+ All Categories
Home > Documents > Jets in e Annihilation - SMU PhysicsJets in e+e Annihilation Πp.16. Simple hadronisation model Y y...

Jets in e Annihilation - SMU PhysicsJets in e+e Annihilation Πp.16. Simple hadronisation model Y y...

Date post: 31-Jan-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
40
Jets in e + e - Annihilation Nigel Glover IPPP, University of Durham CTEQ, Rhodes, July 2006 Jets in e + e - Annihilation – p.1
Transcript
  • Jets in e+e− AnnihilationNigel Glover

    IPPP, University of Durham

    CTEQ, Rhodes, July 2006

    Jets in e+e− Annihilation – p.1

  • Structure of hadronic events

    A two jet event A three jet event

    Y

    XZ

    200 . cm.

    Cen t r e o f sc r een i s ( 0 . 0000 , 0 . 0000 , 0 . 0000 ) 50 GeV2010 5

    Run : even t 4093 : 1000 Da t e 930527 T ime 20716 Ebeam 45 . 658 Ev i s 99 . 9 Emi ss - 8 . 6 V t x ( - 0 . 07 , 0 . 06 , - 0 . 80 ) Bz=4 . 350 Th r us t =0 . 9873 Ap l an=0 . 0017 Ob l a t =0 . 0248 Sphe r =0 . 0073

    C t r k (N= 39 Sump= 73 . 3 ) Eca l (N= 25 SumE= 32 . 6 ) Hca l (N=22 SumE= 22 . 6 ) Muon (N= 0 ) Sec V t x (N= 3 ) Fde t (N= 0 SumE= 0 . 0 )

    Y

    XZ

    200 . cm.

    Cen t r e o f sc r een i s ( 0 . 0000 , 0 . 0000 , 0 . 0000 ) 50 GeV2010 5

    Run : even t 2542 : 63750 Da t e 911014 T ime 35925 Ebeam 45 . 609 Ev i s 86 . 2 Emi ss 5 . 0 V t x ( - 0 . 05 , 0 . 12 , - 0 . 90 ) Bz=4 . 350 Th r us t =0 . 8223 Ap l an=0 . 0120 Ob l a t =0 . 3338 Sphe r =0 . 2463

    C t r k (N= 28 Sump= 42 . 1 ) Eca l (N= 42 SumE= 59 . 8 ) Hca l (N= 8 SumE= 12 . 7 ) Muon (N= 1 ) Sec V t x (N= 0 ) Fde t (N= 2 SumE= 0 . 0 )

    Jets in e+e− Annihilation – p.2

  • Structure of hadronic events

    e+

    e-

    γ

    (Z0/γ)*

    q

    dū

    and many moreuds

    dc̄

    }

    }

    }

    π-

    Λ0 → π-p+

    D+ → K0π+

    √s’ ~ 1 GeVParton Level Hadron Level

    Electro-weak Production Parton Shower Hadronisation

    Here we will mostly discuss the hard scattering parton level phaseJets in e+

    e− Annihilation – p.3

  • O(αs) corrections to e+e− → hadrons

    Real Gluon emission

    Mqq̄g ∝ gs ⇒ |Mqq̄g|2 ∝ αs

    Virtual Gluon emission

    Mqq̄ ∼ 1 + αs

    Jets in e+e− Annihilation – p.4

  • O(αs) corrections to e+e− → hadrons

    Note that

    |Mqq|^2 =

    +

    +

    x

    x

    x

    O(1)

    O(a_s)

    O(a_s^2)

    At NLO, we are only interested in the interference of the one-loopamplitude with the tree-graph

    Jets in e+e− Annihilation – p.5

  • Phase space for real emission

    Because of momentum con-servation, q, q̄ and g lie in aplane.

