+ All Categories
Home > Documents > Journal of Sulfur Chemistry 2-Amino-4-thiazolidinones ... · Journal of Sulfur Chemistry Vol. 31,...

Journal of Sulfur Chemistry 2-Amino-4-thiazolidinones ... · Journal of Sulfur Chemistry Vol. 31,...

Date post: 13-Aug-2019
Category:
Upload: ngodan
View: 214 times
Download: 0 times
Share this document with a friend
36
PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Abdel-Wahab, B. F.] On: 12 August 2010 Access details: Access Details: [subscription number 925755755] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of Sulfur Chemistry Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713926081 2-Amino-4-thiazolidinones: synthesis and reactions M. A. Metwally a ; Abdelbasset A. Farahat bc ; Bakr F. Abdel-Wahab d a Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt b Department of Chemistry, Georgia State University, Atlanta, GA, USA c Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt d Department of Chemistry, Faculty of Science & Arts, King Abdulaziz University, Khulais, Saudi Arabia Online publication date: 12 August 2010 To cite this Article Metwally, M. A. , Farahat, Abdelbasset A. and Abdel-Wahab, Bakr F.(2010) '2-Amino-4- thiazolidinones: synthesis and reactions', Journal of Sulfur Chemistry, 31: 4, 315 — 349 To link to this Article: DOI: 10.1080/17415993.2010.482155 URL: http://dx.doi.org/10.1080/17415993.2010.482155 Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Transcript

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Abdel-Wahab, B. F.]On: 12 August 2010Access details: Access Details: [subscription number 925755755]Publisher Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Sulfur ChemistryPublication details, including instructions for authors and subscription information:http://www.informaworld.com/smpp/title~content=t713926081

2-Amino-4-thiazolidinones: synthesis and reactionsM. A. Metwallya; Abdelbasset A. Farahatbc; Bakr F. Abdel-Wahabd

a Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt b Departmentof Chemistry, Georgia State University, Atlanta, GA, USA c Department of Pharmaceutical OrganicChemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt d Department of Chemistry,Faculty of Science & Arts, King Abdulaziz University, Khulais, Saudi Arabia

Online publication date: 12 August 2010

To cite this Article Metwally, M. A. , Farahat, Abdelbasset A. and Abdel-Wahab, Bakr F.(2010) '2-Amino-4-thiazolidinones: synthesis and reactions', Journal of Sulfur Chemistry, 31: 4, 315 — 349To link to this Article: DOI: 10.1080/17415993.2010.482155URL: http://dx.doi.org/10.1080/17415993.2010.482155

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial orsystematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply ordistribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contentswill be complete or accurate or up to date. The accuracy of any instructions, formulae and drug dosesshould be independently verified with primary sources. The publisher shall not be liable for any loss,actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directlyor indirectly in connection with or arising out of the use of this material.

Journal of Sulfur ChemistryVol. 31, No. 4, August 2010, 315–349

REVIEW ARTICLE

2-Amino-4-thiazolidinones: synthesis and reactions

M.A. Metwallya*, Abdelbasset A. Farahatb,c and Bakr F. Abdel-Wahabd

aDepartment of Chemistry, Faculty of Science, Mansoura University, P.O. Box 23, Mansoura, Egypt;bDepartment of Chemistry, Georgia State University, Atlanta, GA 30303, USA; cDepartment of Pharmaceu-tical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; dDepartmentof Chemistry, Faculty of Science & Arts, King Abdulaziz University, Khulais, Saudi Arabia

(Received 9 January 2010; final version received 28 March 2010 )

Methods for the synthesis of 2-amino-4-thiazolidinones and their chemical properties are reviewed forthe first time. 2-Amino-4-thiazolidinones are synthetically versatile substrates, as they can be used for thesynthesis of a large variety of biologically active compounds, such as thiazolodihydropyrazoles, thiazolo-triazines, and thiazolotetrahydropyrimidones, and as a raw material for drug synthesis. The high reactivityof amino and active methylene groups next to the carbonyl of the thiazolidin ring represents useful targetsfor many organic reactions.

Keywords: thiazolidine; 5-ones; synthesis; reactions; applications

1. Introduction

Amino-4-thiazolidinones, or their tautomeric forms, named pseudothiohydantoin have encoun-tered a prominent place in heterocyclic chemistry, due to the high practical value of these com-pounds, and the broad spectrum of their biological activities. For example, 2,4-dioxothiazolidinederivatives are useful as hypoglycemics and hypolipidemic agents (1), and as intermediates inthe synthesis of antidiabetic drugs (2). Other compounds derived from 2-amino-4-thiazolidinonesare used as anticancer agents (3, 4), antiproliferative (5), antiinflammatory (6), cardiotonic (7),tuberculostatic (8, 9) and as dual 5-lipoxygenase and cyclooxygenase inhibitors with antiinflam-matory activity (10). Despite this versatile importance, 2-amino-4-thiazolidinones have not beenpreviously reviewed. The main purpose of this review is to present a survey of the chemistry of2-amino-4-thiazolidinones and provide useful and up-to-date data for medicinal chemists.

2. Synthesis of 2-amino-4-thiazolidinones

2.1. From α-halo carboxylic acid derivatives

2-Imino-4-thiazolidone HCl 1 was synthesized from ethyl chloroacetate and thiourea in 95%ethanol, neutralization in sodium acetate solution under reflux gave 2-imino-4-thiazolidone 2

*Corresponding author. Email: [email protected]

ISSN 1741-5993 print/ISSN 1741-6000 online© 2010 Taylor & FrancisDOI: 10.1080/17415993.2010.482155http://www.informaworld.com

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

316 M.A. Metwally et al.

(Scheme 1) (11–15).

H2N NH2

S

+ Cl CO2Et

95%EtOH

92%

N

S NH2

OHCl AcONa, water

84%

N

S NH2

O

1 2

NH

S NH

O

2

Scheme 1. Synthesis of 2-imino-4-thiazolidone.

5-Phenyl-2-amino-4-thiazolinone 3 has been synthesized from ethyl 2-chloro-2-phenylacetate,thiourea, and anhydrous sodium acetate in ethanol (Scheme 2) (16).

CO2EtPh

Cl

H2N

S

NH2

anhd. AcONa

EtOH S

N O

H2N

Ph3

Scheme 2. Route to 5-Phenyl-2-amino-4-thiazolinone.

Treatment of 2-chloroesters 4 with thiourea afforded 2-aminothiazolidin-4-ones 5 (Scheme 3)(17, 18).

Ar

Cl

CO2Methiourea

55–65%

N

S

O

H2NAr

Ar=[2,4-(OEt)2; 3,4-Me2; 4-Cl-3-MeO; 3,5-(MeO)2; 4-NHCOMe,3-MeO]phenyl

4 5

Scheme 3. Synthesis of 2-aminothiazolidin-4-ones.

Oxiranyl- and thiiranyl-substituted 2-imino-thiazolidine-4-ones 7 (Scheme 4) were preparedby refluxing thiourea with ethyl 2-chloro-3-(oxiran-2-yl)propanoate (6, X=O) or ethyl 2-chloro-3-(thiiran-2-yl)propanoate (6, X=S) (19).

HN

S

O

HN

XO

X

EtO

Cl

S

NH2H2N +

6 7

X = O, S

Scheme 4. Synthesis of substituted 2-imino-thiazolidine-4-ones.

2-[(2-Amino-4,5-dihydro-4-oxothiazol-5-yl)methyl]isothiourea 9 was obtained upon treatmentof methyl 2,3-dibromopropanoate 8 with thiourea (Scheme 5) (19).

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 317

OMeO

BrBr

thiourea

75%

N

SH2N

O

S

NH

NH2x 2HBr

98

Scheme 5. Synthesis of isothiourea.

Long-chain-substituted 2-imino-4-thiazolidinones and 2,4-thiazolidinediones 11 were pre-pared in about 80% yield by condensation of α-bromo-carboxylic acids 10 with thiourea(Scheme 6) (20).

Br

HO2C (CH2)n

Me thioureaNHS

O

NH

n(H2C)

Me

1011

n = 13, 15, 19

Scheme 6. Synthesis of 2-imino(oxa)-4-thiazolidinones.

Reaction of 2-bromo-3-aminopropionic acid 12 with thiourea in AcOH gave 53% thioureaderivative 13, which upon treatment with HBr gave 76% thiazoline derivative 14 (Scheme 7) (21).

OHO

NH2.HBrBr thiourea/AcOH

53%

OOH

.H2N SNH

NH2

HBr N

SH2N

O

NH2

76%

.2HBr

12 4131HBr

Scheme 7. Synthesis of thiazoline derivative.

5,5-Dialkyl-2-imino-4-thiazolidones 16 were prepared by condensing thiourea with dialkyl-substituted bromoacetic acids or the acid chlorides 15 (Scheme 8) (22).

X = OH, Cl; R1/R2 = Et/Et, Et/Pr, Et/iso-Bu, Et/sec-Bu, ethyl/1-methylbutyl

thiourea, AcONa, EtOH

N

SH2N

O

R1R2

6151

R2R1Br

H3CO

X CH3

Scheme 8. Synthesis of 5,5-dialkyl-2-imino-4-thiazolidones.

5,5-Disubstituted-2-imino-4-thiazolidones 18 were prepared by refluxing of α-bromoacidchlorides 17 with thiourea in glacial acetic acid (Scheme 9) (23).

OClEt

R Br

R = Et, Bu

thiourea, AcOH

77–84%

N

SH2N

O

R

Et

1718

Scheme 9. Synthesis of 5,5-disubstituted-2-imino-4-thiazolidones.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

318 M.A. Metwally et al.

Reaction of α-bromo acetyl bromide and thiourea afforded 2-amino-4-thiazolidinone 2 in 25%yield (Scheme 10) (24).

S

NH2H2N+

O

BrBr

80 °C, 3 h

25%

N

S NH2

O

2

Scheme 10. Route to 2-amino-4-thiazolidinone 2.

Refluxing ethyl 6-(benzamido)-2-bromohexanoate 19 with thiourea in ethanol gave theiminothiazolidinone 20 (Scheme 11) (25).

O

EtO

HN

O

Ph

Br

S

H2N NH2+

EtOH, reflux, 20 min

69% NH

O

Ph

HN

S

O

HN

19 20

Scheme 11. Synthesis of iminothiazolidinone.

The synthesis of 5-[4-(pyridylalkoxy)benzyl]-2,4-thiazolidinediones 22, which have hypo-glycemic and hypolipidemic activities, was described. Thus treatment of α-bromoesters21 with thiourea in the presence of sodium acetate afforded 2-amino-4-thiazolidinones 22(Scheme 12) (26).

Br

MeO2C

O

R2

N

R

R1

S

NH2H2N

AcONa O

R2

N

R

R1NS

O

H2N

21 22

Scheme 12. Synthesis of 2-amino-4-thiazolidinones.

α-Bromoester 23 underwent cyclocondensation with thiourea to give the imino compound 24(Scheme 13) (27).

N

Et

OBr

MeO2Cthiourea

N

Et

OS

N

O

H2N23 24

Scheme 13. Synthesis of imino compound.

Ethyl 2-chloro-3-[4-(2-methyl-2-phenylpropoxy)phenyl]propionate 25 was condensed withthiourea followed by hydrolysis using HCl to give 5-[4-(2-methyl-2-phenylpropoxy)benzyl]thiazolidine-2,4-dione 27 which possess hypoglycemic and hypolipidemic activities(Scheme 14) (28).

OEtOOMe

Ph

Me

Cl

thiourea OOMe

Ph

Me

S

N

NH2

H2O/HCl

sulfolane

OOMe

Ph

Me

S

NH

O

25 26 27

Scheme 14. Synthesis of (AL-321).

