+ All Categories
Home > Documents > Jérôme Rose CEREGE - France CNRS-Univ.Paul … · Jérôme Rose CEREGE - France CNRS-Univ.Paul...

Jérôme Rose CEREGE - France CNRS-Univ.Paul … · Jérôme Rose CEREGE - France CNRS-Univ.Paul...

Date post: 19-May-2018
Category:
Upload: hadat
View: 216 times
Download: 2 times
Share this document with a friend
75
Jérôme Rose CEREGE - France CNRS-Univ.Paul Cézanne Aix-Marseille [email protected] http://nano.cerege.fr http://www.i-ceint.org http://ceint.duke.edu Characterisation of nanoparticles 7th - 8th of July 2011 Europole de l’arbois, Aix-en-provence, France !"#$%&"'!"()* ")"&(!,-"&*&.$!/ 0 $"12/(%$)* 1!#!*&3'!"(/4 !,&"&'$, )"1 /&,$!()* $'3),(/
Transcript

Jérôme RoseCEREGE - France

CNRS-Univ.Paul Cézanne [email protected]://nano.cerege.frhttp://www.i-ceint.orghttp://ceint.duke.edu

Characterisation of nanoparticles

7th - 8th of July 2011Europole de l’arbois, Aix-en-provence, France

!"#$%&"'!"()*+")"&(!,-"&*&.$!/+0+$"12/(%$)*1!#!*&3'!"(/4+!,&"&'$,+)"1+/&,$!()*+$'3),(/

!"#$%"&'()"*+,-.+,'#/)#''('0,#"#$1"(23*'+

Any intentionally produced particles that has:

!"#$%&%$'()*+,$#',*#,-%.','$/,*,$0#*%(0%$'1%2#3(%43+*42'5'04'566'32

Catalyticactivity gold NP < 6 nm

Fluorescence ofquantum dots

78,349'#++#$0(-%%.'34:#;'"*4"#*0%#('$42",*#1'040/#%*'<);='$4)30#*",*0(

Decrease of themelting temperature

Hansen, S.F., Nanotoxicology, 1, 243-250, 2007The National Nanotechnology Initiative strategy plan (2004)

4,)%1$(&"#3',$5,1"(&,6))7,$5,&8',0'9#)2$#

5678+9:+86;+<==;>+?9@98A+B:C;D96>+EFGFH

0 20 40 60 80 100

‘‘nanonano’’effectseffects

Auffan et al, . Nature Nanotechnology, 4, 634 - 641 (2009)

Goldcatalyticproperty(<6nm)

Qdotsfluorescence

property(<20nm)

!"#$%"&'()"*+,-.+,#"#$1"(23*'+

From Hansen et al, 2007©

• Nanoparticles:one dimension

< 100nm• Nanomaterials:

9 categories:

From Hansen, 2007

In many cases nanoparticles are modified to be incorporated in materialsConfusion between nanoparticles and nanomaterials...

:,;()%"(<,18<+)3$=38'%)3"*,>38"("3&'()+"2$#

Nanoparticles

/9I;

/67=;

,>J:87?+:8><C8<>;

)K>;K789LD:878;4

/9I;+M9:8>9N<89LD

++

+ ++

+/<>O7C;+C67>K;

/<>O7C;+C6;@9:8>J

,6;@9C7?CL@=L:989LD

Adapted from Hasselov & Kaegi

Surface areaPorosity

Solubility

?-")*"@*',A'38#)BC'+,"#0,1()#3)1*'+

!"#$%&'()'*'(+,%,-.('$#)/01$%&)/2,1340%1*)54#&031,&14+).//5-63'4"%0#).73*'&#)/01$%&)/2,1340%1*54#&031,&14+)86.//59-:*;7&0%<#(+)!174(#;)=(',$')>40%&'()?$%,,%1*54#&031,&14+)8:!=@>?59-:*;7&0%<#(+)!174(#;)=(',$')A',,)54#&031,&14+8:!=A59-8B@3'+C)D9),4#&031,&14%#,

))))))))))5#4'3'0%1*EF3'&0%1*'0%1*0#&"*%G7#,

•!#*03%F7H'0%1*•.%(03'0%1*•5#;%$#*0'0%1*•!"31$'01H3'4"+•?(#&0314"13#,%,

))))))))))I%H"0JA'00#3)%*0#3'&0%1*,•I%H"0),&'00#3%*H•54#&031,&14%#,•?(#&031*)$%&31,&14%#,•B@3'+)$%&31@,4#&031,&14%#,)'*;)01$1H3'4"+

/01$%&)F13&#)$%&31,&14+

!174(#;)0#&"*%G7#,•)...@:!=EA5•KL!"31$M):!=EA5•D

•K+;31;+*'$%&)N(1O•.%#(;@N(1OF3'&0%1*'0%1*

;()#3)1*'+

ICP -MS

AGilent

Nano in the plasma?Mineralisation?

