+ All Categories
Home > Documents > Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory

Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory

Date post: 12-Jan-2016
Category:
Upload: nanji
View: 16 times
Download: 0 times
Share this document with a friend
Description:
Stochastic Description of Subgrid Pollutant Variability in CMAQ. Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory National Oceanic and Atmospheric Administration 456 S. Illinois Ave., P.O. Box 2456 Oak Ridge, Tennessee 37831-2456 - PowerPoint PPT Presentation
Popular Tags:
15
Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory National Oceanic and Atmospheric Administration 456 S. Illinois Ave., P.O. Box 2456 Oak Ridge, Tennessee 37831-2456 (E-mail: [email protected] ) Stochastic Description of Subgrid Pollutant Variability in CMAQ Jason K. S. Ching and Jenise L. Swall NOAA/ARL/Atmospheric Sciences Modeling Division on assignment to USEPA/NERL Research Triangle Park, North Carolina
Transcript
Page 1: Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory

Jerold A. HerweheAtmospheric Turbulence & Diffusion Division

Air Resources LaboratoryNational Oceanic and Atmospheric Administration

456 S. Illinois Ave., P.O. Box 2456Oak Ridge, Tennessee 37831-2456(E-mail: [email protected])

Stochastic Description of Subgrid Pollutant Variability in CMAQ

Jason K. S. Ching and Jenise L. SwallNOAA/ARL/Atmospheric Sciences Modeling Division

on assignment to USEPA/NERLResearch Triangle Park, North Carolina

Page 2: Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory

Motivation

Regional scale air quality (AQ) models are currently limited to relatively coarse (≥ 1 km) grids.

Emergency management, human exposure and risk assessment require more detailed information on hazardous pollutant, or air toxics, concentration “hot spots.”

Research Objectives

Develop methodology and associated software tools to perform statistical analyses on available fine resolution gridded model results in order to quantify subgrid pollutant variability not represented in current AQ models.

Provide linkage between the Community Multiscale Air Quality (CMAQ) modeling system (Ching and Byun 1999; http://www.epa.gov/asmdnerl/models3/cmaq.html) and the Hazardous Air Pollutant Exposure Model (HAPEM; http://www.epa.gov/ttn/fera/human_hapem.html).

Current Approach

Utilize objective Exploratory Data Analysis (EDA) approach (NIST/SEMATECH 2003) with companion freeware statistical analysis Dataplot package from NIST (http://www.itl.nist.gov/div898/software/dataplot/) to develop subgrid concentration analysis program dubbed CDFware (Concentration Distribution Function –ware).

Apply CDFware to sample AQ model output to produce probability density functions (pdfs).

CDFware conducts suite of statistical tests before determining best fit distribution.

Page 3: Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory

10 20 30 40 50 60 70 80 90

C ell I N um ber

10

20

30

40

50

60

70

80

90

Cel

l J N

umbe

r

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012ALD 2 (ppm v)

(a)

0 1 2 3 4 5 6 7 8 9 10

C ell I N um ber

0

1

2

3

4

5

6

7

8

9

10

Cel

l J N

umbe

r

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012ALD 2 (ppm v)

(b)

Acetaldehyde Mean Mixing RatioCMAQ 14 July 1995 15:00 LST (1.33 km)2 Grid Cells

Acetaldehyde Mean Mixing RatioCMAQ 14 July 1995 15:00 LST (12 km)2 Grid Cells

Derived from (1.33 km)2 Grid Data of Figure (a)

Page 4: Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory

CMAQ 14 July 1995 15:00 LST Acetaldehyde Histograms for (12 km)2 Grid Cells

Page 5: Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory
Page 6: Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory

1 2 3 4 5 6 7 8 9 10

C ell I N um ber

1

2

3

4

5

6

7

8

9

10

Cel

l J N

umbe

r

-1 .0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tukey-Lambda Shape Parameter for AcetaldehydeCMAQ 14 July 1995 15:00 LST (12 km)2 Grid Cells

Page 7: Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory
Page 8: Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory

1 2 3 4 5 6 7 8 9 10

C ell I Num ber

1

2

3

4

5

6

7

8

9

10

Cel

l J N

umbe

r

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16D istribution

U niform

N orm al

W eibull (+skew)

Lognorm al

G am m a

Pow er N orm al

Pow er Lognorm al

Skewed N orm al

Frechet (+skew)

G en. Extrem e Val.