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 319

Reaction of α-haloester 28 with thiourea in the presence of sulfolane afforded 2-((4-((2-amino-4-oxo-4,5-dihydrothiazol-5-yl)methyl)phenoxy)methyl)-2,5,7,8-tetramethylchroman-6-ylacetate 29 and 2-((4-((2,4-dioxothiazolidin-5-yl)methyl)phenoxy)methyl)-2,5,7,8-tetramethyl-chroman-6-yl acetate 30 in 26% and 39% yields, respectively (Scheme 15) (29).

O

MeO

MeMe

Me

AcO

Cl

CO2Etthiourea,sulfolane O

Me

O

MeMe

Me

AcON

S NH2

O

26%

O

MeO

MeMe

Me

AcONH

S O

O

39%

2829

30

Scheme 15. Synthesis of tetramethylchroman-6-yl acetates.

2-Phenylbenzo[d]oxazol-5-amine 31 was converted to 2-amino-5-((2-phenylbenzo[d]oxazol-5-yl)methyl)thiazol-4(5H)-one 32, upon treatment with methyl acrylate followed by reaction withthiourea (Scheme 16) (30).

O

NPh

H2N1. methyl acrylate, HCl,CuO, Me2CO

2. thiourea, NaOAc

O

NPh

S

NO

NH2

31 32

Scheme 16. Synthesis of thiazol-4(5H )-one.

1-Carbaniloyl-2-oxo-3-pyrrolidinecarboxylates 33 were brominated to give 34. These under-went substitution and cyclization reactions with thiourea to give spiro[pyrrolidinethiazolidine] 35in 29–40% yields (Scheme 17) (31).

N

O

CO2EtO

NHR

Br2/CCl2 N

O

CO2EtO

NHR

Brthiourea/EtOH

29–40%

S

N

H2N

O

N

O O

NH

R

33 5343

Scheme 17. Synthesis of spiro[pyrrolidinethiazolidine].

Methyl 3-(7-(benzyloxy)quinolin-3-yl)-2-bromopropanoate 36 was cyclocondensed withthiourea in the presence of AcONa in ethanol under reflux for 7 h to give 86% 2-imino-5-[(7-benzyloxy-3-quinolyl)methyl]thiazolidin-4-one 37 which has an antihyperglycemic effect(Scheme 18) (32).

O

O

BrN

OPh

Me +

S

H2N NH2

EtOH, reflux, 7 h

86%

S N

ON

OPh

H2N

36 37

Scheme 18. Synthesis of thiazolidin-4-one.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

320 M.A. Metwally et al.

2-Aminothiazol-4(5H)-one 39 was prepared in 82% by reaction of α-chloro-ester 38 withthiourea in ethanol in the presence of sodium acetate (Scheme 19) (33).

NS

O

H2N

H2C

ON

Me

NCl

O

ON

Me

N

EtO

S

H2N NH2

AcONa/EtOH82%38 39

Scheme 19. Synthesis of 2-aminothiazol-4(5H )-one.

Thiazolidin-4-one 41 of hypoglycemic and hypolipidemic properties was prepared bytreatment of ethyl 2-chloro-3-(4-(2-phenylpropan-2-yloxy)phenyl)propanoate 40 with thiourea(Scheme 20) (34).

OPh

MeMeCl

CO2Et

thiourea

O

Ph

Me

MeS

N

O

H2N40 41

Scheme 20. Synthesis of thiazolidin-4-one.

Reaction between 2,9,10-tribromostearic acid 42 and thiourea afforded amino thiazolidinone43 (Scheme 21) (35).

(CH2)7

CH3O

HO

Br

Br

Br

thiourea (H2C)7CH3

O

Br Br

S

N NH2

42 43

Scheme 21. Synthesis of aminothiazolidinone.

Reaction of ethyl 4-bromo-5-oxo-3-phenyl-4,5-dihydroisoxazole-4-carboxylate 44 withthiourea afforded 2-amino-9-phenyl-7-oxa-1-thia-3,8-diazaspiro[4.4]nona-2,8-diene-4,6-dione45 (Scheme 22) (36).

NO

Ph

O

EtO2C Br

+

S

H2N NH2

KF/DMF

H2O71%

N

OS

N

O

NH2

Ph

O44 45

Scheme 22. Synthesis of 3,8-diazaspiro[4.4]nona-2,8-diene-4,6-dione.

α-Bromocarbonyl compound 46 reacted with thiourea to give thiazole derivative 47(Scheme 23) (37).

MeO2CCO2Me

Br

thiourea N

SH2N

O

CO2Me46 47

Scheme 23. Synthesis of thiazole derivative.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 321

2-Alkyl/arylimino-5-carbethoxythiazolidin-4-ones 49 have been synthesized by the interactionof thiocarbamides 48 with diethyl bromomalonate (Scheme 24) (38).

CO2Et

CO2EtBr+

S

NH2NH

R

HN

S

O

CO2Et

N

R

NH4OH / H2O

R = H, Me, Ph, 4-MeC6H4, 4-ClC6H4, 2-MeOC6H4

48 49

Scheme 24. Synthesis of 2-subs.imino-5-carbethoxythiazolidin-4-ones.

Condensation of diethyl 2-chloro-2-arylmethylmalonates 50 with thiourea afforded 2-aminothiazolidin-4-one derivatives 51 (Scheme 25) (17).

Ar O

O OEtOEt

Clthiourea N

SH2N

O

Ar20–30%

Ar = [2,4-diethoxy; 3,4-dimethoxy; 3-ethoxy,4-hydroxy; 3-chloro,4-hydroxy,5-methoxy]phenyl

50 51

Scheme 25. Synthesis of 2-aminothiazolidin-4-one derivatives.

Phthalic anhydride was allowed to react with 3-aminopropanoic acid to give 3-(1,3-dioxoisoindolin-2-yl)propanoic acid 52, which upon bromination followed by reaction withthiourea afforded 2-[(2-amino-4-oxo-4,5-dihydrothiazol-5-yl)methyl]isoindoline-1,3-dione 53.Hydrolysis of 53 in the presence of hydrobromic acid gave 2-amino-5-(aminomethyl)thiazol-4(5H)-one 54 (Scheme 26) (21).

O

O

O

+ H2N CO2H N

O

O

CO2H1.P, Br22.HBr/H2O

3. thiourea, AcOHN

O

O

NS

O

NH2

HBr, H2O, BuOH

C6H676%

H2N NS

O

NH2

5253

54

Scheme 26. Synthesis of 2-amino-5-(aminomethyl)thiazol-4(5H )-one.

Substituted S-(1-phenylpyrrolidin-2-on-3-yl)isothiuronium salts 56 in weakly basic mediaunderwent intramolecular recyclization reaction in which the γ -lactam cycle is split and athiazolidine cycle 57 is formed (Scheme 27) (39–41).

N

OR1

Br +

S

R3HN NHR2N

OR1

S NR2

NHR3

x HBr

weak base

HN

R1S

N

O

R2

NR3

R1 = NO2, MeO; R2, R3 = H, Me

5556

57

Scheme 27. Synthesis of thiazolidine.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

322 M.A. Metwally et al.

2.2. From chloroacetamides

Method for the removal of chloroacetyl groups is used for the preparation of 2-imino-4-thiazolidinone. Thus, 1-adamantyl methyl amine 58 was acylated with chloroacetyl chloride togive the corresponding amide 59, which was then treated with thiourea to give 2-aminothiazol-4(5H)-one 2 in addition to the recovering of the starting material as a by-product (Scheme 28) (42).

H2N ClCH2COCl NH

O

Clthiourea

58%

N

S NH2

O

58 59 2

+

H2N

Scheme 28. Pathway to 2-aminothiazol-4(5H )-one.

2-(2-(2-Chloroacetamido)acetamido)acetic acid 60 was treated with thiourea to give a mix-ture of 2-(2-aminoacetamido)acetic acid 61 and 2-aminothiazol-4(5H)-one 2. While 4-(2-chloroacetyl)piperazine-1-carbaldehyde 62 gave a mixture of piperazine-1-carbaldehyde 63 and2-aminothiazol-4(5H)-one 2 (Scheme 29) (43).

O

Cl

NH

O

HN CO2H thiourea

EtOHH2N

O

HN CO2H +

N

S NH2

O

N

N

O

Cl

CHO

thiourea

EtOH, water

N

S NH2

ON

NH

CHO

+

2

2

60 61

62 63

Scheme 29. Synthesis of 2-aminothiazol-4(5H )-one.

Condensation of 2-chloro-N ,N -dipropylacetamide 64 with thiourea in ethanol gave 2-amino-4-thiazolidinone 2 as a side product (Scheme 30) (44, 45).

O

ClN

thiourea/EtOHNH +

86%64

N

S NH2

O

2

Scheme 30. Synthesis of amino-4-thiazolidinone.

2-Imino-4-thiazolidinones 66 were prepared by reaction of thiourea derivatives with N -(2-chloroacetyl)tetrahydroisoquinoline 65 (Scheme 31) (46).

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 323

N

O

Cl

S

NH

NH

R2 R1+acetone, reflux N

S NR2

R1O

R1, R2 = H, alkyl, allyl, aryl65

66

Scheme 31. Synthesis of 2-Imino-4-thiazolidinones.

2.3. From cyanamide

Cyclocondensation of methyl 2-mercaptoacetate with cyanamide in methanol containing triethy-lamine afforded 2-amino-4-thiazolidinone 2 (Scheme 32) (47).

O

OMeHS + NH2NC

MeOH/Et3N N

S NH2

O

2

Scheme 32. Synthesis of 2-amino-4-thiazolidinone.

Heating thiolactic acid with cyanamide in water/ammonium hydroxide gave NH3 gas and aprecipitate of 82% 2-imino-4-oxo-5-methylthiazolidine 67 (Scheme 33) (48).

SH

CO2HMe

H2N CN

H2O/NH4OH82%

N

S

O

MeH2N

67

Scheme 33. Synthesis of 2-imino-4-oxo-5-methylthiazolidine.

2.4. From α,β-unsaturated carboxylic acids

Single-stage synthesis of 5-aroylmethyl-2-iminothiazolidin-4-ones 69 was achieved by reactionbetween β-aroylacrylic acids and thiourea. Thus, hydrochlorides, hydrobromides, and sulfates of69 were prepared in good yields by cyclocondensation of β-aroylacrylic acids 68 with thioureain the presence of the appropriate HX (Scheme 34) (49).

O

R CO2H +

S

H2N NH2

HX NH

S

O

NHR

Ox HX

R = Ph, p-MeC6H4, p-BrC6H4, p-ClC6H4, 5,6,7,8-tetrahydro-2-naphthyl; X= Br, Cl, HSO4

53–94%

68 69

Scheme 34. Synthesis of sulfates.

N -(maleoylamino)benzoic acids 70 were treated with thiourea derivatives to give thiazolidines71 (Scheme 35) (50).

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

324 M.A. Metwally et al.

HN

O CO2H

R

+

S

H2N NH

R1. AcONa/Ac2O

2. dioxane

HN

S

O

NR1

O

NH

R

R = 2-, 3-, or4-CO2H; R1 = Ph, H70

71

Scheme 35. Synthesis of thiazolidines.

Reactions of thiourea with, maleic acid, fumaric acid, methyl hydrogen fumarate, or its sodiumsalt give 2-imino-2,3,4,5-tetrahydro-1,3-thiazol-5-acetic acid 72, its methyl ester 73 was preparedby heating in methanol in the presence of concentrated HCl (Scheme 36) (51).