,6;@9C7?+7D7?J:9:

;()#3)1*'+

http://www.nanoimpactnet.eu/index.php?page=3rd-nanoimpactnet-conference :ruud Peters_NIN2011

Single particle ICP-MS… new development

,6;@9C7?+7D7?J:9:

© RIKILT

© RIKILT © RIKILT

the metal ions dissolved inmillions of dropletsintroduced in the plasmaeach second. The signal iscontinuous on theexperimental time scale.

the metal ions plumesproduced by singleparticles vaporized inthe plasma eachsecond. The signal isdiscontinuous on theexperimental timescale

;()#3)1*'+

- !"31$'01H3'4"+

++++++++++++/;=7>789LDPO>7C89LD789LD+8;C6D9Q<;:

50'0%1*'3+)4"',#)P=1317,)4'&Q%*H)

;()#3)1*'+

- /,,+$#03%&).%#(;@.([email protected]'&0%1*'0%1*

++++++++++++/;=7>789LDPO>7C89LD789LD+8;C6D9Q<;:

©WYATT Technology

;()#3)1*'+

+++++++++++++*9K68R'788;>+9D8;>7C89LD:

Electron Photon (light, X-ray)

Adapted from Environmental Nanotechnology, eds., Wiesner & Bottero,McGraw-Hill, 2007.

;()#3)1*'+

+++++++++++++*9K68R'788;>+9D8;>7C89LD:

Electron

Adapted from Environmental Nanotechnology, eds., Wiesner & Bottero,McGraw-Hill, 2007.

Transmission electron microscope

;()#3)1*'+

+++++++++++++*9K68R'788;>+9D8;>7C89LD:

Photon

Adapted from Environmental Nanotechnology, eds., Wiesner & Bottero,McGraw-Hill, 2007.

incident beamSampleScattering

angle

Small Angle X-ray Scattering

;()#3)1*'+

+++++++++++++*9K68R'788;>+9D8;>7C89LD:

Electron Photon (light, X-ray)

Adapted from Environmental Nanotechnology, eds., Wiesner & Bottero,McGraw-Hill, 2007.

absorption

Intensity decrease

;()#3)1*'+

- 54#&031,&14+

+++++++++++++*9K68R'788;>+9D8;>7C89LD:

Sample

Intensity I0

Intensity Itransmitted

'LDLC6>L@78L>

White light

;()#3)1*'+

- 54#&031,&14+

+++++++++++++*9K68R'788;>+9D8;>7C89LD:

Sample

Intensity I0

Intensity Itransmitted

'LDLC6>L@78L>

White light

;()#3)1*'+

- 54#&031,&14+

+++++++++++++*9K68R'788;>+9D8;>7C89LD:

Sample

Intensity I0

Intensity Itransmitted

'LDLC6>L@78L>

&=89C:

White light

;()#3)1*'+

- 54#&031,&14+R)5+*&"31031*)3';%'0%1*),173&#,

+++++++++++++*9K68R'788;>+9D8;>7C89LD:

;()#3)1*'+

- /01$%&).13&#)A%&31,&14+

+++++++++++++*9K68R'788;>+9D8;>7C89LD:

:,;()%"(<,18<+)3$=38'%)3"*,>38"("3&'()+"2$#

/9I;

/67=;

,>J:87?+:8><C8<>;

)K>;K789LD+:878;4+/9I;+M9:8>9N<89LD

/<>O7C;+C67>K;

