+ All Categories
Home > Documents > JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf ·...

JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf ·...

Date post: 02-Nov-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
22
JUNCTION RECONSTRUCTION AND DYNAMICS OF DISLOCATIONS IN CHARGE DENSITY WAVES CHARGE DENSITY WAVES. N. Kirova LPS, CNRS and Université ParisSud, Orsay, France C ll b ti Collaboration: S. Brazovskii LPTMS, Orsay, France T. Yi LPTMS, Orsay, France Thanks: P. Monceau Yu. Latyshev A. Roho Bravo Boston Uiversity , USA Y. Luo Université ParisSud, France
Transcript
Page 1: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

JUNCTION RECONSTRUCTION AND DYNAMICS OF DISLOCATIONS  IN 

CHARGE DENSITY WAVESCHARGE DENSITY WAVES.

N. KirovaLPS, CNRS and Université Paris‐Sud, Orsay, France

C ll b tiCollaboration:S. Brazovskii LPTMS, Orsay, FranceT. Yi                   LPTMS, Orsay, France

Thanks:P. MonceauYu. Latyshev

A. Roho Bravo  Boston Uiversity, USAY. Luo Université Paris‐Sud, France

Page 2: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Incommensurate charge density wave

Order parameter: y=Acos(q0x+φ)Order parameter: y=Acos(q0x+φ)

•Periodic lattice distortion : u(x)=u0sin(q0x+φ) –Periodic lattice distortion : u(x) u0sin(q0x φ)observed by diffraction (X-Ray), information in reciprocal space u(q).

•Modulation of the electronic density ρ(x) ~– ∂u(x)/∂xuniaxial crystal of singlet electronic pairs electronic CDW observed by STM – information in direct space

Important feature: CDW sliding in the applied external electric field– collective motion of the electronic crystal (Monceau and Ong)

2

Page 3: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Dislocations in a CDW.

Solid lines: maxima of the charge density. h d li h i f h h lDashed lines:  chains of the host crystal. 

From left to right:  dislocations of opposite signs and their pairs of opposite polarities. 

Embracing only one chain of atoms,  the pairs become a vacancy or an interstitial ± 2 solitons in CDWan interstitial    2 solitons in CDW 

By passing each of these defects, the phase changes by 2Far from the defect the lattice is not perturbed.

Page 4: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Dynamic origin of dislocations 

source drain DW stress is releasedsource drainv=0

v~IDW stress is released

Formation of new planes inElastic DW stress 

CDW sliding in the applied external electric field – collective motion of electronic

Formation of new planes in the electronic crystal Elimination of additional planes

g ppcrystal .

Direct access to the current conversion via dislocations: Space resolved X‐ray studies

2

4

6x 10

−4

Sample with a single strong planar defect, almost complete current 

−4

−2

0

2

q sh

ift (

b*)

, preconversion →   full plasticity(transverse flow of dislocations)

4−2 −1 0 1 2

−6

−4

x (mm)

D. Rideau et al, Europhysics Letters 56 (2001) 289

Page 5: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Static origin of dislocations 

V

Static equilibrium structures due to applied transverse voltage or current 

FV

Breaking of inter‐chain correlation:

‐V

Intra‐chain elasticity (∂xj)2 +  Coulomb energy F(y)∂xjforce to shift the equilibrium CDW charge density ∂jx‐F(y), i.e. the CDW wave number j=Qx ‐F(y)xthe CDW wave number j=Qx F(y)x

Resolution : dislocation lines allow to bring new periods in a smooth way, except in a vortex core.except in a vortex core.

N i fi ld ff t t f ti i t l l t d t i l

5

New science: field effect transformations in strongly correlated materialsTheir symmetry broken phases will be subject to reconstruction. 

Page 6: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Yurii Latyshev technology of mesa‐structures (Yu. L. Friday, Sect XV).All elements – leads, the junction – are pieces of the same single crystal whisker NbSNbSe3

Overlap junction forms a tunneling bridge of 200A width ‐‐only 20‐30 atomic  plains of a layered material. 

Distribution of potentials (values in colours, equipotential lines in black)and currents (arrows) for moderate conductivity anisotropy (s||/s =100)and currents (arrows) for moderate conductivity anisotropy (s||/s^ 100).