S

HN O

OHHN

OOHO

OH

O

OHO

HO

O

OHO

O

Me

O

ONaO

O

Me

S

NH2H2N

60–85%

MeOH/HCl

78%

S

HN O

OMeHN

72

73

Scheme 36. Synthesis of methyl 1,3-thiazol-5-acetic acid ester.

Dimethyl acetylene-dicarboxylic esters (DMADCs) have been treated with thiourea to give(E)-methyl 2-(2-amino-4-oxothiazol-5(4H)-ylidene)acetate 74 (Scheme 37) (52, 53).

CO2MeMeO2Cthiourea, MeOH

91%

N

S

O

H2NOMe

O

74

Scheme 37. Synthesis of (E)-methyl 2-(2-amino-4-oxothiazol-5(4H )-ylidene)acetate.

2.5. From anhydrides or imides

Maleic anhydrides 75 reacted with thiourea to give 1,3-thiazolidine 76 (Scheme 38) (51).

O O

O

R

thiourea N

S

O

H2N CO2H

R= H, Me, Ph R75 76

Scheme 38. Synthesis of 1,3-thiazolidine.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 325

Reaction of 2,3-dibromosuccinic anhydride or bromomaleic anhydride 77 and thiourea gave(E)-2-(2-amino-4-oxothiazol-5(4H)-ylidene)acetic acid 78 (Scheme 39) (54).

OO

O

BrR

thiourea

41% R= Br10% R= H

N

S

O

H2NCO2H

8777

Scheme 39. Synthesis of (E)-2-(2-amino-4-oxothiazol-5(4H )-ylidene)acetic acid.

1-o-Tolyl-1H -pyrrole-2,5-dione 79 was reacted with thiourea to give 2-(2-amino-4-oxo-4,5-dihydrothiazol-5-yl)-N -o-tolylacetamide 80 in good yield (Scheme 40) (51).

N OO

Me thiourea

81%N

S

NH2O

O

NH

Me

79 80

Scheme 40. Synthesis of 2-(2-amino-4-oxo-4,5-dihydrothiazol-5-yl)-N -O-tolylacetamide.

When a buffer solution of N -ethylmaleimide and thiourea was left for 2 days at room temper-ature, N -ethyl-α-(2-imino-4-oxothiazolidin-5-yl)acetamide 81 was obtained (Scheme 41) (55).

NO O

Et

thiourea, KH2PO4

water74%

N

S

OO

NH

EtH2N

81

Scheme 41. Synthesis of N -ethyl-α-(2-imino-4-oxothiazolidin-5-yl)acetamide.

N-substituted maleimides were condensed with thiourea derivatives to give 4-thiazolidonederivatives 82 in 46–71% yields (Scheme 42) (56).

N

R

OO +

O

NH

NH

R1 R2 N

S

R2

R1O O

NH

R

R= Et, Ph; R1=R2=H, R1= H, R2= Ph, R1=R2=Ph82

Scheme 42. Synthesis of 4-thiazolidone derivatives.

2.6. From epoxides

The nucleophilic ring opening of gem-dicyano epoxides by N-substituted or N,N′-disubstitutedthioureas leads to 2-imino-4-thiazolidinones, via postulated cyanocarbonyl intermediates. Thus,reaction of 2,2-dicyano-3-phenyloxirane 83 and diphenylthiourea gave 55% diphenylthiazolidi-none 84 (Scheme 43) (57).

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

326 M.A. Metwally et al.

O

PhNC

NC+

S

NH

NH

Ph Ph NS

OPh

NPh

Ph

55%

8384

Scheme 43. Synthesis of diphenylthiazolidinone.

Methyl E-2,3-epoxyhexadecanoate 85 reacted with thiourea to give aminotridecylthiazo-linecarboxylate 88 and tridecylmethylenethiazolinone 89 along with Z- and E-86 and 87(Scheme 44) (58).

(CH2)12Me

O

OO

Me

thiourea, DMFO

H3C (CH2)12

Me O

MeO(CH2)12

Me

30% 5%

+

N

S

O

H2N

CH

(CH2)12

MeN

SH2N

CH

(CH)12

CO2Me

32%18%

+

85

86 87

88 89

Me

Scheme 44. Synthesis of thiazolinecarboxylate and thiazolinone.

The reaction of Z-methylepoxysuccinic acid with thiourea gave 2-imino-4-oxothiazolidine 78(Scheme 45) (59).

O

HO2C CO2Hthiourea, MeOH

75%

N

S

O

H2NCO2H

78

Scheme 45. Synthesis of 2-imino-4-oxothiazolidine.

Ethylene oxide 90 and thiourea in MeOH, kept for 2 weeks at 30 ◦C, gave 2-amino-4-keto-5-isopropylidene-2-thiazoline 91 in 92% yield (Scheme 46) (60).

OMe

MeCO2Me

thiourea/MeOH

92%

N

S

O

H2N Me

Me90 91

Scheme 46. Synthesis of 2-amino-4-keto-5-isopropylidene-2-thiazoline.

Reactions of 3-chloropentafluoropropene-1,2-oxide with thiourea gave 2-amino-5-(chlorodi-fluoromethyl)-5-fluorothiazol-4(5H)-one 92 (Scheme 47) (61).

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 327

CF2Cl

OF

F

F +

S

H2N NH2

NaHCO3, NaOH

32%

N

S

OH2N

F

CF2Cl92

Scheme 47. Synthesis of 5-fluorothiazol-4(5H )-one.

2.7. From azoalkenes

Thiourea easily reacted under very mild conditions with some conjugated azoalkenes 93 in a one-pot reaction to give 39–88% of substituted thiazolinones 94 that frequently exhibited hydrazono-hydrazino tautomerism in the chain at position 5 of the ring. The chemical structure was confirmedby x-ray diffraction (Scheme 48) (62).

O

XRNN

CH3O

MeO +S

H2N NH2

MeOHN

S

O

H2N

N

Me

NH

O

XR

69–88%

XR= NH2, NHPh, OMe93

94

Scheme 48. Synthesis of substituted thiazolinones.

2.8. From isothiourea derivatives

2-Amino-4-oxy-5-aminomethyl(ethyl)thiazolines, which have radioprotective activity, were syn-thesized. 2-Amino-4-oxo-5-aminomethyl-2-thiazoline dihydrobromide (96, n = 0) and 2-amino-4-oxo-5-aminoethyl-2-thiazoline dihydrobromide (96, n = 1) were prepared by cyclization of S-(1-carboxy-2-aminoethyl)isothiourea (95, n = 0) and S-(1-carboxy-3-aminopropyl)isothiourea(95, n = 1), respectively (Scheme 49) (63).

SCO2H

n(H2C)

NHH2N

NH2

76-80%S

n(H2C)

NH2N

NH2

O

x 2HBrx 2HBr

95 96

Scheme 49. Synthesis of 2-thiazoline.

Synthesis of 2-substituted E-5-arylidenethiazolin-4-ones 98 from α,β-unsaturated acyl isoth-iocyanates was reported. Thus, propenoylthioureas 97 were oxidized with bromine in chloroformto E-5-arylidenethiazolin-4-ones 98 (Scheme 50) (64).

R

O

NH

S

NH2

S

NH2N

O

RBr2 /CHCl3

70–76%

R = Ph, 2-furyl 8979

Scheme 50. Synthesis of E-5-arylidenethiazolin-4-ones.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

328 M.A. Metwally et al.

2.9. From 2-(alkylthio)-2-thiazolin-4-ones

Reactions of E-5-(arylmethylene)-2-(alkylthio)-2-thiazolin-4-ones 99 with ammonium carbonatewere reported to give 100 while reaction with aromatic primary amine and secondary aminesafforded 101 and 102 (Scheme 51) (65).

N

S

O

MeS

R

(NH4)2CO3

N

S

O

H2N

R

ArNH

R = 2-Cl, 4-Cl, 2-MeO, 3-MeO, 4-MeO;Ar = H, 4-MeC

6H4, 4-MeOC

6H

4, PhCH2, 4-MeC

6H

4CH

2, 4-MeOC

6H

4CH

2; X= CH

2, O

2N

S

O

NH

R

Ar

X

NH

N

S

O

N

R

X

99

100

101

102

Scheme 51. Synthesis of E-5-(arylmethylene)-2-thiazolin-4-ones.

2.10. Miscellaneous methods

Reaction of ethyl thiocyanoacetate with aromatic aldehydes in the presence of thioureas affordedE-5-arylidene-2-imino-4-thiazolidinones 103 (Scheme 52) (66).

O

SOEtNC

1. thiourea

2.ArCHO, EtOH

N

S

O

H2N Ar

(p-Me, o-MeO, p-NMe2)C6H4103

Scheme 52. Synthesis of E-5-arylidene-2-imino-4-thiazolidinones.

2-Iminothiazolidin-4-one 104 derivative was prepared in two steps. 1,2-Diethoxybenzene wascondensed with ethyl (chlorocarbonyl)formate followed by thiourea (Scheme 53) (67).

OEt

OEt

1. ClCOCO2Et

2. thiourea

NS O

H2N

OEt

OEt

104

Scheme 53. Synthesis of 2-iminothiazolidin-4-one.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 329

The reaction of ethyl-, vinyl-(trichloromethyl)carbinols 105 with aqueous thiourea wasreported. Thus, 105 and alkaline thiourea gave 27–66% of the corresponding 2-imino-4-thiazolidinones 106 (Scheme 54) (68).

R

R1OH

CCl3

thiourea

R

R1

S NH

NHO

R = Et, CH=CH2, R1 = H; R = R1 = Me106105

Scheme 54. Synthesis of 2-imino-4-thiazolidinones.

Tetrachlorobenzodioxinone 107 reacted with ethanol to give ethyl 2-benzamido-2-(2,3,4,5-tetrachlorophenoxy)acetate 108 and reacted with thiourea to give N -(2-amino-4-oxo-4,5-dihydrothiazol-5-yl)benzamide 109 (Scheme 55) (69).

O

O

O

HN Ph

O

Cl

Cl

Cl

Cl

EtOH O

O

HN Ph

O

Cl

Cl

Cl

Cl

EtO

thiourea

AcOEt

N

SH2N

O

NH

O

Ph

107 108 109

Scheme 55. Synthesis of 4,5-dihydrothiazol-5-yl)benzamide.

N -(2-amino-4-oxo-4,5-dihydrothiazol-5-yl)benzamide 110 was prepared by reaction of 4-benzyl-2-phenyloxazol-5(4H)-one with chloroanil followed by thiourea (Scheme 56) (69).

N

O

Ph

O

PhN

SH2N

O

NH

O

Ph1. o-chloroanil2. EtOH

3. thiourea

110

Scheme 56. Synthesis of N -(4,5-dihydrothiazol-5-yl)benzamide.

5-(4-Hydroxybenzyl)-2,4-dioxothiazolidine derivatives, which are useful as hypoglycemic andhypolipidemic agents, were prepared. Thus 4-(2-(4-methyl-5-phenyloxazol-2-yl)ethoxy)aniline111 was reacted with methyl acrylate and thiourea to give aminothiazolidinone 112(Scheme 57) (1).

SN

O

OO

NPh

Me

NH2

NH2

OO

NPh

Me

CH

H2C CO2Me1.

2. thiourea

111112

Scheme 57. Synthesis of aminothiazolidinone.

2-Bromo-3-[4-[2-(5-ethyl-2-pyridyl)ethoxy]phenyl]propionitrile 113 was refluxed for 6 hwith thiourea and sodium acetate in ethanol to give 59% yield of 5-[4-[2-(5-ethyl-2-pyridyl)ethoxy]benzyl]-2-imino-4-thiazolidinone 114 (Scheme 58) (70).

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

330 M.A. Metwally et al.

CN

O

NEt

Br+

S

NH2H2NNaOAc/EtOH S

HN

O

HNO N

Et113

114

Scheme 58. Synthesis of 2-imino-4-thiazolidinone.