Inverted W eibull

Chi-Squared

W eibull (-skew )

Frechet (-skew )

Logistic

Best-Choice Distribution for AcetaldehydeCMAQ 14 July 1995 15:00 LST (12 km)2 Grid Cells

Page 9: Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory

10 20 30 40 50 60 70 80 90

C ell I N um ber

10

20

30

40

50

60

70

80

90C

ell J

Num

ber

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

FO RM (ppm v)

Form aldehyde M ean M ixing R atioC M AQ 14 July 1995 15:00 LST 1.33 km G rid

0 1 2 3 4 5 6 7 8 9 10

C ell I N um ber

0

1

2

3

4

5

6

7

8

9

10

Cel

l J N

umbe

r

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

C M AQ 14 July 1995 15:00 LST 12 km G rid

Form aldehyde M ean M ixing R atioFO RM (ppm v)

1 2 3 4 5 6 7 8 9 10

C ell I N um ber

1

2

3

4

5

6

7

8

9

10

Cel

l J N

umbe

r

-1 .0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tukey-Lam bda Shape Param eter for Form aldehydeC M AQ 14 July 1995 15:00 LST 12 km G rid

1 2 3 4 5 6 7 8 9 10

C ell I N um ber

1

2

3

4

5

6

7

8

9

10

Cel

l J N

umbe

r

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16Distribution

Best-C hoice D istribution for Form aldehydeC M AQ 14 July 1995 15:00 LST 12 km G rid

U niform

N orm al

W eibull (+skew )

Lognorm al

G am m a

Pow er N orm al

Pow er Lognorm al

Skewed Norm al

Frechet (+skew)

G en. Extrem e Val.

Inverted W eibull

C hi-Squared

W eibull (-skew)

Frechet (-skew)

Logistic

Page 10: Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory

10 20 30 40 50 60 70 80 90

Cell I Num ber

10

20

30

40

50

60

70

80

90C

ell J

Num

ber

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

O 3 (ppm v)

O zone M ean M ixing RatioC M AQ 14 July 1995 15:00 LST 1.33 km G rid

0 1 2 3 4 5 6 7 8 9 10

Cell I Num ber

0

1

2

3

4

5

6

7

8

9

10

Cel

l J N

umbe

r

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

O zone M ean M ixing R atioC M AQ 14 July 1995 15:00 LST 12 km G rid

O 3 (ppm v)

1 2 3 4 5 6 7 8 9 10

C ell I N um ber

1

2

3

4

5

6

7

8

9

10

Cel

l J N

umbe

r

-1 .0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tukey-Lam bda Shape Param eter for O zoneC M AQ 14 July 1995 15:00 LST 12 km G rid

1 2 3 4 5 6 7 8 9 10

C ell I N um ber

1

2

3

4

5

6

7

8

9

10

Cel

l J N

umbe

r

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16Distribution

Best-C hoice D istribution for O zoneC M AQ 14 July 1995 15:00 LST 12 km G rid

U niform

N orm al

W eibull (+skew )

Lognorm al

G am m a

Pow er N orm al

Pow er Lognorm al

Skewed Norm al

Frechet (+skew)

G en. Extrem e Val.