6

Page 7: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Direct observation of solitons and their arrays in tunneling on NbSe3Y. Latyshev et al, PRLs 2005 and 2006

All features scale with the gap (T) !

peak 2 for inter‐gap creation of e‐h pairs

Absolute threshold oscillating fine structure 

at low Vt≈0.2

Puzzles: 1 Origin of the low threshold at V1. Origin of the low threshold at Vt.2. Why the voltage for the “normal” 2peak is not multiplied by N~20‐30 ‐

number of layers in the junctionI b d j l i l

7

‐ It seems to be concentrated at just one elementary intervalIn similar devices for superconductors the peak  appears at V=2D*N

Page 8: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Charge carriers and potentials

Intrinsic carriers : the spectrum is formed by the CDW gap, energies move up and down with changes of the Fermi level vchanges of the Fermi level 

Extrinsic carriers in semimetallic DWs  (NbSe3 ): 

xF

FvE 2

their spectrum is unaffected by the gap, nex, jex, Vex(Dark matter) .Collective variables : =q n = /π; j =‐ ; ρ =1‐ρ

T 01Collective variables : x=q, nc= x/π; jc=‐ t; ρc=1‐ρi

cTT0

Potentials :reciprocal x

Fin

vV 2

exV

inFxF nvvU 22

1

DW stressDW stress contributions:  electric elastic nonequilibrium

8

2U – energy per chain paid to distort the CDW elastically by one period

Page 9: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Ginzburg‐Landau – like model )exp( iA

H=HCDW+Helt

eAjCDW

2

xeAn CDW

2

rdH2

202

22

003 ln

CDW el

esyxsrdH CDW

0

ln24

)(8

)( 20

23 nFn

xA

srdH el

0 FvEquation of state for  n()

00

Only extrinsic carriers n are taken explicitly.Intrinsic ones in the gap region are hidden

q ()

9

Intrinsic ones, in the gap region, are hidden in the CDW amplitude A.

Page 10: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Boundary conditionsEquations

tAA

xA

2220

2

CDW  stress vanishes at the boundaries:Natural for sides, for drain/source bo ndaries the no sliding is implied

AAAAA A

222 ln1)(1

boundaries the no‐sliding is implied

t

AAAA A

2

0

ln)(2

1 s

Normal electric field is zero at all boundaries: 

)(14

22

n

xes

total electro neutrality andconfinement of the electric potentialwithin the sample 

0

tn

tnj

p

No normal current flow at the boundaries t f th t /d i b d iexcept for the two source/drain boundaries 

left for the applied voltage. There, the chemical potentials are applied:

Near the vortex core5ö;V

10

Near the vortex core 5ö,Hence Aö0

Page 11: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Dislocation in CDW vortex in SC

)exp( iA

eAj 2eAnCDW

2 e 2

eCn 2

)exp( iC

tAjCDW

x

AnCDW x

eCjSC

2

tCnSC

2 e

2

2

x

n

n

22

AAce

scrn Aj ext

EE )00()00()00( AAyEE )0,0,()0,0,(),0,0( HyAAHH x

Equivalence of given E and H upon the order parametersEquivalence of given  Ey and Hz  upon the order parameters.Dislocations  in CDW appear as vortices in SC.Reverse effects order parameter upon the fields are different:

i f h l l i fi ld b di l i

11

CDW:  screening of the external electric field by dislocationsSC: magnetic field enter via vortices

Page 12: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Simplified geometry

Amplitude V=7meV, 9 meV, 11 meV; t=2x10‐8 sec

Ph id l hi h VPhase: wider sample, higher V

12

Page 13: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Simplified geometry

Many vortices appear temporarily in the course of the evolution.y pp p yFor that run, only two will be left.

Time unit – 10‐13 sec given by the inverse CDW conductivity.Here, t~100ps – 10GHz

Page 14: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Real geometry: initial short time fast dynamics, t=3.4x10‐10 sec

Amplitude AUnexpected result: long living traces of the amplitude

d ti f ll i fl h

Amplitude A

reduction following fleshes of vortices.

W(j)+W(A)Phase j

2

22

2)(yx

AW

1

W(j)=0

Ph d f i

1A

Phase deformations energy ‐cannot relax fast enough following thegrapidly moving vortex.

14

Page 15: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Real geometry: final stationary state at the first threshold voltage

V=7meV, t=10‐7 secDetails: T. Yi, Poster P21

Strong drop of the electric potential and 

A

pthe current density perturbations                              

t t dj

are concentrated near the vortex core –the location of tunneling 

j

processes.

15

Page 16: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Analytic static solutions for an infinite CDW media: 

Potential distribution in a DL vicinity. Concentration of potential Ф(x,y) drop facilitating the tunneling.