    q

    g_

    =

    q

    Useful variables are the en-ergy fractions and invariantmasses x1

    x2

    singularities

    xi =2Ei√

    s, x1 + x2 + x3 = 2

    yij =2pi.pj√

    s= 1 − xk

    Jets in e+e− Annihilation – p.6

  • Event shape variables

    global observable characterising structure of hadronic event

    e.g. Thrust in e+e−

    T = max~n

    ∑ni=1 |~pi · ~n|

    ∑ni=1 |~pi|

    limiting values:back-to-back (two-jet)limit: T = 1

    spherical limit: T = 1/2

    Ecm=91.2 GeV

    Ecm=133 GeV

    Ecm=161 GeV

    Ecm=172 GeV

    Ecm=183 GeV

    Ecm=189 GeV

    Ecm=200 GeV

    Ecm=206 GeV

    T

    ALEPH

    O( s2) + NLLA

    1/ d

    /dT

    10-2

    10-1

    1

    10

    10 2

    10 3

    10 4

    10 5

    10 6

    10 7

    0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

    Jets in e+e− Annihilation – p.7

  • O(αs) Thrust distribution

    In terms of x1 and x2, the NLO cross section is given by

    1

    σ0qq̄

    d2σ

    dx1dx2=

    αsCF2π

    x21 + x22

    (1 − x1)(1 − x2)

    For a three particle event,

    T = max xi

    Therefore, we can divide thephase space into three re-gions corresponding to theThrust value.

    x2

    x1

    x3=T

    x2

    x1

    =T

    =T

    Jets in e+e− Annihilation – p.8

  • O(αs) Thrust distribution

    For the region where T = x1,the boundaries are

    2(1 − T ) < x2 < T

    x1

    x1=x2=T

    x1=x3=T

    1

    σ0qq̄

    dT|1 =

    αsCF2π

    ∫ T

    2(1−T )

    T 2 + x22(1 − T )(1 − x2)

    =αsCF

    [

    1 + T 2

    (1 − T ) log(

    2T − 11 − T

    )

    +8 − 14T + 3T 2

    2(1 − T )

    ]

    Exercise: do the same for the other two regions.

    Jets in e+e− Annihilation – p.9

  • O(αs) Thrust distribution

    Adding up the three contributions together

    1

    σ0qq̄

    dT=

    αsCF2π

    [

    2(3T 2 − 3T + 2)T (1 − T ) log

    (

    2T − 11 − T

    )

    − 3(3T − 2)(2 − T )1 − T

    ]

    T > 2/3 when x1 = x2 = x3 = TAs T → 1,

    1

    σ0qq̄

    dT∼ αsCF

    [

    4

    (1 − T ) log(

    1

    1 − T

    )

    − 31 − T

    ]

    Virtual contribution at T = 1Expect large hadronisation corrections as T → 1

    Jets in e+e− Annihilation – p.10

  • O(αs) Thrust distribution

    0.6 0.7 0.8 0.9 1T

    10-2

    10-1

    100

    101

    102

    1/σ o

    dσ/

    dT

    OPALO(αs) with αs = 0.2434

    deficiency at small T due to kinematic boundshape good 0.75 < T < 0.95

    Jets in e+e− Annihilation – p.11

  • Spin of the gluon

    If the gluon is a scalar, itwould be evident in the eventshape.

    Lint ∼ ḡsΨ̄iT aijΦaΨj

    leads to

    1

    σ0qq̄

    d2σ

    dx1dx2∼ x

    23

    2(1 − x1)(1 − x2)

    1

    σ0qq̄

    dT=

    ᾱsCF2π

    1

    2

    [

    2 log

    (

    2T − 11 − T

    )

    +(3T − 2)(4 − 3T )

    1 − T

    ]

    Jets in e+e− Annihilation – p.12

  • NLO corrections to thrust distribution

    At NLO, get contributions from double radiation

    and virtual graphs

    1

    σ0

    dT=

    αs(µ)

    2πA(T ) +

    (

    αs(µ)

    )2 [

    b0A(T ) ln

    (

    µ2

    s

    )

    + B(T )

    ]

    renormalisation term and genuine NLO contributionJets in e+e− Annihilation – p.13

  • NLO corrections to thrust distribution

    0.5 0.6 0.7 0.8 0.9 1T

    10-1

    100

    101

    102

    103

    104

    105

    1/σ o

    dσ/

    dT

    AB

    0.6 0.7 0.8 0.9 1T

    10-2

    10-1

    100

    101

    102

    1/σ o

    dσ/

    dT

    OPALO(αs) with αs = 0.2434O(αs2) with αs = 0.14

    As T → 1, A divergespositive, B divergesnegativeT > 1/

    √3 at NLO

    Better agreement overwider range of TMore sensible value of αsStill problems as T → 1