Vinyl 2-chloroacetate underwent nucleophilic displacement with thiourea to give 2-aminothiazol-4(5H)-one 2 (Scheme 59) (71).

CH2CH

O

O

Cl

thiourea, acetone

76%

N

S

O

NH2

2

Scheme 59. Reaction of vinyl 2-chloroacetate with thiourea.

The reaction of thiourea with oxalyl chloride permits the preparation of 2-aminothiazolidin-4-one 2 (Scheme 60) (72).

OCl

OCl

thiourea, acetone

92%

N

S NH2O

O

2

Scheme 60. Reaction of thiourea with oxalyl chloride.

The synthesis of substituted 5-(2-hydroxyethyl)-2-phenylimino-1,3-thiazolidin-4-ones 115is described, starting from phenylthioureas and 3-bromotetrahydrofuran-2-one under mildconditions (Scheme 61) (73).

OO

Br

+

S

NH

H2NAr

S

HN O

NAr OH

115

Scheme 61. Synthesis of 1,3-thiazolidin-4-ones.

3. Imino-amino tautomerism

Ramsh et al. (74) reported that 2-imino-4-thiazolinone and its 2-aryl derivatives 116 exist in thecrystal state as the amino tautomers (Scheme 62).

N

S

O

NH

R

R = H, MeO, NO2, Me2N, Br

HN

S

O

N

R

116 116'

Scheme 62. Tautomerization of 2-imino-4-thiazolinone.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 331

4. Reactions

4.1. Ring cleavage

2-Imino-4-thiazolidinone 2 was cleaved with aqueous sodium hydroxide. Treatment of the prod-uct with barium chloride, chloroacetic acid, or 1,2-dichloroethane gave barium 2-sulfidoacetate117, 2,2’-thiodiacetic acid 118, and 2,2’-(ethane-1,2-diylbis(sulfanediyl))diacetic acid 119,respectively (Scheme 63) (75).

S

NH

O

NHNaOH

BaCl2 OO Ba

S

95.2%

ClCH2CO2H SCO2H

CO2H

ClCH2CH2ClS S

CO2H CO2H

84%

96%

117

118

119

Scheme 63. Reactivity of 2 towards barium chloride, chloroacetic acid, and 1,2-dichloroethane.

2-Amino-5,5-dimethylthiazol-4(5H)-one 120 underwent ring cleavage when heated withaqueous sulfuric acid to give 2-mercapto-2-methylpropanoic acid 121 (Scheme 64) (76).

N

S

O

Me

Me

H2N H2SO4/H2O

34%CO2HMe

SH

Me

120 121

Scheme 64. Hydrolysis of 2-amino-5,5-dimethylthiazol-4(5H )-one.

4.2. Hydrolysis

2-Amino-5-ethylidenethiazol-4(5H)-ones underwent acid hydrolysis to give thiazolidin-2,4-dione which showed diverse biological activities (1, 11, 68, 77–88).

4.3. Acylation

Thiazolidinone 2 was acylated with methyl chloroformate to yield methyl 4,5-dihydro-4-oxothiazol-2-ylcarbamate 122 (Scheme 65) (89).

N

S NH2

O Cl OMe

O

NaOH/H2O

N

S NH

OO

OMe

1222

Scheme 65. Reaction of 2 with methyl chloroformate.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

332 M.A. Metwally et al.

Acetylation of 2-aminothiazolidin-4-one 76 with acetic anhydride gave N -acetyl derivative 123(Scheme 66) (90).

N

S

O

H2N CO2H

R

Ac2O N

S

O

HN

R

CO2HMe

O

R= H, Me, Ph

76 123

Scheme 66. Acetylation of 2-aminothiazolidin-4-one.

Acetyliminothiazolidinones 125 were prepared in high yields by acetylation of 124, which existin tautomeric equilibrium with 2-amino-4-hydroxythiazolines 125 (Scheme 67) (91).

N

S

OH2N

R

Ac2ON

S

OHN

R

H3CO

HN

S

O

N

R

H3C

O

R = H, Cl, Me, MeO, NO2

124 125 125'

Scheme 67. Formation of 2-amino-4-hydroxythiazolines.

Acetylation or benzoylation of pseudothiohydantoin gave 126 and 127. The reaction of 127with the corresponding aldehyde gave 128 that had tuberculostatic activity (Scheme 68) (8, 9).

S

O

NH2

Ac2O93%

S

O

NH

O

CH3

PhCOCl90%

S

O

NH

O

Ph

R1CHO

S

O

NH

O

RR1

R = Ac, R1 = Ph, p-Me2NC6H4, p-Et2NC6H4, p-[(ClCH2CH2)2N]C6H4;R = Bz, R1 = Ph, m-O2NC6H4, p-O2NC6H4, p-Me2NC6H4, p-[(ClCH2CH2)2N]C6H4, 2-furyl

2

126127

128

Scheme 68. Acylation of pseudothiohydantoin.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 333

4.4. Alkylation

2-Amino-5-(2-hydroxypropan-2-yl)thiazol-4(5H)-one 129 was prepared in 82% yield by alkyla-tion of 2-amino-4-thiazolidinone 2 with acetone (Scheme 69) (92).

N

S NH2

OMe2CO/Et2O

82%

N

S NH2

O

Me

Me

OH

2 129

Scheme 69. Alkylation of 2 with acetone.

Methylation of 2-aminothiazol-4(5H)-one has been reported. Treatment of 2-amino-4-thiazolidinone 2 with sodium methoxide gave 130 which underwent alkylation with methyl iodideor dimethyl sulfate to give a mixture of 131 and 132 (Scheme 70) (93).

S

NO

NH2

S

NNaO

NH

MeI or S

NO

NR

R1

S

NO

NR1

R+

MeONa

R = H, R1 = Me; R = R1 = Me

(Me)2SO4

2 130 131 132

Scheme 70. Methylation of 2-amino-4-thiazolidinone 2 .

4.5. Bromination

Bromination of 2-alkyl/arylimino-5-carbethoxythiazolidin-4-ones 49 afforded 5-bromo deriva-tives 133, which reacted with thiocarbamides to give 2-alkyl/arylimino-5-carbethoxy-5-isothiocarbamidothiazolidin-4-ones 134 and 2,7-dialkyl/arylimino-3,8-diaza-1,6-dithiaspiro[4.4]nonane-4,9-diones 135 (Scheme 71) (94).

HN

S

O

CO2Et

N

R

Br2/AcOHHN

S

O

CO2Et

N

R Br

S

NH2NH

R2 HN

S

O

CO2Et

N

R S

N

NH2

R2 HN

S

O

NR

NH

S

O

NR2+

R = H, Me, Ph, 4-MeC6H4, 4-Cl-C6H4, 2-MeO-C6H4

49 531431331

Scheme 71. Bromination of 49.

4.6. Reaction with formalin

2-Amino-5,5-bis(hydroxymethyl)-4-thiazolinone 136 was synthesized in 50% yield by treat-ing pseudothiohydantoin 2 with formalin in the presence of catalytic amount of triethylamine(Scheme 72) (95).

S

NO

OHOH

H2NN

S NH2

OHCHO/Et3N/H2O

50%

6312

Scheme 72. Formation of 2-Amino-5,5-bis(hydroxymethyl)-4-thiazolinone.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

334 M.A. Metwally et al.

2-[(Hydroxymethyl)amino]-4-thiazolinone 137 was prepared by reaction of 2-aminothiazol-4(5H)-one 2 with formalin (Scheme 73) (96).

N

S

O

NH2HCHO/EtOH N

SO

HN OH

2 137

Scheme 73. Formation of 2-[(Hydroxymethyl)amino]-4-thiazolinone 137.

The hydroxymethylation of 2-imino-5-arylidenethiazolidin-4-ones 138 has been reported togive (E)-5-arylidene-2-(hydroxymethylamino)thiazol-4(5H)-ones 139 (Scheme 74) (97, 98).

HN

S

OHN

R HCHO N

S

O

HN

RHO

R = H, Cl, NO2, OMe, Br, F

138 139

Scheme 74. Formation of (E)-5-arylidene-2-(hydroxymethylamino)thiazol-4(5H )-ones.

4.7. Knoevenagel condensation

5-Arylidene-2-imino-4-thiazolidinone derivatives 140 were synthesized, in 10 min with 63–91%yields, by the cross-aldol condensation of aromatic aldehydes with 2-amino-4-thiazolidinone 2in sodium acetate/acetic acid under microwave irradition (Scheme 75) (99).

N

S NH2

O

+ ArCHO ACOH/AcONa

MW, 10 min, 170°C63–91%

N

S NH2

O

Ar

2 140

Scheme 75. Formation of 5-Arylidene-2-imino-4-thiazolidinone derivatives.

5-[(3,5-Dimethoxyphenyl)methylene]-2-imino-4-thiazolidinone 141 as an anti-inflammatoryagent was synthesized from 3,5-dimethoxybenzaldehyde and 2′ via Knoevenagel condensation(Scheme 76) (6).

S

NHO

NH

OMe

MeO

NH

S NH

O

+

CHO

OMeMeO

2C' 141

Scheme 76. Formation of 5-[(3,5-dimethoxyphenyl)methylene]-2-imino-4-thiazolidinone.

5-[(4-Hydroxy)-benzylidene]thiazolidine-2,4-dione 142 (an intermediate in synthesis of antidi-abetic agents) was prepared from thiourea in four steps with overall yield of 40% (Scheme 77) (2).

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 335

S

HN

O

O OH

S

H2N NH2

1. thiourea

2. 4-OH-C6H4CHO3. H3O+

40% 142

Scheme 77. Formation of 5-[(4-Hydroxy)-benzylidene]thiazolidine-2,4-dione 142 .

Treatment of 2-amino-4-thiazolidinone 2 with 2,5-dimethoxybenzaldehyde afforded thepotential cardiotonic Knoevenagel product 143 in 70% yield (Scheme 78) (7).

N

S NH2

O

CHO

OMe

OMe

+

N

S

O

H2N OMe

MeO143

2

Scheme 78. Formation of Knoevenagel product 143.

(5Z)-5-(3,5-Di-tert-butyl-4-hydroxybenzylidene)-2-aminothiazol-4(5H)-one 144 was pre-pared by Knoevenagel condensation of 2-amino-4-thiazolidinone 2 with 2,6-di-tert-butyl-4-formylphenol (Scheme 79) (100).

N

S NH2

OOHC

OH

Bu-t

Bu-t

+AcOH/AcONa

reflux, 19 h38%

N

S

NH2

O

OH

Bu-t

Bu-t

2

144

Scheme 79. Reaction of 2 with 2,6-di-tert-butyl-4-formylphenol.

Quinazolin-4(3)-ones bearing different 2-amino-4-thiazolidinone as potential antiinflammatoryagent were reported. Thus the Knoevenagel condensation of 2-amino-4-thiazolidinone 2 with3,4-dihydro-4-oxo-3-phenylquinoline-2-carbaldehyde led to (Z)-2-amino-5-((4-oxo-3-phenyl-3,4-dihydroquinolin-2-yl)methylene)thiazol-4(5H)-one 145 (Scheme 80) (101).

N CHO

O

Ph

N

S NH2

O

+EtOH/AcONa

57%

N

O

Ph

NS

NH2

O

2 145

Scheme 80. Reaction of 2 with 3,4-dihydro-4-oxo-3-phenylquinoline-2-carbaldehyde.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

336 M.A. Metwally et al.

Chowdhry et al. (102) reported the synthesis of bidentate ligand (Z)-2-amino-5-(pyridin-2-ylmethylene)thiazol-4(5H)-one 146 by condensation of 2-aminothiazol-4(5H)-one 2 withpicolinaldehyde (Scheme 81).