/<>O7C;+C6;@9:8>J

,6;@9C7?+CL@=L:989LD

Adapted from Hasselov & Kaegi

/<>O7C;+7>;74+3L>L:98J

3,/+MJD7@9C+?9K68+:C788;>9DK

/8789C+?9K68+:C788;>9DK

!?;C8>LD+@9C>L:CL=J+B/!'H

!?;C8>LD+@9C>L:CL=J+B(!'H

ST>7J+M9OO>7C89LD

%7@7D+:=;C8>L:CL=J

$,3T'/

!8C+U

DEFG

3,/+MJD7@9C+?9K68+:C788;>9DK

/8789C+?9K68+:C788;>9DK

!?;C8>LD+@9C>L:CL=J+B/!'H

!?;C8>LD+@9C>L:CL=J+B(!'H

ST>7J+M9OO>7C89LD

%7@7D+:=;C8>L:CL=J

DEFG

3,/+MJD7@9C+?9K68+:C788;>9DK

Brownian motion : diffusive coefficient

Lightdetector

Time

Signalextinction

DEFG

3,/+MJD7@9C+?9K68+:C788;>9DK

Brownian motion : diffusive coefficient

Lightdetector

Time

Signalextinction

DEFG

3,/+MJD7@9C+?9K68+:C788;>9DK

Brownian motion : diffusive coefficient

Lightdetector

Time

Signalextinction

DEFG

3,/+MJD7@9C+?9K68+:C788;>9DK

Brownian motion : diffusive coefficient

Lightdetector

Time

Signalextinction

DEFG

3,/+MJD7@9C+?9K68+:C788;>9DK

Brownian motion : diffusive coefficient

Lightdetector

Time

Signalextinction

DEFG

/8789C+?9K68+:C788;>9DK

Light

detectorlens

DEFG

3,/+MJD7@9C+?9K68+:C788;>9DK

/8789C+?9K68+:C788;>9DK

r L

l

-JM>LMJD7@9C+>7M9<:>6

rh = r rh = L

Form

aggregation

rh >> rrh >> r

Compacity?Fractal dimension?

D%"**,?#/*',H=("<,+3"I'()#/

log Ilog Ilog Ilog I

longlongdistancedistance

Q = 4Q = 4ππ sin Q / l sin Q / l

log Qlog Qlog Qlog Q

Slope = - DSlope = - Dff

1/L1/L

1/l1/l

ll

shortshortdistancedistance

LLLL

I=II=I00 S S

Small Small angles angles

largelargeangles angles

DEFG

!?;C8>LD+@9C>L:CL=J+B/!'H

!?;C8>LD+@9C>L:CL=J+B(!'H100 nm

DEFG

!?;C8>LD+@9C>L:CL=J+B/!'H

!?;C8>LD+@9C>L:CL=J+B(!'H

/9I;+N<8+DL+7KK>;K789LD+:878;0M>J9DK+;OO;C8

Drying

DEFG

ST>7J+M9OO>7C89LD

Adapted from Environmental Nanotechnology, eds., Wiesner & Bottero,McGraw-Hill, 2007.

Crystalised domainAmorphous layer

DEFG

S%1+:9I;+0+GF+D@

(!'+:9I;+0+VW+D@

1*/+:9I;+0+XF+D@Y>7C87?+M9@;D:9LD0+G4Z

:,;()%"(<,18<+)3$=38'%)3"*,>38"("3&'()+"2$#

/9I;

/67=;

,>J:87?+:8><C8<>;

)K>;K789LD+:878;4+/9I;+M9:8>9N<89LD

/<>O7C;+C67>K;

/<>O7C;+C6;@9:8>J

,6;@9C7?+CL@=L:989LD

/<>O7C;+7>;74+3L>L:98J

3,/+MJD7@9C+?9K68+:C788;>9DK

/8789C+?9K68+:C788;>9DK

!?;C8>LD+@9C>L:CL=J+B/!'H

!?;C8>LD+@9C>L:CL=J+B(!'H

ST>7J+M9OO>7C89LD

%7@7D+:=;C8>L:CL=J

$,3T'/

/<>O7C;+C67>K;

!8C+U

DC(5"3',38"(/',J,+C(5"3',38'%)+&(<

+ + + ++++

++

+++

+ +

- - - --

- + + + +++

++

+++

+ +

- -

---

-

-

-

DC(5"3',38"(/',J,+C(5"3',38'%)+&(<

+ + + ++++

++

+++

+ +

- - - --

- + + + +++

++

+++

+ +

- -

---

-

-

-

:,;()%"(<,18<+)3$=38'%)3"*,>38"("3&'()+"2$#

/9I;

/67=;

,>J:87?+:8><C8<>;

)K>;K789LD+:878;4+/9I;+M9:8>9N<89LD

/<>O7C;+C67>K;

/<>O7C;+C6;@9:8>J

,6;@9C7?+CL@=L:989LD

/<>O7C;+7>;74+3L>L:98J

3,/+MJD7@9C+?9K68+:C788;>9DK

/8789C+?9K68+:C788;>9DK

!?;C8>LD+@9C>L:CL=J+B/!'H

!?;C8>LD+@9C>L:CL=J+B(!'H

ST>7J+M9OO>7C89LD

%7@7D+:=;C8>L:CL=J

$,3T'/

/<>O7C;+C67>K;

!8C+U

:,D'3$#0"(<,18<+)3$=38'%)3"*,>38"("3&'()+"2$#

Nanoparticles cycle and transfer

Where would engineered nanoparticles go?