    Jets in e+e− Annihilation – p.14

  • Large logarithms in thrust distribution

    As T → 1,

    1

    σ0qq̄

    dT∼ αsCF

    [

    4

    (1 − T ) log(

    1

    1 − T

    )

    − 31 − T

    ]

    define cross section for T > τ which is fraction of events with T > τ ,

    R(τ) =

    ∫ 1

    τ

    dT1

    σ0qq̄

    dT

    ∼ 1 − αsCFπ

    ln2(1 − τ)

    Singularity at T = 1 cancelled by one-loop two-parton contribution

    When αs ln2(1 − τ) large, i.e. τ ∼ 0.95 cannot trust perturbationtheory. In fact,

    R(τ) ∼ 1 − αsCFπ

    ln2(1 − τ) + 12

    (

    αsCFπ

    )2

    ln4(1 − τ)Jets in e+e− Annihilation – p.15

  • Large logarithms in thrust distribution

    R(τ) ∼ exp(

    −αsCFπ

    ln2(1 − τ))

    so that as τ → 1, R(τ) → 0

    This is the SUDAKOV form factor effectfor event to have very high thrust, must have radiated very fewgluons

    ⇒ very improbablec.f data, very improbable to have only 2 hadron event

    can also resum next-to-leading logs for many event shapes sothat calculations believable when αs ln(1 − τ) small

    Jets in e+e− Annihilation – p.16

  • Simple hadronisation model

    yY

    pT

    dy

    Parton produces a tube in (y, pT ) space of light hadrons w.r.t. initialparton direction with transverse mass density µ

    Ejet = µ

    Z Y

    0

    cosh y dy = µ sinh Y

    Pjet = µ

    Z Y

    0

    sinh y dy = µ(cosh Y − 1)

    ⇒ m2jet = E2jet − P 2jet = 2µPjet or Ejet ∼ Pjet + µ

    where µ ∼ 0.5 − 1 GeV from experiment Jets in e+e− Annihilation – p.17

  • Hadronisation and Thrust

    2 jet event:

    Tparton = 1

    Thadron =2Pjet

    Q=

    2(Ejet − µ)Q

    = 1 − 2µQ

    i.e.δT = −2µ

    Q

    Mean value of thrust

    〈1 − T 〉 = 0.33αs + 1.0α2s

    +1 GeV

    Q

    Mark JTASSODELCOMark II

    JADE

    AMYDELPHIL3ALEPHOPALSLD

    √−−s [GeV]

    〈1-T

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0.18

    0.2

    0 20 40 60 80 100 120 140 160 180

    Jets in e+e− Annihilation – p.18

  • The triple gluon vertex

    Four jet matrix elements aresensitive to the triple gluonvertex - (makes event moreplanar)

    To quantify this effect studye.g.Bengtsson-Zerwas angle

    cos θBZ =( ~p1 × ~p2).( ~p3 × ~p4)

    | ~p1|| ~p2|| ~p3|| ~p4|

    for four jets (Ei, ~pi) with E1 >E2 > E3 > E4

    Jets in e+e− Annihilation – p.19

  • Probing non-abelian structure of QCD

    Probabilities for parton splitting

    2

    2

    2 q → qg ∝ CF αs

    g → gg ∝ CAαs

    g → qq̄ ∝ TRαs

    In QCD,

    CF =N2 − 1

    2N, CA = N, TR =

    1

    2

    All splittings present in O(α2s) event shapes, i.e.

    B(T ) = CF α2s (CF BCF (T ) + CABCA(T ) + TRBTR(T ))

    which can be fit to data Jets in e+e− Annihilation – p.20

  • Probing non-abelian structure of QCD

    Fixing the quadratic casimirsof QCD in 4 jet events

    OPALCA 3.02 ± 0.25 ± 0.49

    CF 1.34 ± 0.13 ± 0.22

    αs(MZ) 0.120 ± 0.011 ± 0.020

    ALEPHCA 2.93 ± 0.14 ± 0.49

    CF 1.35 ± 0.07 ± 0.22

    αs(MZ) 0.119 ± 0.006 ± 0.022

    ExpectCA/CF = 9/4 TR/CF = 3/8

    ALEPH

    0

    0.2

    0.4

    0.6

    0.8

    1

    1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25CA/CF

    T R/C

    F

    SO(2)