N

S NH2

ON

CHO

+1) Na2CO3, glycine

2) H2O90%

N

SNH2

O

N

2146

Scheme 81. Reaction of 2 with picolinaldehyde.

The arylidene derivatives 147 were also prepared through reaction of 2 with aromatic alde-hydes. 147 Reacted with hydrazine hydrate and urea to give thiazolodihydropyrazole 148 andthiazolotetrahydropyrimidone 149, respectively (Scheme 82) (102).

N

S NH2

O

+N

S

H2N

O

N2H4/EtOH

68%

N

SH2N

NHHNCHO

OMe

OMe

MeO

OMe

OMe

OMe

OMe

OMe

OMe

H2N NH2

O

EtOH/Na78%

HN

NH

N

S

O

NH2

OMe

OMeMeO

R = Ph, 4-ClC6H4, 3,4,5-(MeO)3C6H2

2 147148

149

Scheme 82. Formation of thiazolodihydropyrazole and thiazolotetrahydropyrimidone.

Substituted 1,5-naphthyridine thiazolinones 151 reported to have antiproliferative and anti-cancer activities. 6-Formyl-4-isopropoxy-1,5-naphthyridine-3-carbonitrile 150 was condensedwith 2-amino-4-thiazolidinone 2 to afford the Knoevenagel product 151 in 23% yield(Scheme 83) (5).

N

N

O

NC CHO N

S NH2

O

+AcONa/AcOH

23%

N

N

O

NC

N

S NH2

O

150 2 151

Scheme 83. Formation of 1,5-naphthyridine thiazolinones.

(Z)-5-[[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]-methylene]-2-imino-4-thiazolidinone153 is useful as dual 5-lipoxygenase and cyclooxygenase inhibitors with antiinflammatoryactivity, and was prepared in 38% yield by reaction of 2-imino-4-thiazolidinone 2 with3,5-di-tert-butyl-4-hydroxybenzaldehyde 152 (Scheme 84) (10).

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 337

S

HN

O

HN

OH(H3C)3C

C(CH3)3

CHO

OH

(H3C)3C C(CH3)3

+S

HN

O

HN

AcOH/AcOH

ref lux, 48 h38%

152 2 153

Scheme 84. Reaction of 2 with 3,5-di-tert-butyl-4-hydroxybenzaldehyde.

Quinolinyl-methylene-thiazolinones have been reported as potent and selective cyclin-dependent kinase 1 (CDK1) inhibitors. Thus, the Knoevenagel condensation of 2-amino-4-thiazolidinone 2 with quinoline-6-carbaldehyde derivatives 154 led (Z)-2-amino-5-((2,4-dialkylquinolin-6-yl)methylene)thiazol-4(5H)-one 155 (Scheme 85) (103, 104).

N

SNH2

O N

OHC

+AcONa/AcOH

130°C, 12h

NS

NH2

O

N

R2

R1

R1

R2

R1=R2 = H; R1 =NHAc, R2= OEt

2154

155

Scheme 85. Reaction of 2 with quinoline-6-carbaldehyde derivatives.

Quinazolinylmethylene thiazolinones as CDK1 inhibitors were prepared. Thus, the Kno-evenagel condensation of 2-amino-4-thiazolidinone 2 with 4-ethoxyquinazolin-6-carbaldehyde156 afforded stereo-selectively, (5Z)-2-amino-5-((4-ethoxyquinazolin-6-yl)methylene)thiazol-4(5H)-one 157 (Scheme 86) (105).

N

SNH2

O

N

N

OHC

OEt

+ NS

H2N

O

N

N

OEt

AcOH/AcOH

ref lux, 12h

2156

157

Scheme 86. Reaction of 2 with 4-ethoxyquinazoline-6-carbaldehyde.

Stereoselective synthesis of ethyl 3-[(9E)-(2-amino-4-oxothiazol-5(4H)-ylidene)methyl]-1H -indole-2-carboxylate 159 was achieved in 67% yield by condensation of ethyl 3-formyl-1H -indole-2-carboxylate 158 with 2-amino-4-thiazolidinone 2 under Knoevenagel conditions(Scheme 87) (106).

N

S NH2

OHN

CHO

CO2Et+

AcOH/AcONa

ref lux, 8.5 h67%

HN

CO2EtN

S NH2

O

2 158 159

Scheme 87. Reaction of ethyl 3-formyl-1H -indole-2-carboxylate.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

338 M.A. Metwally et al.

Thiazolone-based sulfonamides were prepared as inhibitors of nonstructural protein5B polymerase. Thus, 4-methylbenzene-1-sulfonyl chloride was condensed with 2-amino-4-thiazolidinone 2 to afford sulfonamide 160, that condensed with (E)-3-(pyridin-2-yl)acrylaldehyde under the Knoevenagel condition to give compound 161 (Scheme 88) (14).

N

SNH2

O

S OO

Cl

Me

+Et3N/THF

80°C, 1h

N

S

HN

O S

O

OMe

N H

HCHO

NS

HN

O

S

O

O

MeN

H

H

H

2 160

161

Scheme 88. Reaction of 2 with 4-methylbenzene-1-sulfonyl chloride.

(5E)-5-((1H -Pyrrolo[2,3-b]pyridin-3-yl)methylene)-2-aminothiazol-4(5H)-one 163 was pre-pared in 82% yield as anti-cancer agent by the Knoevenagel condensation of 2-amino-4-thiazolidinone 2 with 1H -pyrrolo[2,3-b]pyridine-3-carbaldehyde 162 (Scheme 89) (3).

N

S NH2

ON

HN

CHO

+AcONa/AcOH

reflux, 12h82%

N HN

N

SNH2

O

2 361261

Scheme 89. Reaction of 2 with 1H -pyrrolo[2,3-b]pyridine-3-carbaldehyde.

Heterocyclic arylidene aryl ether compounds are useful for treating diseases or disorders medi-ated through modulation of estrogen-related alpha receptors. The Knoevenagel condensation of 2-amino-4-thiazolidinone 2 with 4-(4-(trifluoromethyl)-2-nitrophenoxy)-3-methoxybenzaldehyde164 afforded (5Z)-5-(4-(4-(trifluoromethyl)-2-nitrophenoxy)-3-methoxybenzylidene)-2-amino-thiazol-4(5H)-one 165 (Scheme 90) (107).

N

S NH2

O

+

O

OMe

NO2

OHC CF3

EtOH/NH4OAc

ref lux, 24h98%

N

S NH2

O

O

MeO

NO2

F3C

2 164165

Scheme 90. Reaction of 2 with 4-(4-(trifluoromethyl)-2-nitrophenoxy)-3-methoxybenzaldehyde.

Thiazolinone 3,4-disubstituted quinolines as CDK1 inhibitors for treating cancer was reported.6-((15E)-(2-Amino-4-oxothiazol-5(4H)-ylidene)methyl)-4-ethoxyquinoline-3-carbonitrile 167was prepared by reaction of 2-amino-4-thiazolidinone 2 with 4-ethoxy-6-formylquinoline-3-carbonitrile 166 (Scheme 91) (4).

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 339

N

S NH2

O

+

N

CN

OEt

OHC

AcOH/AcONa

110°C, 4h47%

NCN

OEtN

SH2N

O

2 166 167

Scheme 91. Reaction of 2 with 4-ethoxy-6-formylquinoline-3-carbonitrile.

The Knoevenagel condensation between 4-(1,4-dioxa-8-azaspiro[4.5]dec-8-yl)benzaldehyde168 and pseudothiohydantoin 2 afforded (Z)-5-(4-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)benzy-lidene)-2-aminothiazol-4(5H)-one 169 in 94% yield as potent and selective human β3 agonists(Scheme 92) (108, 109).

OHCO

ON

N

S NH2

O

+EtOH/piperidine

94%

NS

H2N

OCHO

ON

8612 169

Scheme 92. Reaction of 2 with 4-(1,4-dioxa-8-azaspiro[4.5]dec-8-yl)benzaldehyde.

Synthesis and in vitro activity of rhodanine-based phosphodiesterase-4 (PDE4) inhibitorshas been described. Knoevenagel condensation of 2-imino-4-thiazolidinone 2 with 3-(cyclopentyloxy)-4-methoxybenzaldehyde 170 in sodium acetate/acetic acid under reflux-ing conditions for 4 h afforded 5-(3-(cyclopentyloxy)-4-methoxybenzylidene)-2-aminothiazol-4(5H)-one 171 (Scheme 93) (110).

O

OMe

OHC N

S

O

NH2

+AcOH/AcONa

reflux, 4h

NSO

NH2

O

MeO2170 171

Scheme 93. Reaction of 2 with 3-(cyclopentyloxy)-4-methoxybenzaldehyde.

Condensation of isatin derivatives 172 with 2-aminothiazol-4(5H)-one 2 in refluxing ethanolafforded isatylidene derivatives 173 in good yields, and showed promising antibacterial activity(Scheme 94) (111, 112).

NH

O

OR1

R2

+N

S NH2

OEtOH

NH

O

R1

R2

N

S

NH2

O

R1=R2=H, Me; R1= H, R2=Me

2172 173

Scheme 94. Reaction of 2 with isatin derivatives.

A facile synthesis of thiazolidinone 175 was described by the Knoevenagel-type condensation ofbenzo[b]thiophene-2,3-dione 174 (commonly known as thioisatin) with 2-amino-4-thiazolidinone2 (Scheme 95) (113).

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

340 M.A. Metwally et al.

N

S NH2

OS

O

O+EtOH, reflux, 8h

72%

N

SNH2

OS

O

2 174 175

Scheme 95. Condensation of 2 with benzo[b]thiophene-2,3-dione.

The synthesis of acenaphthylidene derivative 177 involved the Knoevenagel-type condensationof 2-amino-thiazolidin-4-one 2 with acenaphthylene-1,2-dione 176 (Scheme 96) (114).

OO

N

S

O

NH2

+EtOH

reflux, 6 h87%

O

N

S

O

NH2

176177

Scheme 96. Condensation of 2 with acenaphthylene-1,2-dione.

Condensation of 2-imino-4-thiazolidinone 2 with 1,4-cyclohexanedione gave 5,5′-(1,4-cyclohexanediylidene)bis[2-imino-4-thiazolidinone] 178 (Scheme 97) (112).

HN

S

O

NH

O O

EtOH, reflux, 2 h45%

NH

S

O

NH

HN

S

O

HN

2' 178

Scheme 97. Condensation of 2 with 1,4-cyclohexanedione.

(E)-ethyl 5-amino-2-benzylidene-3-oxo-7-phenyl-3,7-dihydro-2H -thiazolo[3,2-a]pyrimi-dine-6-carboxylate 181 was obtained by reaction of (5Z)-2-amino-5-benzylidenethiazol-4(5H)-one 179 with ethyl 2-cyano-3-phenylacrylate 180 (Scheme 98) (115).

N

S

O

Ph

H2N +HC

CNEtO2C

PhEtOH/Et3N

N

N

NH2

EtO2C

Ph S

O

Ph

179 180181

Scheme 98. Formation of thiazolo[3,2-a]pyrimidine derivatives.

(E)-2-benzylidene-3,5-dioxo-7-phenyl-3,5-dihydro-2H -thiazolo[3,2-a]pyrimidine-6-carbon-itrile 183 was prepared by reaction of ethyl 2-cyano-3-oxo-3-phenylpropanoate 182 with2-amino-5-benzylidenethiazol-4(5H)-one 179 in a mixture of acetic and hydrochloric acid(Scheme 99) (116).

