice guideline: There will be best practice guideline  including robust MRV methodology developed  through  the project  activity, which upon nationwide  dissemination  it  is  expected  to increase  560,000  ton‐rice/y  and  reduce  emission  of  6 million  ton‐CO2/y.  Satellite  based  nation scale water table analysis and rice yeild prediction strongly support government decision making and  local community operations  to minimize peatland  fires and weather caused damage  to  rice production.   

 

Page 40: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

2012 BOCM Feasibility Study Final Report (Report Digest)

<40>

j. Proposed implementation schedule 

It may take a few years more for conditions to be fulfilled to implement this project in terms of the 

financing scheme including credit valuing as well as feasible public‐private joint project scheme being 

authorized. 

 

k. Capacity building to the host country 

Concerned Indonesian organizations and their staff take part in multi‐phase activities in the Jambi 

site with the integrated approach for effective water management and monitoring techniques as 

well as the MRV methodology toward the goal as described in terms listed in (m).   

 

5. Conclusion and Next Steps 

This project  is designed to address the above mentioned contributions. By achieving the acitivities and  disseminate  them  nationwide,  the  existing  already  developed  peatlands  for  agriculture becomes more sustainable with reduced CO2 emissions. Furthermore, the increased productivity of rice  in  the  existing  area  will  require  much  less  new  land  development,  thus  securing  global environmental benefits. 

The above mentioned environment constrains this kind of project to be implemented within a short time 

range, and the followings are the proposed next steps to further nourish the feasibility of the project. 

Integarated demonstration study: As seen in Fig. 4.6, water management and rice yield increase with GHG emission reductions at multiple plots  in  Jambi  (link with Tanjung  Jabung Timur Regency plan LP2B  (Kondisi  Pendataan  Lahan  Pertanian  Pangan  Berkelanjutan)  for  best  practices  and dissemination. 

Continue monitoring  for Methodology Development: Continues monitoring of  groundwater  level, peatland subsidence etc. in the Jambi site at 110 points. Together with satellite system, robust MRV methodology  for GHG emission reduction and rice production quantification  for degraded  tropical peatlands be further established. 

Capacity building: Through the above work, concerned staff should be able to  learn the  integrated water management  and monitoring methods. Also  scheme  for public‐private  joint  for  large  scale GHG emission reduction projects under JCM and NAMAs can be developed. 

 

Remote sensing On site monitoring Hydrology modeling

GWT & Subsidence1km-mesh GWT map

Draft potential (KBDI)

Calibrate

GWT simulation

Lumped & physics-based model

MRV

0

50

100

150

200

250

300

350

400

450

500

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pre

cip

itat

ion

(mm

/d)

GW

L (

GL

-m)

Rainfall(mm/d)

Box Model

Obs. (Average)

Water budget based GWT

AfterBefore

WaterManagement

Improved food security

CO2 emission reduction

Calibrate

 

Figure 5.1 MRV methodology and applied technologies 

Page 41: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

2012 BOCM Feasibility Study Final Report (Report Digest)

<41>

REFERENCES 

S. Asmadi, S. Supiandi, S. Atang, S. Basuki, A. dan M., 2010, Land Use Change on Tidal Swamp Area After Reclamation in Berbak Delta, Jambi, J.Hidrolitan, Vol.1,3,37‐46. (Indonesian) 

CRISP/NUS (Centre for Remote Imaging, Sensing and Processing, National University of Singapore) , :   http://www.crisp.nus.edu.sg/ 

GSMaP (Global Satellite Mapping of Precipitation), : http://sharaku.eorc.jaxa.jp/GSMaP_crest/index_j.html 

Hooijer, A.,2003. Quantifying wetland hydrological  functions:  some exampls of  innovative methods using water table information. Summarized paper of the presentation at the 1st WERHYDRO workshop (12‐14 June 2003, Gonadz, Poland) 

A.  Hooijer,  2005,  Hydrology  of  tropical  wetland  forests:  recent  research  results  from  Sarawak peatswamps,  Forests‐Water  and  people  in  the  Humid  Tropics,  Cambridge  University  Press,  17, 447‐461. 