    SU(4)

    68% CL contour

    ALEPH-1997 OPAL-2001

    Jets in e+e− Annihilation – p.21

  • Probing non-abelian structure of QCD

    0

    0.5

    1

    1.5

    2

    2.5

    0 1 2 3 4 5 6

    U(1)3

    SU(1)

    SU(2)

    SU(4)

    SU(5)Combined resultSU(3) QCD

    ALEPH 4-jet

    OPAL 4-jet

    Event Shape

    OPAL NggDELPHI FF

    CF

    CA

    86% CL error ellipses

    CA = 2.89 ± 0.01 ± 0.21(syst)CF = 1, 30 ± 0.01 ± 0.09(syst)

    Jets in e+e− Annihilation – p.22

  • Differences between quark and gluon jets

    QCD predicts that quarks andgluons fragment differentlybecause of their differentcolour charges

    Fundamental prediction:the number of soft gluonsemitted within a gluon jetshould be ∼twice that forquark jet

    rg/q ≡〈n〉gluon〈n〉quark

    ∼ CACF

    = 2.25

    Valid for soft particles and un-biased jets.For hard gluon emission,quarks and gluons are similarrg/q ∼ 1

    5

    10

    15

    20

    25

    10 102

    Ecm

    , pT

    [GeV]

    Nch

    Nch

    from e+e

    - to qq

    Fit

    Ngg

    =2(Nqqg

    - Nqq

    )

    Ngg

    (CLEO)

    Ngg

    (OPAL)

    Eden (a)

    DELPHI

    Jets in e+e− Annihilation – p.23

  • The running coupling in perturbative QCD

    dαs/d lnµ2 = −β0 α2s − β1 α3s − β2 α4s − β3 α5s − . . .

    Four-loop coeff.:van Ritbergen, Vermaseren, Larin; Czakon

    -0.2

    -0.1

    0

    0 0.1 0.2 0.3 0.4 0.5αS

    β(αS)

    1−loop2−loop3−loop4−loop

    nf = 4, MS

    µ2 (GeV2)

    αS( µ2)

    αS(M 2 ) = 0.115

    3...5 flavours

    Z

    ↓↓

    J/ψ

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    1 10 10 2 10 3 10 4

    Jets in e+e− Annihilation – p.24

  • The running coupling from LEP

    Combined results for αs(MZ)

    τ decays : = 0.1180 ± 0.0030RZ : = 0.1226

    +0.0058−0.0038

    shapes : = 0.1202 ± 0.0050

    Final combined result from LEP

    αs(MZ) = 0.1195 ± 0.0034

    Errors dominated by theoretical uncertainties.Bethke, hep-ex/0406058

    Jets in e+e− Annihilation – p.25

  • e+e− event shapes

    Current state of the art is3 NLO perturbation theory,3 more sophisticated NLL

    resummation3 better modelling of

    hadronisation correc-tions

    PSfrag replacements

    0.110

    0.110

    0.115

    0.115

    0.120

    0.120

    0.125

    0.125

    0.130

    0.130

    αS(MZ)

    αS(MZ)

    T

    T

    MH

    MH

    C

    C

    BT

    BT

    BW

    BW

    y23

    y23

    All

    All

    Ecm=91.2 GeV

    Ecm=133 GeV

    Ecm=161 GeV

    Ecm=172 GeV

    Ecm=183 GeV

    Ecm=189 GeV

    Ecm=200 GeV

    Ecm=206 GeV

    T

    ALEPH

    O( s2) + NLLA

    1/ d

    /dT

    10-2

    10-1

    1

    10

    10 2

    10 3

    10 4

    10 5

    10 6

    10 7

    0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

    Jets in e+e− Annihilation – p.26

  • Why go beyond NLO?