N

SH2N

O

Ph+ CN

CO2Et

O

Ph HCl/AcOH

60%N

N S

O

Ph

O

Ph

NC

179 182 183

Scheme 99. Reaction between 179 and ethyl 2-cyano-3-oxo-3-phenylpropanoate.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 341

4.8. Mannich reactions

The Mannich reaction of aminothiazolidinone 2 with aqueous formaldehyde and diphenylaminegave 44% 2-((diphenylamino)methylamino)thiazol-4(5H)-one 184 (Scheme 100) (117).

N

S NH2

OHCHO/Ph2NH

44%

N

S NH

O

NPh

Ph

2 184

Scheme 100. Formation of 2-((diphenylamino)methylamino)thiazol-4(5H)-one.

The aminomethylation of 2-iminothiazolidin-4-ones by aqueous formaldehyde and pri-mary amines was studied. Thiazolotriazines 186 were prepared in 68–91% yields by theaminomethylation of iminothiazolidinones 185 with primary amines and aqueous formaldehyde(Scheme 101) (118).

N

S

O

H2NR1

R2

RNH2/CH2O

68–91%

N

S

O

N R1

R2

N

R

R = Ph, 2-naphthyl; R1=H, R2=Et, Ph

185 186

Scheme 101. Formation of thiazolotriazines.

Similarly, iminothiazolidinone 2 gave 22 and 28% thiazolotriazines 187 with t-butylamine andbenzylamine (Scheme 102) (118).

HN

SHN

ORNH2/CH2O

22-28%

N

SN

O

CH2OHN

R

R = Me3C, PhCH2

2' 187

Scheme 102. Mannich reaction with t-butylamine and benzylamine.

Thiazolotriazinones 189 were prepared in 42–90% yields by Mannich reactions of 188 withformaldehyde and primary amines (Scheme 103) (119).

R1 = R2 = H, R3 = Me, Ph, m-, p-tolyl, p-MeOC6H4, m-ClC6H4, m-BrC6H4, m-O2NC6H4, 2-C10H7;R1 = H, R2 = Me,R3 = 2-C10H7; R1R2 = PhCH, p-ClC6H4CH, p-FC6H4CH, p-BrC6H4CH, R3 = Me; R1R2 = PhCH, R3 = Ph

HN

S

O

HN

R1

R2

R3NH2, HCHO N

S

O

N

R1

R2

NR3

188 189

Scheme 103. Formation of thiazolotriazinones.

Additionally (Z)-3-((2-iodophenylamino)methyl)-2-((2-iodophenylamino)methylaimino)thiazolidin-4-one 190 was obtained in 32% yield through the aminomethylation of 2 with2-iodoaniline (Scheme 104) (118).

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

342 M.A. Metwally et al.

N

SH2N

O

CH2O

32%

NH2

I

+

NS

N

O

NH HN

I I2190

Scheme 104. Mannich reaction with 2-iodoaniline.

The aminomethylation of arylidene 2-aminothiazolidin-4-ones 138 by aqueous formaldehydeand aniline afforded thiazolotriazines 191 (Scheme 105) (118).

N

S

O

H2N

R

HCHO, PhNH2

76–90%

NS

O

NRNPh

R=Br, Cl138

191

Scheme 105. Synthesis of thiazolotriazines.

The aminomethylation of 2-imino-5-arylidenethiazolidin-4-ones 138 have been reported togive (E)-5-benzylidene-2-(piperidin-1-ylmethylamino)thiazol-4(5H)-ones 192 (Scheme 106)(96, 97).

HN

S

OHN

RHCHO, piperidine N

S

O

HNRN

R = H, Cl, NO2, OMe, Br, F

138 192

Scheme 106. Aminomethylation of 2-imino-5-arylidenethiazolidin-4-ones.

4.9. Reaction with phenylisocyanate derivatives

Thiazolidone 2 reacted with phenylisothiocyanate to give 2-imino-5-phenylaminothiocar-boxamido-4-thiazolidone 193 which was converted to a thiazolopyrazole 194, a thiazolopyridine195, and a (phenylamino)thiazoleamine 196 by reaction with hydrazine hydrate, malononitrile,and aniline (Scheme 107) (120).

N

S NH2

OPhNCS, EtOH

30%

N

S NH2

O

S

PhHN N2H4/EtOH

40%

N

S

NN

H2N NHPh

CH2(CN)2, Et3N, EtOH

60%

N S

NNH2

S

Ph

CN

H2NPhNH2 / EtOH

56%

N

SH2N

S

NHPh

NHPh

2 193194

195196

Scheme 107. Reaction of 2 with phenylisothiocyanate.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 343

2-Amino-4-thiazolidinone 2 was reacted with benzoyl isothiocyanate in refluxing acetoni-trile to give N -(4-oxo-4,5-dihydrothiazol-2-ylcarbamothioyl)benzamide 197 with 55% yield(Scheme 108) (121).

N

S NH2

OO

NCSPh +MeCN, reflux, 3h

55%

N

S NH

O S

NH

O

Ph

2 197

Scheme 108. Reaction of 2 with benzoyl isothiocyanate.

2-Aminothiazolidinone 198 reacted with benzoyl isocyanate and sulfurisocyanatidic chlorideto give thiazolyl ureas 199 and thioureas 200, respectively (Scheme 109) (122).

N

S

O

R1H2N

O

Ph NCO

toluene

N

S

O

R1

NH

O

NH

O

Ph

R2

R2

ClSO2

NCO

THF/H2O

N

S

O

R1

NH

R2

O

H2N

R1=H, R2 = Me; R1= H, R2= CO2Et; R1= Me, R2= CO2Et

198199200

Scheme 109. Formation of thiazolyl ureas and thioureas.

4.10. Reaction with hydrazines

The reaction of 49 with hydrazines afforded 2-arylimino-2,3,4,5-tetrahydropyrazolo[3,4-d]-thiazol-6(H)-ones 201. Bromination of 49 afforded 5-bromo derivatives 202, which upon reactionwith thiocarbamides gave 2-alkyl/arylimino-5-carbethoxy-5-isothiocarbamidothiazolidin-4-ones203 and 2,7-dialkyl/arylimino-3,8-diaza-1,6-dithiaspiro[4.4]nonane-4,9-diones 204 (Scheme 110)(38).

HN

S

O

CO2Et

NR

R1NHNH2

HN

S

R1N

NR

O

NH

Br2/AcOHHN

S

O

CO2Et

NR Br

S

NH2NH

R2 HN

S

O

CO2Et

NR S

N

NH2

R2

HN

S

O

NR

NH

S

O

NR2+

R = H, Me, Ph, 4-MeC6H4, 4-ClC6H4, 2-MeOC6H4

49201

202 203 204

Scheme 110. Reaction with hydrazines and bromine.

Pyrazolinothiazolidin-2-ones 206 were prepared from rhodamine benzylidene derivatives205 by condensation with phenylhydrazines, some of them showed antifungal activity(Scheme 111) (123).

4.11. Formation of enaminones

The enaminones of 2-aminothiazol-4(5H)-ones 207 and 208 were prepared by reac-tion of 2 with methoxy-N ,N ,N ′,N ′-tetramethylmethanediamine or t-butoxy-N ,N ,N ′,N ′-tetramethylmethanediamine in aceteonitrile. Thiooxoaplysinopsin derivative 209 was prepared

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

344 M.A. Metwally et al.

N

S

O

RH2N

+ R1NHNH2

AcONa/AcOH

NH

S

N

R

O N R1

R = Ph, 4-ClC6H4, 4-MeOC6H4, 4-O2NC6H4; R1 = Ph, 4-O2NC6H4

205 206

Scheme 111. Formation of Pyrazolinothiazolidin-2-ones.

by reaction of N -substituted thiohydantoin 208, Bredereck’s reagent, and 2-methylindole(Scheme 112) (124, 125).

N

S NH2

O

NMe2

OBu-tMe2N

N

S NMe2

O

NMe2

MeCN

NMe2

OMeMe2N

MeCN

N

S N

O

Me2N

NMe2

HN

H3C

HBr/AcOH

N

S NMe2

O

NH

CH3

2

207208

209

Scheme 112. Formation of enaminones.

4.12. Different reactions

Ketoketene thioacetals, which were formed by treatment of 2-amino-1-propene-1,1,3-tricarbonitrile 210 with carbondisulphide or with phenylisothiocyanate, were allowed toreact with 2-aminothiazol-4(5H)-one 2 under phase transfer catalytic (PTC) conditions toafford thiopyrano[2,3-b]pyridine or pyrido[2,3-b]pyridine derivatives 211 and 212, respectively(Scheme 113) (126).

CN

CN

H2N

NC

N

S NH2

O

+CS2, Bu4NBrK2CO3, dioxane75%

S

N

S

CN

H2N NH2

S

H2N

PhNCS,Bu4NBrK2CO3, dioxane73%

N

N

S

CN

H2N NH2

S

H2N

Ph

2209

210211

Scheme 113. Synthesis of pyrido[2,3-b]pyridine.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 345

Thiazolo[3,2-a]pyrimidine 212 was prepared in one-pot reaction from 2-imino-4-thiazolidinone 2 and malononitrile (Scheme 114) (116).

N

SNH2

O

+CN

CN

EtOH/Et3N N

N

O

S

NH2

HN

2 212

Scheme 114. Reaction of 2 with malononitrile.

Dispiro[thiazolidine-2,2′-[1,3]diazetidine-4′,2"-thiazolidine]-5,5"-diacetic acid 213 was pre-pared in 60% yield by reaction of 3,4-dichlorocinnamic acid with pseudothiohydantoin 2(Scheme 115) (127).

O

CO2H

Cl

Cl

S

NH

HN

NH

S

HNO

O CO2H

CO2HO

OCl

ClCl

Cl

+N

S NH2

Otoluene

60%

2

213

Scheme 115. Formation of dispiro compound.

The reaction of 2-amino-4-oxothiazolidine-5-acetic acid 214 with p-aminostyrene in thepresence of dicyclohexylcarbodiimide (DCC) gave a new monomer 215 which was obtainedconveniently under mild conditions (Scheme 116) (77).

N

S

O

H2NCO2H

+

NH2

HCCH2

DCC N

SH2N

OO

NH

HC

CH2

214 215

Scheme 116. Reaction with p-aminostyrene.

Thiazolidineacetic acids 216 which was amidated by first making the acid chloride thenamination by morpholine, piperidine, aniline, phenylhydrazine, or prop-2-en-1-amine gave thecorresponding amides 217 and 218, respectively (Scheme 117) (128, 129).

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

346 M.A. Metwally et al.

N

S

O

HO2C

N

R = H, Ph, allyl, R1 = H; R = Ph, R1 = Et, Bu, cyclohexyl, Ph;R = R1 = Me2CH, cyclohexyl; R = PhCH2, R1 = MeQ = Ph, PhNH, or CH2:CHCH2; X = CH, O

R1

R

1. SOCl2

2. QNH2

N

S

O

N

R1

R

O NHQX

NH

N

S

O

N

R1

R ON X

216

217

2181. SOCl2 2.

Scheme 117. Formation of amides.

Thiophosphorylation of thiazolidinone was achieved. Thiazolidine 220 was prepared in 25%yield by condensing 2 with o-phenyl methylphosphonochloridothioate 219 (Scheme 118) (126).

S

P MeO

ClPh +

N

SNH2

OEt3N/pyridine

25%

N

S

HN

O PS

MeOPh

219 220

Scheme 118. Synthesis of thiazolidine.

Acknowledgements

The authors would like to thank the faculty of Science & Arts in Khulais, King Abdel-Aziz University, KSA for valuablesupport.