Inverted W eibull

C hi-Squared

W eibull (-skew)

Frechet (-skew)

Logistic

Page 11: Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory

CMAQ 14 July 1995 15:00 LST Acetaldehyde Histograms with Fitted Weibull PDFs

Page 12: Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory

1 2 3 4 5 6 7 8 9 10

C ell I N um ber

1

2

3

4

5

6

7

8

9

10

Cel

l J N

umbe

r

0.938

0.942

0.946

0.950

0.954

0.958

0.962

0.966

0.970

0.974

0.978

0.982

0.986

0.990

0.994

0.998m ax. PPC C

(a)

1 2 3 4 5 6 7 8 9 10

Cell I N um ber

1

2

3

4

5

6

7

8

9

10

Cel

l J N

umbe

r

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

(b)

1 2 3 4 5 6 7 8 9 10

C ell I N um ber

1

2

3

4

5

6

7

8

9

10

Cel

l J N

umbe

r

0.0020

0.0022

0.0024

0.0026

0.0028

0.0030

0.0032

0.0034

0.0036

0.0038

0.0040

0.0042

0.0044

0.0046

0.0048

0.0050

0.0052

0.0054

(c)

1 2 3 4 5 6 7 8 9 10

C ell I N um ber

1

2

3

4

5

6

7

8

9

10

Cel

l J N

umbe

r

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.0010

0.0011

0.0012

0.0013

0.0014

0.0015

0.0016

0.0017

0.0018

0.0019

0.0020

0.0021

0.0022

(d)

Weibull Maximum PPCC Value for AcetaldehydeCMAQ 14 July 1995 15:00 LST 12 km Grid

Weibull Shape Parameter for AcetaldehydeCMAQ 14 July 1995 15:00 LST 12 km Grid

Weibull Scale Parameter for AcetaldehydeCMAQ 14 July 1995 15:00 LST 12 km Grid

Weibull Location Parameter for AcetaldehydeCMAQ 14 July 1995 15:00 LST 12 km Grid

Page 13: Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory
Page 14: Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory

Results and Conclusions

Concentration Distribution Function –ware (CDFware) tool was developed using EDA and Dataplot to statistically analyze fine resolution model output to determine best-fit distributions representing subgrid pollutant concentration variability.

Initial application of CDFware to example 1.33 km grid pollutant “data” from a CMAQ case study produced complex statistical results from numerous distribution family fits.

Restricting to a Weibull-only analysis did not produce any readily discernible spatial or temporal patterns in the PPCC, shape, location, or scale parameter fields.

Despite the current complexity of the CDFware results, these quantitative statistical products could still enhance the input stream to human risk and exposure models based on census tract scales. Extreme concentration values are represented in the distribution fits.

Development and refinement of CDFware will continue. Desirable additions include ability to detect and fit multimodal concentration distributions. CDFware will be applied to higher resolution output from neighborhood-scale coupled large-eddy simulation (LES)-photochemical model and computational fluid dynamics (CFD) simulations to possibly yield more coherent distribution parameter fields suitable for developing parameterizations of subgrid pollutant concentration variation within regional AQ model grid cells.

Page 15: Jerold A. Herwehe Atmospheric Turbulence & Diffusion Division Air Resources Laboratory

References

Bury, K., 1999: Statistical Distributions in Engineering. Cambridge University Press, 362 pp.

Ching, J., and D. Byun, 1999: Introduction to the Models-3 framework and the Community Multiscale Air Quality model (CMAQ). In Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, edited by D. W. Byun and J. K. S. Ching, EPA-600/R-99/030, Chapter 1, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

NIST/SEMATECH, cited 2003: NIST/SEMATECH e-Handbook of Statistical Methods. [Available online at http://www.itl.nist.gov/div898/handbook/.]

Acknowledgments

This research was supported by the National Oceanic and Atmospheric Administration’s Air Resources Laboratory and the U.S. Environmental Protection Agency’s National Exposure Research Laboratory.

Disclaimer: This work has been reviewed in accordance with the United States Environmental Protection Agency’s peer and administrative review policies and approved for presentation and publication.


Recommended