    In many cases, the uncertainty from the pdf’s and from the choice ofrenormalisation scale give uncertainties that are as big or biggerthan the experimental errors.e.g. theoretical uncertainties in αs extraction from pp̄ → jet are due torenormalisation scale and pdf’s

    0.09

    0.10

    0.11

    0.12

    0.13

    0.14

    0.15

    0.16

    Stro

    ng C

    oupl

    ing

    Cons

    tant

    αs(E

    T)

    0

    10

    0 50 100 150 200 250 300 350 400 450

    %

    Systematic uncertainties

    Transverse Energy (GeV)

    0.110.120.130.140.15

    100 200 300 400 (GeV)

    α s(M

    Z)

    0.10

    0.12

    0.14

    0.16

    0 50 100 150 200 250 300 350 400 450

    αs(MZ) as function of ET for µ=ETUncertainties due to the µ scale

    (a)

    0.10

    0.12

    0.14

    0.16

    0 50 100 150 200 250 300 350 400 450

    αs(MZ) as function of ET for CTEQ4MUncertainties due to the PDF choice

    (b)

    Transverse Energy (GeV)

    Stro

    ng C

    oupl

    ing

    Cons

    tant

    αs(M

    Z)

    αs(MZ) = 0.1178+6%−4%(scale)

    +5%−5%(pdf) Jets in e+e− Annihilation – p.27

  • Why do we vary renormalisation scale?

    • The theoretical prediction should be independent of µR• The change due to varying the scale is formally higher order. If

    an observable Obs is known to order αNs then,

    ∂ ln(µ2R)

    N∑

    0

    An(µR)αns (µR) = O

    (

    αN+1s)

    .

    • So the uncertainty due to varying the renormalisation scale isway of guessing the uncalculated higher order contribution.

    Jets in e+e− Annihilation – p.28

  • Why do we vary renormalisation scale?

    • . . . but the variation only produces copies of the lower orderterms

    Obs = A0αs(µR) +(

    A1 + b0A0 ln

    (

    µ2Rµ20

    ))

    αs(µR)2

    A1 will contain logarithms and constants that are not present inA0 and therefore cannot be predicted by varying µR.For example, A0 may contain infrared logarithms L up to L2,while A1 would contain these logarithms up to L4.

    • µR variation is only an estimate of higher order terms• A large variation probably means that predictable higher order

    terms are large - but doesnt say anything about A1.

    Jets in e+e− Annihilation – p.29

  • Renormalisation scale dependence

    For example, pp̄ → jet, scale dependence

    dET= α2s(µR)A

    + α3s(µR) (B + 2b0LA)

    + α4s(µR)(

    C + 3b0LB + (3b20L

    2 + 2b1L)A)

    with L = log(µR/ET ). The NNLO coefficient C is unknown.

    The curves show guessesC = 0 (solid) and C = ±B2/A(dashed).Scale dependence is signifi-cantly reduced.

    1 2 3 4 5

    µ_R / E_T

    0

    0.2

    0.4

    0.6

    0.8

    1

    dσ /

    dE_

    T at

    E_T

    = 10

    0 G

    eV

    LONLO"NNLO""NNLO"+"NNLO"-

    Jets in e+e− Annihilation – p.30

  • Jet algorithms

    Also there is a mismatch between the number of hadrons and thenumber of partons in the event. At NLO at most two partons make ajet - while at NNLO three partons can combine to form the jet

    LO NLO NNLO

    Perturbation theory starts to reconstruct the shower⇒ better matching of jet algorithm between theory and experiment⇒ need for better jet algorithms

    Jets in e+e− Annihilation – p.31

  • Description of the initial state

    LO At lowest order final state has no transverse momentum

    NLO Single hard radiation gives final state transverse momentum,even if no additional jet observed

    Jets in e+e− Annihilation – p.32

  • Description of the initial state

    NNLO Double radiation on one side or single radiation off eachincoming particle gives more complicated transversemomentum to final state

    Jets in e+e− Annihilation – p.33

  • Higher orders and power corrections

    NLO Phenomenological power corrections match data withcoefficient of 1/Q extracted from data.

    〈1 − T 〉 ∼ 0.33αs + 1.0α2s +λ

    Q

    At NLO, λ ∼ 1 GeV gives a good description of the data.

    〈1−T 〉 with NLO and no powercorrection and NLO withpower correction λ = 1 GeV.

    The power correction param-eterises the unknown higherorders as well as the genuinenon-perturbative correction 0

    0.05

    0.1

    0.15

    0.2

    20 40 60 80 100 120 140 160 180 200Q (GeV)

    Jets in e+e− Annihilation – p.34

  • Higher orders and power corrections

    NNLO Higher orders partially remove need for power correction

    〈1 − T 〉 ∼ 0.33αs + 1.0α2s + Aα3s +λ GeV

    Q

    If we guess A = 3, then λ = 0.5 GeV is good fit.