:,D'3$#0"(<,18<+)3$=38'%)3"*,>38"("3&'()+"2$#

- L#0#&0%1*- I1&'0%1*- ="+,%&1@&"#$%&'()&"'3'&0#3%,'0%1*)1F)*'*14'30%&(#,)%*&1$4(#S)$#;%'

Where would engineered nanoparticles go?

?,%C*2=+3"*',38"("3&'()K"2$#

Macro-scale:XRD- Optical microscopy

MineralogySEM-ESEM+ X-rayspectromicroscopySize, structure, chemistry

Light scattering:Size and density

?,%C*2=+3"*',38"("3&'()K"2$#

Semi-local scale:X-ray scattering

Size and densityMicro-XAS

Coordination redox stateTEM

Structure and chemistry

Semi-local scale:X-ray scattering

Size and densityMicro-XAS

Coordination redox stateTEM

Structure and chemistryHigh resolution

TEM+EELS

Redox state, coordination

/)$7(0%@,&'(#)&"'3'&0#3%T'0%1*

Local scale:XAS, NMR…

Atomic environment

/)$7(0%@,&'(#)&"'3'&0#3%T'0%1*

L)(+&,'M"%1*'N,#"#$1"(23*'+,)#,+C#+3(''#

!"#$=1"(23*',-.+,#"#$%"&'()"*N,A)OP

14-16 nm

TiO250 n

m AlOOHPDMS

Si OCH3

CH3

n

Al(OH)3! thin amorphous layer! improve PDMS coating

! protection againstTiO2 photocatalytic

effects

PDMS =polydimethylsiloxane

! hydrophobic properties!enhance dispersion of the

nanomaterial

1O2, O2"-, OH"

UV, H2O, stirring

?

TiO2

PhotocatalyticPhotocatalyticpropertiesproperties of Ti of Ti underunder

light excitation ?light excitation ?

L)(+&,'M"%1*'N,#"#$1"(23*'+,)#,+C#+3(''#

!"#$=1"(23*',-.+,#"#$%"&'()"*N,A)OP

TiO2

AlOOHPDMS

3,/+MJD7@9C+?9K68+:C788;>9DK

!?;C8>LD+@9C>L:CL=J+B(!'H

ST>7J+M9OO>7C89LD

/=;C8>L:CL=9;:+B"'%4+$DO>7T>;M4+!S)Y/HU

!"#$%&'%()*"+,-%./01/%+2

L)(+&,'M"%1*'N,#"#$1"(23*'+,)#,+C#+3(''#

TEM

-[Si(CH3)]-

FTIR

L)(+&,'M"%1*'N,#"#$1"(23*'+,)#,+C#+3(''#TiO2

! Scenario : direct and indirect exposure

Release in the environment:Trophic transfer

(Friends of the Earth)

!"#$=1"(23*',-.+,#"#$%"&'()"*N,A)OP

(9&E+D7DLCL@=L:98;

Hydrophobic powder

3 phases:Hydrophobic phase

Stable phaseDeposit

Size distribution: Static light scattering

Coloidal fraction increase with time

Labille et al, 2010, Env. Pol.

Example 1: nano-TiO2 formulations used insunscreens

! 10 % wt of Al is dissolved! Disturbance of the Altetrahedral

!No structural changes

-[Si(CH3)]-

!90 % wt of Si is dissolved!The PDMS remaining atthe surface is oxidized

-[SiO(OH)]-

)?)?(9&E+CL>;

)?&&-+L>+/9&E

31'/

Al NMR

FTIR

XRD, XAS

Example 1: nano-TiO2 formulations usedin sunscreens

Example 1: nano-TiO2 formulations usedin sunscreens

XGT5000 Horiba Jobin YvonX-Ray beam size: 10 µm

X-Ray source: RhX-Ray tube voltage: 30 kV

Counting time: 20x360

##Origin of the contamination?Origin of the contamination?

Adults Daphnia9d exposureTested concentration: 10 mg/l

Calcium map Titanium map Combinedmap

Example 1: nano-TiO2 formulations usedin sunscreens

X-Ray beam size: 10 µmX-Ray source: Rh

X-Ray tube voltage: 30 kVCounting time: 9x360

Titanium mapCCD Camera

## Adsorption of Ti on algae Adsorption of Ti on algae## Probable direct contamination of Probable direct contamination ofdaphnids by fooddaphnids by food

