+ All Categories
Home > Documents > J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics...

J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics...

Date post: 01-Jan-2016
Category:
Upload: cleopatra-copeland
View: 221 times
Download: 0 times
Share this document with a friend
Popular Tags:
25
J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics ollaborators: . Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze, R. Trines
Transcript
Page 1: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

J.T. Mendonça

Instituto Superior Técnico, Lisboa, Portugal.

Recent advances in wave kinetics

Collaborators:

R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze, R. Trines

Page 2: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Outline

• Kinetic equations for the photon gas;• Wigner representation and Wigner-Moyal equations;• Modulational instabilities of quasi-particle beams;• Photon acceleration in a laser wakefield;• Plasmon driven ion acoustic instability;• Drifton excitation of zonal flows;• Resonant interaction between short and large scale perturbations;• Towards a new view of plasma turbulence.

Page 3: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Wigner approach

Schroedinger eq.

h2

2m∇ 2 − ih

∂t

⎣ ⎢

⎦ ⎥ψ = −Vψ

Wigner-Moyal eq.

Page 4: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Quasi-classical approximation (sin ~ , h —> 0)

Conservation of the quasi-probability(one-particle Liouville equation)

Of little use in Quantum Physics

(W can be directly determined from Schroedinger eq.)

Page 5: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Wigner-Moyal equation for the electromagnetic field

Field equation (Maxwell)

Kinetic equation

[Mendonca+Tsintsadze, PRE (2001)]

∇2 −1

c 2

∂ 2

∂t 2

⎝ ⎜

⎠ ⎟r E =

1

c 2

∂ 2

∂t 2(χ

r E )

Fk (r r , t) =

r E (

r r +

r s /2, t) ⋅∫

r E *(

r r −

r s /2, t)e−i

r k .

r s d

r s

Page 6: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Photon number density

For the simple case of plane waves:

(R=0 is the dispersion relation in the medium)

Slowly varying medium

(photon number conservation)

Page 7: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Dispersion relation of electron plasma waves in a photon background

χ ph (ω,k) = −ωph 0

2

2

k 2ωpe02

γ 02meω

2

dk

2π( )3

hk ⋅∂ ˆ N 0∂k

ωk2 ω − k ⋅vg (k)( )

1+ χ e (ω,k) + χ ph (ω,k) = 0

Electron susceptibility Photon susceptibility

Resonant wave-photon interaction,

Landau damping is possible

[Bingham+Mendonca+Dawson, PRL (1997)]

Page 8: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Physical meaning of the Landau resonance

Non-linear three wave interactions

ω +ω'= ω"r k +

r k '=

r k "

Energy and momentum conservation relations

Limit of low frequency and long wavelength

ω =ω"−ω'= Δω',with | Δω' |<<ω',ω"r k =

r k "−

r k '= Δ

r k ',with | Δ

r k ' |<<|

r k ' |,|

r k "|

ω rk

=Δω'

Δr k '⇒

dω'

dr k '

=r v g

(hints for a quantum description of adiabatic processes)

ω − r

k .r v g = 0

Page 9: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Spectral features: (a) split peak, (b) bigger split, (c) peak and shoulder, (d) re-split peak

Simulations: R. Trines

Experiments: C. Murphy

(work performed at RAL)

Photon dynamics in a laser wakefield

Page 10: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Experimental Numerical 1D

Also appears in classical particle-in-cell simulations

Can be used to estimate wakefield amplitude

Split peak

Page 11: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Plasma Plasma

surfacesurface

LASER

ignition

DTcore

channel

Anomalous resistivity for Fast Ignition

LASER Fast electron beamElectron plasma wavesTransverse magnetic fields

Ultimate goal: ion heating

Page 12: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Theoretical model:

Wave kinetic description of electron plasma turbulence

• Electron plasma waves described as a plasmon gas;

• Resonant excitation of ion acoustic waves

Dispersion relation of electrostatic waves

Page 13: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Electron two stream instability

Maximum growth rate

Total plasma current

Dispersion relation

Page 14: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Kinetic equation for plasmons

Plasmon occupation number

Plasmon velocity Force acting on the plasmons

Page 15: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Ion acoutic wave resonantly excited by the plasmon beam

Maximum growth rate

Effective plasmon frequency

Page 16: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Two-stream instability(interaction between the fast beam and the return current)

Freturn

Ffast

Unstable region:

Plasmon phase velocity vph ~ c

Electron distribution functions

Page 17: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Plasmon distribution

Low group velocity plasmons: vph .vg = vthe2

Vg ~ vthe2 / c

Ion distribution (ion acoustic waves are destabilized by the plasmon beam)

Npl

Vph/ionac ~ vg

Fion

Npl

[Mendonça et al., PRL (2005)]

Page 18: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Laser intensity threshold

For typical laser target experiments, n0e~1023 cm-3:

I > 1020 W cm-2

Varies as I-5/4

0 , u0e~ I1/2

Preferential ion heating regime

(laser absorption factor)

Page 19: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Experimental evidence

Plastic targets with deuterated layers using Vulcan (RAL)

I = 3 1020 Watt cm-2

Not observed at lower intensities (good agreement with theoretical model)

[P. Norreys et al, PPCF (2005)]

Page 20: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

We adapt the 1-D photon code to drift waves:

Two spatial dimensions, cylindrical geometry,

Homogeneous, broadband drifton distribution,

A Gaussian plasma density distribution around the origin.

We obtain:

Modulational instability of drift modes,

Excitation of a zonal flow,

Solitary wave structures drifting outwards.

Coupling of drift waves with zonal flows

Page 21: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Fluid model for the plasma (electrostatic potential Φ(r)):

Particle model for the “driftons”:

Drifton number conservation;

Hamiltonian:

Equations of motion: from the Hamiltonian

( ) kdNkk

kk

t k

r

r 22221

∫++

=∂

Φ∂

ϑ

ϑ

( ),1 22*

ϑ

ϑϑω

kk

Vk

rk

ri ++

+∂

Φ∂=

r

n

nV

∂∂

−= 0

0*

1

[R. Trines et al, PRL (2005)]

Quasi-particle description of drift waves

Page 22: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Excitation of a zonal flow for small r, i.e. small background density gradients; Propagation of “zonal” solitons towards larger r.

Simulations

Page 23: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Plasma Physics processes described by wave kinetics

Short scales Large scales Physical relevance

Photons Ionization fronts Photon acceleration

Photons Electron plasma waves

Beam instabilities; photon Landau damping

Plasmons Ion acoustic waves Anomalous heating

Driftons

(drift waves)

Zonal flows Anomalous transport

Page 24: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Other Physical Processes

Short scales Large scales Physical relevance

Photons Iaser pulse envelope

Self-phase modulation

Cross-phase modulation

Photons polaritons Tera-Hertz radiation in polar crystals

Photons Gravitational waves Gamma-ray bursts

neutrinos Electron plasma waves

Supernova explosions

Page 25: J.T. Mendonça Instituto Superior Técnico, Lisboa, Portugal. Recent advances in wave kinetics Collaborators: R. Bingham, L.O. Silva, P.K. Shukla, N. Tsintsadze,

Conclusions

• Photon kinetic equations can be derived using the Wigner approach;• The wave kinetic approach is useful in the quasi-classical limit;• A simple view of the turbulent plasma processes can be established;• Resonant interaction from small to large scale fluctuations; • Successful applications to laser accelerators (wakefield diagnostics); inertial fusion (ion heating) and magnetic fusion (turbulent transport).


Recommended