    〈1 − T 〉 with NLO andλ = 1 GeV, "NNLO" withλ = 0.5 GeV and "All orders"with no power correction.

    At present data not goodenough to tell difference be-tween 1/Q and 1/ log(Q/Λ)3. 0

    0.05

    0.1

    0.15

    0.2

    20 40 60 80 100 120 140 160 180 200Q (GeV)

    Jets in e+e− Annihilation – p.35

  • Gauge boson production at the LHC

    Jets in e+e− Annihilation – p.36

  • Gauge boson production at the LHC

    Gold-plated processAnastasiou, Dixon, Melnikov, Petriello

    At LHC NNLO perturbative accuracy better than 1%⇒ use to determine parton-parton luminosities at the LHC

    Jets in e+e− Annihilation – p.37

  • Event shapes at NNLO

    Two-loop matrix elements

    |M|22-loop,3 partons explicit infrared poles from loop integralsGarland, Gehrmann, Glover, Koukoutsakis,

    Remiddi:Moch, Uwer, Weinzierl

    One-loop matrix elements

    |M|21-loop,4 partonsexplicit infrared poles from loop integral andimplicit infrared poles due to single unresolved ra-diation

    Bern, Dixon, Kosower, Weinzierl;Campbell, Miller, Glover

    Tree level matrix elements|M|2tree,5 partons implicit infrared poles due to double unresolved ra-

    diationHagiwara, Zeppenfeld;Berends, Giele, Kuijf

    Infrared Poles cancel in the sumJets in e+e− Annihilation – p.38

  • QED-type contributions to e+e− → 3 jets

    Gehrmann-De Ridder, Gehrmann, Glover, Heinrich

    -30

    -20

    -10

    0

    10

    20

    30

    40

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.51-T

    1/N2y0 = 10

    -5

    y0 = 10-6

    y0 = 10-7

    -800-700-600-500-400-300-200-100

    0 100 200 300

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.51-T

    NF/N

    y0 = 10-5

    y0 = 10-6

    y0 = 10-7

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.51-T

    NF2

    y0 = 10-5

    y0 = 10-6

    y0 = 10-7

    independent of phasespace cut y0CPU time about 1 day on2.8 GHz Athlon

    Jets in e+e− Annihilation – p.39

  • Summary

    QCD studies at LEP have led to a significant increase of knowledgeabout hadron production and the dynamics of quarks and gluons athigh energies.

    These studies demonstrate QCD as a consistent theory whichaccurately describes the phenomenology of the Strong Interaction

    Future developments in this field are within reach: NNLO QCDcalculations and predictions for jet and event shape observables willsoon be available; they will initiate further analyses of the LEP datawhich will provide even more accurate and more detaileddeterminations of αs

    Bethke, hep-ex/0406058

    Jets in e+e− Annihilation – p.40

    Structure of hadronic eventsStructure of hadronic events${cal O}(alpha _s)$corrections to $e^+e^- o $ hadrons${cal O}(alpha _s)$corrections to $e^+e^- o $ hadronsPhase space for real emissionEvent shape variables${cal O}(alpha _s)$Thrust distribution${cal O}(alpha _s)$Thrust distribution${cal O}(alpha _s)$Thrust distribution${cal O}(alpha _s)$Thrust distributionSpin of the gluonNLO corrections to thrust distributionNLO corrections to thrust distributionLarge logarithms in thrust distributionLarge logarithms in thrust distributionSimple hadronisation modelHadronisation and ThrustThe triple gluon vertexProbing non-abelian structure of QCDProbing non-abelian structure of QCDProbing non-abelian structure of QCDDifferences between quark and gluon jetsThe running coupling in perturbative QCDThe running coupling from LEP$e^+e^-$ event shapesWhy go beyond NLO?Why do we vary renormalisation scale?Why do we vary renormalisation scale?Renormalisation scale dependenceJet algorithmsDescription of the initial stateDescription of the initial stateHigher orders and power correctionsHigher orders and power correctionsGauge boson production at the LHCGauge boson production at the LHCEvent shapes at NNLOQED-type contributions to $e^+e^- o 3$~jetsSummary


Recommended