References

(1) Meguro, K.; Fujita, T. JP 61286376, 1986; Chem. Abstr. 1987, 106, 138436.(2) Qi, G. Huagong Shikan, 2006, 20, 52–68; Chem. Abstr. 2007, 149, 104630.(3) Chen, S.; Sidduri, A. PCT Int. Appl. WO 2006040049, 2006; Chem. Abstr. 2006, 144, 412492.(4) Chen, L.; Chen, S.; Michoud, C. US Pat. Appl. Publ. US 20060004046, 2006; Chem. Abstr. 2006, 144, 108310.(5) Liu, J.-J. US 2006223843, 2006; Chem. Abstr. 2006, 145, 397520.(6) Zheng, L.-L.; Ao, G.; Li, Z. Huaxue Yanjiu Yu Yingyong 2007, 19, 1051–1055; Chem. Abstr. 2007, 149, 307734.(7) Andreani, A.; Rambaldi, M.; Locatelli, A.; Leoni, A.; Bossa, R.; Chiericozzi, M.; Galatulas, I.; Salvatore, G. Eur.

J. Med. Chem. 1993, 28, 825–829.(8) Tsurkan, A.A.; Frolova, A.I.; Pospelov, N.I.; Dorofeeva, L.A. Khimiko Farmatsevticheskii Zh. 1975, 9, 12–15;

Chem. Abstr. 1975, 83, 114278.(9) Mameli, E.; Zorzi, L. Farmaco, 1954, 9, 691–704.

(10) Unangst, P.C.; Connor, D.T.; Cetenko, W.A.; Sorenson, R.J.; Kostlan, C.R.; Sircar, J.C.; Wright, C.D.; Schrier,D.J.; Dyer, R.D. J. Med. Chem. 1994, 37, 322–328.

(11) Wang, S.; Zhang, X.; Qi, Y. Zhongguo Yaowu Huaxue Zazhi 2000, 10, 291–292; Chem. Abstr. 2001, 135, 46132.(12) Tsirul’nikova, N.V.; Gurevich, M.Z.; Karandeeva, I.V.; Danielyan, D.G. Nauch. Tr. VNII Khim. Reaktivov i Osobo

Chist. Khim. Veshchestv, 1989, 51, 97–101; Chem. Abstr. 1990, 113, 191221.(13) Zubenko, V.G. USSR SU 952844, 1982; Chem. Abstr. 1983, 98, 89349.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 347

(14) Frank, R.; Kless, A.; Jostock, R. PCT Int. Appl. WO 2006122777, 2006; Chem. Abstr. 2006, 146, 7948.(15) Danielyan, D.G.; Tsirul’nikova, N.V.; Temkina, V.Y. Trudy IREA 1984, 46, 3–6; Chem. Abstr. 1985, 103, 104522.(16) Najer, H.; Giudicelli, R.; Morel, C.; Menin, J. Bull. Soc. Chim. Fr. 1963, 5, 1018–1022.(17) Sohda, T.; Mizuno, K.; Hirata, T.; Maki, Y.; Kawamatsu, Y. Chem. Pharm. Bull. 1983, 31, 560–569.(18) Kawamatsu, Y.; Shoda, T.; Hirata, T. Eur. Pat. Appl. EP 32128, 1981; Chem. Abstr. 1981, 95, 169176.(19) Mekhtieva, I.R.; Magerramov, A.M.; Khalilova, A.Z.; Mamedova, S.G. Kimya Problemlari J. 2004, 3, 32–37;

Chem. Abstr. 2005, 143, 347091.(20) Mukarram, M.; Ahmad, I.; Farooqi, J.A.; Ahmad, M. Fette, Seifen, Anstrichmittel, 1986, 88, 224–226; Chem. Abstr.

1987, 106, 138316.(21) Golubev, A.A.; Semenenko, M.N.; Mandrugin, A.A.; Fedoseev, V.M. Khim. Geterotsikl. Soedin. 1986, 12, 1687–

1689; Chem. Abstr. 1987, 107, 236584.(22) Doran, W.J.; Shonle, H.A. J. Org. Chem. 1938, 3, 193–197.(23) Skinner, G.S.; Elmslie, J.S.; Gabbert, J.D. J. Am. Chem. Soc. 1959, 81, 3756–3759; Chem. Abstr. 1960, 54, 2269.(24) Tjiptasurasa. Majalah Farmasi Indones. 2005, 16, 182–185; Chem. Abstr. 2006, 146, 481969.(25) Witkowski, S.; Czerepko, K.; Roszkowska, W.; Worowski, K. Acta Poloniae Pharm. 1983, 40, 309–312; Chem.

Abstr. 1984, 101, 23384.(26) Sohda, T.; Momose, Y.; Meguro, K.; Kawamatsu, Y.; Sugiyama, Y.; Ikeda, H. Arzneim. Forsch. 1990, 40, 37–42;

Chem. Abstr. 1990, 113, 23750.(27) Meguro, K.; Fujita, T. Eur. Pat. Appl. EP 193256, 1986; Chem. Abstr. 1986, 105, 226543.(28) Takashi, S.; Katsutoshi, M.; Hiroyuki, T.; Yasuo, S.; Takeshi, F. Chem. Pharm. Bull. 1982, 30, 3563–3573.(29) Yoshioka, T.; Fujita, T.; Kanai, T.; Aizawa, Y.; Kurumada, T.; Hasegawa, K.; Horikoshi, H. J. Med. Chem. 1989,

32, 421–428.(30) Iijima, I.; Ozeki, M.; Okumura, K.; Inamasu, M. Eur. Pat. Appl. EP 283035, 1988; Chem. Abstr. 1989, 110, 57657.(31) Gailius, V.; Stamm, H. Chemiker Zeitung 1985, 109, 119–120; Chem. Abstr. 1985, 103, 123400.(32) Sakuma, S.; Endo, T. PCT Int. Appl. WO 2000073273, 2000; Chem. Abstr. 2000, 134, 29324.(33) Wang, E.-S.; Wang, J.-C.; Jiang, Z.-H.; Wang, J.-P. Jilin Daxue Ziran Kexue Xuebao 2000, 3, 68–72; Chem. Abstr.

2000, 134, 222652.(34) Kauramatsu, Y.; Fujita, T. Eur. Pat. Appl. EP 8203, 1980; Chem. Abstr. 1980, 93, 114506.(35) Amat-Guerri, F. An. Quim. 1975, 71, 325–327; Chem. Abstr. 1975, 83, 131516.(36) Chande, M.S.; Bhat, U.S. Indian J. Chem. 2000, 39B, 68–70; Chem. Abstr. 2000, 133, 135293.(37) Lloyd, D.; Millar, R.W. Tetrahedron 1980, 36, 2675–2679.(38) Chande, M.S.; Ambhaikar, S.B. Indian J. Chem. 1996, 35B, 373–376; Chem. Abstr. 1996, 124, 289343.(39) Sedlák, M.; Hejtmankova, L.; Hanusek, J.; Machacek, V. J. Heterocycl. Chem. 2002, 39, 1105–1107.(40) Sedlák, M.; Hanusek, J.; Hejtmánková, L.; Kasparová, P. Org. Biomol. Chem. 2003, 1, 1204–1209.(41) Hanusek, J.; Hejtmánková, L.; Sterba, V.; Sedlák, M. Org. Biomol. Chem. 2004, 16, 1756–1763.(42) Plakhotnik, V.M.; Kovtun, V.Yu.; Leont’eva, N.A.; Petrova, I.G.; Pushkarskaya, N.L.; Yashunskii, V.G. Khim.

Farm. Zh. 1982, 16, 1060–1063; Chem. Abstr. 1982, 97, 215613.(43) Masaki, M.; Kitahara, T.; Kurita, H.; Ohta, M. J. Am. Chem. Soc. 1968, 90, 4508–4509.(44) Speziale, A.J.; Hamm, P.C. J. Am. Chem. Soc. 1956, 78, 5580–5584.(45) Libermann, D.; Himbert, J.; Hengl, L. Bull. Soc. Chim. Fr. 1948, 1120–1124; Chem. Abstr. 1949, 43, 19924.(46) Zhang, D.; Xu, Y.; Hua, W. Preparation 2-imino-4-thiazolidinones. CN 1556106, 2004; Chem. Abstr. 2005, 143,

229832.(47) Ried, W.; Kuhnt, D. Liebigs Ann. Chem. 1986, 780–784.(48) Kretov, A.E.; Bespalyi, A.S. Zh. Obshch. Khim. 1963, 33, 3323–3325; Chem. Abstr. 1964, 60, 30883.(49) Khachikyan, R.S.; Safaryan, E.V.; Grigoryan, G.V.; Agbalyan, S.G.; Atashyan, S.M. Armyanskii Khim. Zh. 1984,

37, 490–493; Chem. Abstr. 1985, 102, 24538.(50) Augustin, M.; Mueller, W. J. Prakt. Chem. (Leipzig) 1985, 327, 789–798.(51) Balasubramaniyan, V.; Balasubramaniyan, P.; Wani, M.J. Indian J. Chem. 1990, 29B, 1092–1096; Chem. Abstr.

1991, 114, 143210.(52) Liu, K.-C.; Tuan, J.Y.; Shih, B.-J. J. Chin. Chem. Soc. 1977, 24, 65–70.(53) Hendrickson, J.B.; Rees, R.; Templeton, J.F. J. Am. Chem. Soc. 1964, 86, 107–111.(54) Jurgevica, I.; Mikstais, U. Latv. PSR Zinat. Akad. Vestis Kim. Ser. 1982, 3, 364–366; Chem. Abstr. 1982, 97, 144832.(55) Bethell, J.R.; Maitland, P. J. Chem. Soc. 1961, 5211–5216; Chem. Abstr. 1962, 56, 66875.(56) Marrian, D.H. J. Chem. Soc. 1949, 1797–1799; Chem. Abstr. 1950, 44, 7558.(57) Le Marechal, A.M.; Robert, A.; Leban, I. Tetrahedron 1990, 46, 453–464.(58) Ansari, M.H.; Ahmad, M.S.; Ahmad, M. Indian J. Chem. 1987, 26B, 146–149; Chem. Abstr. 1988, 108,

21772.(59) Choughuley, A.S.U.; Chadha, M.S. Indian J. Chem. 1963, 1, 437–440; Chem. Abstr. 1964, 60, 23349.(60) Culvenor, C.C.J.; Davies, W.; Maclaren, J.A.; Nelson, P.F.; Savige, W.E. J. Chem. Soc. Abstr. 1949, 2573–2577;

Chem. Abstr. 1950, 44, 14947.(61) Kvicala, J.; Hovorkova, P.; Paleta, O. J. Fluor. Chem. 2001, 108, 1–5.(62) Attanasi, O.A.; De Cresentini, L.; Foresti, E.; Galarini, R.; Sanmteusanio, S.; Serra-Zanetti, F. Synthesis 1995,

1397–1400.(63) Mandrugin, A.A.; Rodyunin, A.A.; Fedoseev, V.M.; Konstantinova, M.M.; Dontsova, G.V.; Rakhmanina, O.N.

