+ All Categories
Home > Documents > J.M. Crowther 1 , D. Mumovic 2 , Z. Stevanovic 3

J.M. Crowther 1 , D. Mumovic 2 , Z. Stevanovic 3

Date post: 31-Jan-2016
Category:
Upload: manton
View: 26 times
Download: 2 times
Share this document with a friend
Description:
ANALYSIS OF NUMERICALLY MODELLED LOCAL CONCENTRATION GRADIENTS IN STREET CANYONS: IMPLICATIONS FOR AIR QUALITY MONITORING. J.M. Crowther 1 , D. Mumovic 2 , Z. Stevanovic 3 1 School of the Built and Natural Environment, Glasgow Caledonian University - PowerPoint PPT Presentation
Popular Tags:
31
ANALYSIS OF NUMERICALLY MODELLED LOCAL CONCENTRATION GRADIENTS IN STREET CANYONS: IMPLICATIONS FOR AIR QUALITY MONITORING J.M. Crowther 1 , D. Mumovic 2 , Z. Stevanovic 3 1 School of the Built and Natural Environment, Glasgow Caledonian University 2 The Bartlett, Faculty of the Built Environment, University College, London 3 Institute of Nuclear Sciences, University of Belgrade
Transcript
Page 1: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

ANALYSIS OF NUMERICALLY MODELLED LOCAL CONCENTRATION

GRADIENTS IN STREET CANYONS: IMPLICATIONS FOR AIR QUALITY

MONITORING

J.M. Crowther 1, D. Mumovic 2, Z. Stevanovic 3

1 School of the Built and Natural Environment, Glasgow Caledonian University2 The Bartlett, Faculty of the Built Environment, University College, London3 Institute of Nuclear Sciences, University of Belgrade

Page 2: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Objectives of this study

• To analyse numerically modelled, local concentration gradients in street canyons

• To make recommendations for the positioning of air quality monitoring stations

Page 3: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Cases Studied

1. A single street canyon

2. A staggered cross-road

3. An idealised complex configuration of several street canyons

Page 4: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Methodology

• PHOENICS with different turbulence models:– Standard k-epsilon– Renormalisation group k- model– Chen-Kim modification of k- model– Two-scale k-

Page 5: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Validation

• Comparison with air quality data collected for Glasgow city Council, Scotland

• Wind tunnel data from the University of Hamburg, Germany

Page 6: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Incompressible, Steady-state Navier Stokes equations

0)U( ii

P)}uuUU({)U(U jjiijjiijii

ij32

ijjitji k)UU(uu

k = turbulence kinetic energy per unit massUi = mean velocity, ui = turbulence velocity P = pressure, = density, μ = dynamic viscosityt = turbulent viscosity

Page 7: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Pollutant Transport Equations

}cu)C({)C(U iiiii D

C)/(cu iCti

Turbulence Contribution to the Pollutant Flux

Conservation of Pollutants

D = Laminar Diffusivity, C = Turbulent Schmidt No.

Page 8: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

General Transport Equation

SU iiii )()(

Property with source S and diffusivity

Page 9: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Standard k- Turbulence ModelEquation S

Turbulent Kinetic Energy

k t/k (G-)

Dissipation Rate t/ (/k)(C1G - C2

)

ikkiikt UUUG )(

/2kCt

k=1.0, =1.314, C1=1.44, C2=1.92, C= 0.09

Page 10: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

RNG k- Turbulence ModelEquation S

Turbulent Kinetic Energy

k t/k (G-)

Dissipation Rate t/ (/k)(C1G - C2

) -

ikkiikt UUUG )( /2kCt

k=0.7914, =0.7914, C1=1.42, C2=1.68, C= 0.0845

)1(/)/1( 30

3 C /Sk

ijijSSS 2 )(5.0 jiijij UUS o= 4.38, = 0.012

Page 11: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Chen-Kim k- Turbulence ModelEquation S

Turbulent Kinetic Energy

k t/k (G-)

Dissipation Rate t/ (/k)(C1G - C2

) + C3G2/k

ikkiikt UUUG )(

/2kCt

k= 0.75, =1.15, C1 =1.15, C2 =1.9, C3 = 0.25, C= 0.09

Page 12: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Two-scale k-ε Turbulence model

Equation S Turb. k.e. (production range)

kp t/kp (G-p)

Turb. k.e. (dissipation range)

kT t/kT (p-)

Transfer rate (production range)

p t/p )k

Ck

GCk

GGC(

p

pp3p

p

p2p

p1p

Dissipation rate (dissipation range)

t/ )k

Ck

Ck

C(T

3TT

p2TT

pp1T

Page 13: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

ikkiikt U)UU(G ; Tpkkk

/kC/kC 2P2

t

(kp,p,1pC,2pC,3pC,C) = (0.75, 1.15, 0.21, 1.24, 1.84, 0.009)(kT,,1TC,2TC,3TC) = (0.75, 1.15, 0.29, 1.28, 1.66)

Two-Scale k- Turbulence Model Parameters

Page 14: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Case 1: Single Street Canyon

• Hope Street, Glasgow

• Three-dimensional: wind direction at normal incidence

• Ref. Mumovic & Crowther, 2002

• Four different turbulence models

• Longitudinal single vortex

Page 15: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Standard k- modelSingle Street Canyon Pollutant Dispersion

Case 1

Page 16: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

RNG k- modelSingle Street Canyon Pollutant Dispersion

Case 1

Page 17: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Chen-Kim k- modelSingle Street Canyon Pollutant Dispersion

Case 1

Page 18: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Two-Scale k- modelSingle Street Canyon Pollutant Dispersion

Case 1

Page 19: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Comparison of a wind-tunnel study (Pavageau &Schatzmann, 1999)

with the RNG turbulence model

Case 1

Single Street Canyon

Page 20: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Case 2: Staggered Cross-Road

• University of Hamburg wind-tunnel test

• Ref Mumovic, Crowther & Stevanovic, 2003a

• Ref. Mumovic, Crowther & Stevanovic, 2003c

Page 21: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

w in d

Case 2 Staggered cross-road

Page 22: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Case 2 Staggered cross-road, Section B-B

Page 23: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Case 2 Staggered cross-road, Section A-A

Page 24: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Case 3: Complex Configuration of Street canyons

• Wind-tunnel study University of Hamburg

• Ref. Crowther, Mumovic & Stevanovic, 2003a, b

Page 25: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Experimental Geometry

Page 26: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Model Grid for Wind-Tunnel Simulation

Page 27: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Case 3 Complex configuration of street canyons:vertical plane at centre of 5th cavity

Page 28: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Case 3: Concentration distribution in the mid-height horizontal cross-section of the 5th cavity

Page 29: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Experimental Concentration Contours: Horizontal Cross-Section, Mid-Height, 5th Canyon

Page 30: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Local Concentration Gradients

Local concentration gradientswind incident

small large/mediumperpendicular upper leeward side

vortex centrelower windward side

lower leeward side (large)bottom of the canyon(large)

oblique upper leeward sidevortex centrelower windward side

lower leeward side(medium)bottom of the canyon(medium)

Page 31: J.M. Crowther  1 , D. Mumovic  2 , Z. Stevanovic  3

Factors for Location of Monitoring Equipment

Practicality of

Location

Practicality of

Location

Levelof

Turbulence

Levelof

Turbulence

LocalConcentration

Gradients

LocalConcentration

Gradients

SuitableLocation

SuitableLocation


Recommended