3d and contour plots ±y(x) for surfaces Ф(x y) ±∆ wheresurfaces  Ф(x,y)=±∆ where the tunnelling  takes place. 16

Page 17: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Problems  with  Ginzburg‐Landau – like model

Well established  and works for stationary state . Takes into account the extrinsic carriers (not interacting with the CDW)R i iRestrictions:The intrinsic carriers have been integrated out and come into the model only via order parameter total charge =0model only via order parameter, total charge =0, Rem. boundary conditions En=0 Cannot take into account: Charge conservation for the condensateCannot take into account: Charge conservation for the condensate  (Violating of charge conservation)

A 2 A 2only if 

jdx

Anc

2

tAjc

2 A = const 0

xj

tn

dtdn cc

In our case A(x y t)0 022 AAdn

17

In our case  A(x,y,t)0 0

txtxdt

Page 18: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

1D intrinsic carriers are taken explicitly into accountForbidden : scattering in the frame of the host lattice ‐ no  impurities Allowed: scattering by CDW phonons; electronic collisions

More general scheme :

Local frame of the floating CDW = chiral transformation   2/exp i

FvEE xkkk

Allowed: scattering by CDW phonons; electronic collisions

Aeevit

i xF

xFF EE 2

200 FFF kkk

tv

xv

cxt

LFF

l

22

vv

Acee

xvi

ti

L

FF

xF

el

tv

xv FF

22

vee

xvee F

2

tvA

ceA

ce F

xx

2

22

2

2

22

2 12 tcxvEFE F Gauge and chiral invariant field 

acting upon electrons

Page 19: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Local energy functional )exp( iA

2

22

222

44,,,,

yA

xAvCAvAnnW F

yxF

exin

inx

Fex

xF nveneA

Av

2ln

2

22

20

e 22 0

),,(8

2exin

h nnAs

xi ; ‐ charge density

8

A=

i

i x; g y

Δ=2π = CDW period = 2 electrons

(Δ,nin,nex) free energy of normal carriers2Δ CDW gap (the gap for intrinsic carriers)n n concentrations of intrinsic and extrinsic free carriers

19

nin, nex concentrations of intrinsic and extrinsic free carrierss area per one chain

Page 20: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Good verification of the new scheme: we get the vortices nucleated.Bad news: we cannot launch them from the boundaries to proliferate across – the program crashes at the singularityacross  the program crashes at the singularity.The verified results (height – the amplitude, contours – the phase).Parameters were chosen such that A vanishes when the chemical potential of electrons exceeds Z* 0 25Δ T 0 1Δchemical potential of electrons exceeds Z*=0.25Δ. T=0.1Δ

Intermediate states, several nodes try to develop.

Final achieved states: only one vortex develops in full.

Page 21: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Averaged description: distributed current conversion via many unresolved phase slips – sweeps of dislocations.Adapting the model used successfully to describe space 0

2

4

6x 10

−4

ft (b

*)

Adapting the model used successfully to describe space resolved X‐ray studies 

−2 −1 0 1 2

−6

−4

−2

0

q sh

ift (

Electric potential – arbitrary units.Expected perturbation – at the slits' tips

−2 −1 0 1 2x (mm)

Expected perturbation  at the slits  tipsArtifacts – at the slits' bases.Intriguing, of the opposite sign andaccompanied by 2 phase increments :accompanied by 2 phase increments :at the slits' middles on the level of another slit tip.

Plot of the amplitude A withPlot of the amplitude A with streamlines of the normal current.The current jet is formed from far away.Hitting the obstacle the jet burns downHitting the obstacle, the jet burns down the CDW which facilitates the current conversion.

Page 22: JUNCTION RECONSTRUCTION AND DYNAMICS OF …lptms.u-psud.fr/impact2012/files/2012/09/kirova1.pdf · 2012. 9. 16. · Static origin of dislocations V Static equilibrium structures due

Conclusion.

We have performed a program of modeling of stationary states and of their transient dynamic for the CDW in restricted geometries. lik d l (i d i i i i ) d i f i f iFor GL like model  (integrated out intrinsic carriers)  dynamic formation of vortices and final reconstruction of mesa junction  with formation of vortices has been  studied.   The results are in agreement with experiments. For more general scheme : we get the vortices nucleated. But till now we cannot launch them from the boundaries to proliferate  ‐ calculation problems.

Local and non stationary processes in CDWs under the applied electric fieldLocal and non stationary processes in CDWs  under the applied electric field or injecting currents in squeezed geometry suggest a new playground for methods and concepts of the IMPACT meeting

22


Recommended