Khim. Farm. Zh. 1989, 23, 832–834; Chem. Abstr. 1989, 111, 190468.(64) Kutschy, P.; Dzurilla, M.; Kristian, P.; Kutschyova, K. Collect. Czech. Chem. Commun. 1981, 46, 436–445.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

348 M.A. Metwally et al.

(65) Omar, M.T.; Sherif, F.A. J. Prak. Chem. (Leipzig) 1980, 322, 835–842.(66) Kambe, S.; Hayashi, T. Bull. Chem. Soc. Jpn. 1972, 45, 3192–3195.(67) Takeda Chemical Industries, Ltd., Japan; Senju Pharm. Co., Ltd. JP 57188579, 1982; Chem. Abstr. 1983, 98,

198200.(68) Reeve, W.; Steckel, T.F. Can. J. Chem. 1980, 58, 2784–2788.(69) Sato, M.; Stammer, C.H. J. Heterocycl. Chem. 1977, 14, 149–151.(70) Halama, A.; Hejtmankova, L.; Lustig, P.; Richter, J.; Srsnova, L.; Jirman, J. PCT Int. Appl. WO 2002088120, 2002;

Chem. Abstr. 2002, 137, 353010.(71) Hauser, M. J. Org. Chem. 1962, 27, 43–46.(72) Ulrich, H.; Sayigh, A.A.R. Angew. Chem. 1966, 78, 761–769.(73) Vána, J.; Hanusek, J.; Ržicka, A.; Sedlák, M. J. Heterocycl. Chem. 2009, 46, 635–639.(74) Ramsh, S.M.; Smorygo, N.A.; Khrabrova, E.S. Kh. Geterotsikl. Soedin. 1985, 1, 32–37; Chem. Abstr. 1985, 102,

166208.(75) Danielyan, D.G.; Tsirul’nikova, N.V.; Temkina, V.Ya. Trudy IREA 1984, 46, 3–6; Chem. Abstr. 1985, 103, 104522.(76) Skinner, G.S.; Bicking, J.B.; Lovett, J.R. J. Org. Chem. 1959, 24, 1587–1588.(77) Takemoto, K.; Kanaoka, K.; Miyata, M. Revue Roum. Chim. 1980, 25, 1097–1100; Chem. Abstr. 1981, 94, 1347.(78) Mukarram, M.; Ahmad, I.; Farooqi, J.A.; Ahmad, M. Fette Seifen Anstrichmittel 1986, 88, 224–226; Chem. Abstr.

1987, 106, 138316.(79) Iijima, I.; Ozeki, M.; Okumura, K.; Inamasu, M. Eur. Pat. Appl. EP 283036, 1988; Chem. Abstr. 1989, 110, 75529.(80) Hasler, H.; Kaufmann, F.; Pirson, W.; Schneider, F. Eur. J. Med. Chem. 1987, 22, 559–567; Chem. Abstr. 1988,

109, 48224.(81) York, B.M. US 4864028, 1989; Chem. Abstr. 1990, 112, 158249.(82) York, B.M. US 4717725, 1988; Chem. Abstr. 1988, 109, 129010.(83) Yoshioka, T.; Kitazawa, E.; Kurumada, T.; Yamazaki, M.; Hasegawa, K. Jpn Kokai Tokkyo Koho JP 61036284,

1986; Chem. Abstr. 1986, 104, 207256.(84) Sankyo Co., Ltd., Japan. Jpn Kokai Tokkyo Koho JP 60051189, 1985; Chem. Abstr. 1985, 103, 54068.(85) Sohda, T.; Momose, Y.; Meguro, K.; Kawamatsu, Y.; Sugiyama, Y.; Ikeda, H. Arzneim. Forsch. 1990, 40, 37–42;

Chem. Abstr. 1990, 113, 23750.(86) Meguro, K.; Fujita, T. Eur. Pat. Appl. EP 193256, 1986; Chem. Abstr. 1986, 105, 226543.(87) Sohda, T.; Mizuno, K.; Tawada, H.; Sugiyama, Y.; Fujita, T. Chem. Pharm. Bull. 1982, 30, 3563–3573; Chem.

Abstr. 1983, 98, 125944.(88) Yoshioka, T.; Fujita, T.; Kanai, T.; Aizawa, Y.; Kurumada, T.; Hasegawa, K.; Horikoshi, H. J. Med. Chem. 1989,

32, 421–428.(89) Valls, N.; Segarra, V.M.; Alcalde, E.; Marin, A.; Elguero, J. J. Prak. Chem. (Leipzig) 1985, 327, 251–260.(90) Balasubramaniyan, V.; Balasubramaniyan, P.; Wani, M.J. Indian J. Chem. 1990, 29B, 1092–1096; Chem. Abstr.

1991, 114, 143210.(91) Le Marechal, A.M.; Robert, A.; Leban, I. Tetrahedron 1990, 46, 453–464.(92) Brown, R.A. Proc. Natl Inst. Sci. USA 1961, 47, 465–469.(93) Basova, Yu.G.; Ramsh, S.M.; Ginak, A.I. Khim. Geterotsikl. Soedin. 1981, 8, 1046–1049; Chem. Abstr. 1982, 96,

68880.(94) Chande, M.S.; Ambhaikar, S.B. Indian J. Chem. 1996, 35B, 373–376; Chem. Abstr. 1996, 124, 289343.(95) Ramsh, S.M.; Ivanenko, A.G. Chem. Heterocycl. Compd. 2003, 39, 1541–1542.(96) Ramsh, S.M. Khim. Geterotsikl. Soedin. 1986, 5, 672–678; Chem. Abstr. 1986, 105, 190237.(97) Ramsh, S.M.; Solov’eva, S.Yu.; Ginak, A.I. Khim. Geterotsikl. Soedin. 1983, 7, 928–932; Chem. Abstr. 1983, 99,

157478.(98) Solov’eva-Yavits, S.Yu.; Ramsh, S.M.; Smorygo, N.A.; Ginak,A.I.; Sochilin, E.G. Khim. Geterotsikl. Soedin. 1980,

7, 929–932; Chem. Abstr. 1980, 93, 204518.(99) Zhou, J.-F.; Sun, X.-J.; Zhu, F.-X.; Li, Y.-L.; Gong, G.-X. Synth. Commun. 2008, 38, 4182–4187.

(100) Qu, H.; Zhao, D.; Cheng, M. Zhongguo Yaowu Huaxue Zazhi 2004, 14, 298–300; Chem. Abstr. 2005, 145, 9998.(101) Ibrahim, E.S.A.; Khalil, M.A.; Hassan, A.M.; Abdel-Ghany, Y.S.; Hazzaa, A.A.; El-Sayed, A.E. Alex. J. Pharm.

Sci. 2007, 21, 17–24; Chem. Abstr. 2007, 148, 517661.(102) Chowdhry, M.M.; Mingos, D.M.P.; White, A.J.P.; Williams, D.J. Perkin 1 2000, 20, 3495–3504.(103) Chen, S.; Chen, Li; Le, N.T.; Zhao, C.; Sidduri, A.; Lou, J.P.; Michoud, C.; Portland, L.; Jackson, N.; Liu, J.-J.;

Konzelmann, F.; Chi, F.; Tovar, C.; Xiang, Q.; Chen, Y.; Wen, Y.; Vassilev, L.T. Bioorg. Med. Chem. Lett. 2007, 17,2134–2138.

(104) Chen, L.; Chen, S.; Michoud, C. PCT Int. Appl. WO 2006029863, 2006; Chem. Abstr. 2006, 144, 331426.(105) Chen, L.; Chen, S.; Liu, J.-J. WO 2006040050, 2006; Chem. Abstr. 2006, 144, 412525.(106) Jakse, R.; Bevk, D.; Golobic, A.; Svete, J.; Stanovnik, B. Z. Naturforsch. B 2006, 61, 413–419; Chem. Abstr. 2006,

146, 402130.(107) Player, M.R.; Pottorf, R.S.; Rentzeperis, D.; De, D. US Pat. Appl. Publ. US 20060014812, 2006; Chem. Abstr.

2006, 144, 150121.(108) Hu, B.; Malamas, M.; Ellingboe, J. Heterocycles 2002, 57, 857–870.(109) Hu, B.; Malamas, M.; Ellingboe, J.; Largis, E.; Han, S.; Mulvey, R.; Tillett, J. Bioorg. Med. Chem. Lett. 2001, 11,

981–984.(110) Irvine, M.W.; Patrick, G.L.; Kewney, J.; Hastings, S.F.; MacKenzie, S.J. Bioorg. Med. Chem. Lett. 2008, 18,

2032–2037.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010

Journal of Sulfur Chemistry 349

(111) Pardasani, P.; Pardasani, R.T.; Sherry, D.; Chaturvedi,V.; Saxena,A. Indian J. Heterocycl. Chem. 2000, 10, 129–134;Chem. Abstr. 2001, 134, 326451.

(112) Pardasani, R.T.; Pardasani, P.; Ojha, C.K.; Sherry, D.; Chaturvedi, V.; Sharma, I. Phosphorus Sulfur Silicon Relat.Elem. 2002, 177, 2435–2443.

(113) Londhe, A.; Gupta, B.; Khatri, P.; Pardasani, P.; Pardasani, R.T. Indian J. Heterocycl. Chem. 2005, 15, 137–140;Chem. Abstr. 2006, 145, 8088.

(114) Pardasani, R.T.; Pardasani, P.; Sharma, I.; Saxena, A.; Kohli, S. Indian J. Chem. 2003, 42B, 3075–3080; Chem.Abstr. 2004, 141, 38562.

(115) El-Shafei, A.K.; El-Sayed, A.M.; Abdel-Ghany, H.; El-Saghier, A.M. Gazz. Chim. Ital. 1990, 120, 193–195.(116) Hussain, S.M.; El-Reedy, A.M.; Rezk, A.M.H.; El-Dien, K.A. J. Heterocycl. Chem. 1987, 24, 1605–1610.(117) Solov’eva, S.Yu.; Ramsh, S.M.; Ginak, A.I. Khim. Geterotsikl. Soedin. 1983, 10, 1352–1356; Chem. Abstr. 1984,

100, 103230.(118) Solov’eva, S.Yu.; Ramsh, S.M.; Ginak, A.I. Khim. Geterotsikl. Soedin. 1983, 9, 1204–1209; Chem. Abstr. 1984,

100, 68262.(119) Solov’eva-Yavits, S.Yu.; Ramsh, S.M.; Ginak, A.I. Khim. Geterotsikl. Soedin. 1981, 4, 477–480; Chem. Abstr.

1981, 95, 80900.(120) Kassab, R.R. Al-Azhar Bull. Sci. 1997, 8, 1–6; Chem. Abstr. 1998, 130, 110187.(121) Manhi, F.M.; Mahmoud, M.R. Heteroat. Chem. 2005, 16, 121–131.(122) Hurst, D.T.; Stacey, A.D.; Nethercleft, M.; Rahim, A.; Harnden, M.R. Aust. J. Chem. 1988, 41, 1221–1229.(123) Mehrotra, V.N.; Achari, R.S. J. Indian Chem. Soc. 1985, 62, 306–307; Chem. Abstr. 1986, 105, 78866.(124) Jakse, R.; Svete, J.; Stanovnik, B. Zbornik Referatov s Posvetovanja Slovenski Kemijski Dnevi, Maribor, Slovenia,

Sept. 28–29, 2000; Pt. 1, 141–146; Chem. Abstr. 2000, 134, 163195.(125) Jakse, R.; Recnik, S.; Svete, J.; Golobic, A.; Golic, L.; Stanovnik, B. Tetrahedron 2001, 57, 8395–8403.(126) El-Saghier, A.M.M. Phosphorus Sulfur Silicon Relat. Elem. 2002, 177, 1213–1221.(127) Haiza, M.A.A. Rev. Roum. Chim. 2000, 45, 1019–1020.(128) Zawisza, T.; Wagner, E. Polish J. Chem. 1985, 59, 149–158; Chem. Abstr. 1986, 105, 152978.(129) Vorob’eva, N.N.; Razvodovskaya, L.V.; Negrebetskii, V.V.; Grapov, A.F.; Mel’nikov, N.N. Zh. Obshch. Khim. 1987,

57, 781–786; Chem. Abstr. 1988, 108, 186832.

Downloaded By: [Abdel-Wahab, B. F.] At: 20:18 12 August 2010


Recommended