Hooijer, A., Page, S., Jauhiainen, J., Lee, W.A., Lu, X.X., Idris, A. & Anshari, G. (2012) Subsidence and carbon loss in drained tropical peatlands. Biogeosciences, 9, 1053–1071. 

H.  Joosten,  J.  Couwenberg,  2009,  Are  emission  reductions  from  peatlands MRV‐able?,  Greifswald University commissioned by Wetlands International, Ede. 

J. Lu, G. Sun, S. G. McNulty, D. M. Amatya, 2005. A comparison of six potential evapotranspiration methods  for  regional use  in  the  southern United States,  Journal of  the American Water Resources Association, 621‐633. 

J.Julia, 2010, 3D modelling and monitoring of  Indonesian peatlands aiming at global climate change mitigation. Ludwig‐Maximilians‐Universität München. 

H. Tosaka, K. Itho, T. Furuno, 2000, Fully coupled formulation of surface flow with 2‐phase subsurface flow for hydrological simulation, Hydrological Process, 14, 449‐464. 

H. Tosaka, K. Mori, K. Tada, Y. Tawara, K. Yamashita, 2010, A General‐purpose Terrestrial Fluids/Heat Flow  Simulator  for Watershed  System Management,  IAHR  International Groundwater  Symposium, Valencia.   

VCS Methodlogy, REWETTING OF DRAINED TROPICAL PEATLANDS IN SOUTHEAST ASIA, 2012, Version 08 Date of Issue 16‐November 2012, WWF Germany 

P.E.V.  van  Walsum,  A.A.  Veldhuizen,  P.  Groenendijk,.  2011.  SIMGRO  7.2.0,  Theory  and  model implementation. Wageningen, Alterra. Alterra‐Report 913.1. 93 pp. 

R. R. E. Vernimmen, A. Hooijer, Mamenun, E. Aldrian, and A.  I.  J. M. van Dijk, 2012: Evaluation and bias correction of satellite rainfall data for drought monitoring  in  Indonesia, Hydrol. Earth Syst. Sci., 16, 133–146, 2012 

Wataru Takeuchi, Takashi Hirano, Nanin Anggraini and Orbita Roswintiarti, 2010. Estimation of ground water  table  at  forested  peatland  in  Kalimantan using drought  index  towards wildfire  control.  31st Asian conference on remote sensing (ACRS): Hanoi, Vietnam, 2010 Nov. 2. 

Page 42: JCM Feasibility Study 2015 Summary Report … JCM Feasibility Study 2015 Summary Report Degraded peatland management in Jambi Table of Contents 1. Project ...

2012 BOCM Feasibility Study Final Report (Report Digest)

<42>

Al Hooijer, Sue Page, et al., 2014: SCIENTIFIC PAPER Carbon Emissions  from Drained and Degraded Peatland  in  Indonesia and Emission Factors  for Measurement, Reporting and Verification  (MRV) of Peatland  Greenhouse  Gas  Emissions.  A  summary  of  KFCP  research  results  for  practitioners, Kalimantan Forests and Climate Partnership, May 2014  Sho Tsunoda and Wataru Takeuchi, 2014. Assessment of peat‐ land subsidence in Jambi, Indonesia by using  InSAR  with  ALOS/PALSAR.  In‐  ternational  seminar  on  land  reclamation  technology  for sustainable land use (IS‐ LRT4LU): Jambi, Indonesia, Nov. 6, 2014.  Wataru Takeuchi, Takashi Hirano, Nanin Anggraini and Orbita Roswintiarti, 2010. Estimation of ground water  table  at  forested  peatland  in  Kali‐mantan    using    drought    index    towards    wildfire   control.    31st    Asian conference    on remote sensing (ACRS): Hanoi, Vietnam, 2010 Nov. 2.  Wataru    Takeuchi,    Takashi    Hirano  and Orbita    Roswintiarti,2011. Relationship between  ground water  table  and  fires  occurrence  at  forested  peatland  in  Central  Kalimantan.  50th  conference  of remote sensing society of Japan (RSSJ): Tokyo, Japan, May 26, 2011.  


Recommended