Q)$="++)%)*"2$#,"#0,&($18)3,&("#+5'(

Coll. Virginia tech (P. Vikesland)/CEREGE Bio-assimilation of Au-NPs by clams

!"#$=+)*-'(,"#0,1*"#&,&("#+5'(

Synchrotron micro-XRFLin, … Auffan et al, 2011, ES&T

!"#$=+)*-'(,"#0,1*"#&,&("#+5'(

Lin, … Auffan et al, 2011, ES&T

D'#+)2-)&<

ConventionalMicro-XRF : 40 ppm

Laser ablation coupledto ICP-MS: few ppmor less

HERMES: High EnergyX-Ray Microscope forEnvironmentalSciences: few ppm,redox state

R$3"2$#

ConventionalMicro-XRF : 2D projection

projection

ST,)%"/'+,N,U=A$%$/("18<

ST,)%"/'+,N,U=A$%$/("18<

;8<+)3$=38'%)3"*,38"("3&'()+"2$#

from Environmental Nanotechnology, eds., Wiesner & Bottero, McGraw-Hill, 2007.

;8<+)3$=38'%)3"*,38"("3&'()+"2$#

- U#3+)&"'((#*H%*H)F13)*'*1)%*)&1$4(#S),+,0#$,- L#0#&0%1*)(%$%0)F13)V3#'(%,0%&)#S41,73#)(#<#(W- I1&'0%1*);1O*)01)0"#)*'*1),&'(#D- X#'&"%*H)0"#)(%$%0,)1F)$'*+)0#&"*%G7#,

!"#$ET,1*"V$(%

3456738%9*+&6:;3<3=3

E1+C6;@9C7?+7DM+@9D;>7?LK9C7?+ST>7J+9@7K9DK

2?8>7+S%'T+*EFF XCT- 400

(L@LK>7=6JBO>;:D;?+[LD;=?78;H+WF+D@

(L@LK>7=6JO<??+\9;?ME+]@

'9C>LTS%Y+BGF]@H '9C>LTS%1+BGFF

]@H'9C>LT-%TS%Y+-!%'!/

BGFF+T+EF+]@H

V1+C6;@9C7?+7DM+@9D;>7?LK9C7?+ST>7J+9@7K9DK

'9C>LTS%Y+CLDOLC7?BGFF+T+EF]@H

Y"'*Q)+17A#3&%))Z

CEREGECNRS-Univ.Paul Cézanne

http://Se3d.cerege.fr & http://nano.cerege.fr

DissolutionDissolutionDissolutionDissolutionNéoformationNéoformationNéoformationNéoformation

Local scale study : XAS-NMR

Semi-local scale study : SAXS

Global-scale study : Light scattering

U$**$)0+,N,",%C*21*',+3"*'+&(C3&C("*,+&C0<

W*$@"*=+3"*',+)K',"#"*<+)+

- A'(<#3*)$',0#3,%T#3

Laser : ! = 632,8 nm

Particucles

Detector

Flow

66 88 00 00 77 00 00 00 77 22 00 00 77 44 00 00 77 66 00 00 77 88 00 00 88 00 00 00

EdgeEdge

EXAFSEXAFS

Backscattering atomBackscattering atom

1 s1 s

EE00

EECC

X-ray absorbing X-ray absorbing elementelement

µµx=Ln (Io/I)x=Ln (Io/I)xxIoIo II

PreedgePreedge

Energy ( eV)Energy ( eV)

H=("<,"@+$(12$#,+1'3&($+3$1<

EXAFS : determination of distance, nature, andEXAFS : determination of distance, nature, andnumber of atoms around central atomnumber of atoms around central atom

11 33 55R(Å)R(Å)

2 Å2 ÅFeO

3 Å3 ÅFe Fe

3,45 Å3,45 Å

Fe

Fe(Ref : Manceau &(Ref : Manceau &Drits, 1993)Drits, 1993)

T'3$#-$*C2$#,$5,GH?LD,+1'3&("

Q0Q1

Q2Q3 Q4

-120-110-100-90-80-70-60

!XY,NU8'%)3"*,+8)Z,"#"*<+)+

Q0 Q1 Q2

Q3

Q4

"(ppm)Exemple : Si NMR

U$**$)0+,N,",%C*21*',+3"*'+&(C3&C("*,+&C0<

DissolutionDissolutionDissolutionDissolutionNéoformationNéoformationNéoformationNéoformation

Local scale study : XAS-NMR

Semi-local scale study : SAXS

Global-scale study : Light scattering

W*$@"*=+3"*',+)K',"#"*<+)+

! Malvern mastersizer

Laser : ! = 632,8 nm

Particucles

Detector

Flow

incident beamSampleScattering angle

detectordetector I0

Double Bragg reflexionmonochromator

II0

SAXS

EXAFS

SampleIncident energy

0.01 0.1 1 10 100 1000

Size(µm)

% v

olum

e

Size analysisSize analysis


Recommended