+ All Categories
Home > Documents > JWoo_advanced MOSFETs Final

JWoo_advanced MOSFETs Final

Date post: 02-Jun-2018
Category:
Upload: anjireddy-thatiparthy
View: 220 times
Download: 0 times
Share this document with a friend

of 112

Transcript
  • 8/10/2019 JWoo_advanced MOSFETs Final

    1/112

    Novel MOSFET-Like Transistor Structures

    Jason C.S. Woo

    ,Electrical Engineering

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    2/112

    Outline

    Needs for novel Device concepts

    Schottky Transistors Tunnel Source (PNPN)MOSFET

    Graphene MOSFETs

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    3/112

    Scaling Challenges

    Challenges arising due to scaling in the sub-nm regime

    Source/Drain-to

    Channel

    Channel Transport

    Limitation

    Parasitic Effects

    (Source/Drain

    Coupling,

    Velocity saturation),

    Gate Leakage)

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    4/112

    - -

    Power vs. Node Frequency Vs. Node

    300

    350

    400

    450

    (W/cm2)

    Freq. = 20GHz65

    75

    85

    95

    cy

    (GHz)

    P=50W/cm2

    P=100W/cm2

    P=200W/cm2

    50

    100

    150

    200

    250

    Pow

    erConsumption Freq. = 50GHz

    Freq. = 80GHz

    25

    35

    45

    55

    switchingfreque

    0

    30 40 50 60 70 80 90 100

    Node (nm)

    15

    30 40 50 60 70 80 90 100

    node (nm)

    soon hit performance limit due to less-

    scalable parameters like Vth, Vdd , signal-to-

    -

    Jason Woo IWSG2009

    ,

    substrate conductivity

  • 8/10/2019 JWoo_advanced MOSFETs Final

    5/112

    Impact of CMOS ScalingPros: Higher ftand fmax

    Higher gm

    Scaling

    (Interconnect)

    0.25m(1P5M)

    0.18m(1P6M)

    0.13m(1P8M)

    0.09m(1P9M)

    More interconnect levels

    Lower switching powerconsumption

    Vdd(V) 2.5 1.8 1.2 1.0-1.2

    Vth(V) 0.46 0.42 0.34 0.29

    ft(GHz) 30 60 80 120

    Lower signal headroom

    Lower breakdown voltage Lower effective ain r

    fmax(GHz) 40 80 120 150

    Ion(A/m) 600 600 550 510

    Ioff(A/m) 10 20 320 10,000

    Higher Vth & mismatch

    Higher device leakage

    Higher gate resistance

    gm(mS/m) 0.3 0.4 0.6 1.0

    ro(Km) 129 67 24 6

    gmro 39 27 14 6

    Less-scalableproperties:

    Vdd, Vth

    Ath(mVm) 7 5.5 4.5 3.6

    A(%m) 2.0 1.9 1.8 1.7

    Jason Woo IWSG2009

    , , ,I/O impedance

    Substrate conductivity

    thth = =

  • 8/10/2019 JWoo_advanced MOSFETs Final

    6/112

    Impact of Scaling on Analog Performance

    100Lg=60nmVth=0.25 - 0.35 V

    80

    n

    g= nm

    Lg=150nmLg=250nm

    Black: Bulk

    Vth=0.25 0.35 VFor Mid gap gate

    FDSOI MOSFET

    60

    ins

    icGa Green: PDSOI

    Blue: FDSOI

    =Vds=0.8V

    Ids=100A/m

    20

    Int

    Tox=1.5nmTSi=15nm

    foper=1GHz

    0 50 100 150 2000

    Jason Woo IWSG2009

    T z

  • 8/10/2019 JWoo_advanced MOSFETs Final

    7/112

    60

    70

    Physical Gate Length

    2001 ITRS

    [nm]

    50

    60

    40

    50

    h,ideal[%

    ]

    Max. Ratio of Rsdto Ideal Rch

    DEDept

    30

    40

    20

    30

    R

    sd/R

    eng

    thor

    10

    20

    2000 2002 2004 2006 2008 2010 2012 2014 2016 20180

    SDE Junction Depth

    GateL

    0

    )( thgs

    oxchch

    VV

    tLR

    Scaled with Lg (Lch , tox)

    Jason Woo IWSG2009

    jsd

    shsdXN

    RR Difficult to scale Rsh sd ch

    (Nsd

    , Xj

    )

  • 8/10/2019 JWoo_advanced MOSFETs Final

    8/112

    Relative Contributions of Resistance

    500]

    70]

    NMOSFETs

    300

    400 NMOS scaled by ITRS

    ance[

    Rext

    Rov5060 RcsdNMOS

    bution

    [%

    100

    200

    riesResis

    Rcsd

    Rdp

    20

    30R

    ext

    Rov

    ive

    Contr

    32 nm 53 nm 70 nm 100 nm0

    S/DS

    Physical Gate Length32 nm 53 nm 70 nm 100 nm

    0

    Rdp

    Physical Gate Length

    Relat

    Assumptions : Scaled according to ITRS projectionGradual doping & midgap silicide material

    Jason Woo IWSG2009

    cs ( Rcsd/Rseries is rising up to >> ~ 60 % for LG < 53 nm)

  • 8/10/2019 JWoo_advanced MOSFETs Final

    9/112

    Relative Contributions of Resistanceomponen s

    PMOSFETs700

    m]

    70]

    400

    500

    600

    tance[ PMOS scaled by ITRS

    R

    Rov

    40

    50

    60 Rcsd PMOS

    ibution

    [

    100

    200

    300

    rie

    sResis

    R

    Rdp

    ext

    10

    20

    30

    Rdp

    Rov

    Rext

    tiveCont

    32 nm 53 nm 70 nm 100 nm0

    S/DS

    Physical Gate Length32 nm 53 nm 70 nm 100 nm

    0

    Physical Gate Length

    Rel

    Relatively large Rov contribution, but still largest in Rcsd( Rcsd/Rseries : ~ 60 % , Rov/Rseries : 20 ~ 30 % for LG < 53 nm)

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    10/112

    vance ng neer ng

    240270

    Rove

    [m]

    Graded Junction

    Midgap SilicideLG= 53 nm Potential solutions foradvanced S/DEngineering:

    150

    180R

    dp

    Rext

    es

    istan

    Box Profile

    ox ro i e

    Midgap Silicide

    Box-shaped highly-

    doped ultrashallow SDE

    60

    90R

    csd

    Series Low-Barrier Silicide

    (B= 0.2 eV)

    junction

    (i.e., laser annealing)

    0

    Source/Drain Engineering

    S/ lowering

    (i.e., ErSi for NMOS,

    Jason Woo IWSG2009

    ,

    lower bandgap Si1-xGexlayer)

  • 8/10/2019 JWoo_advanced MOSFETs Final

    11/112

    ropose o u ons or g er ormanceLow Power Transistors

    New Materials with Higher Mobilities

    New Contact Materials (Metal and

    co

    New S/D Structures (e.g. Raised S/D) for Small

    SOI, DG, to improve SCE

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    12/112

    2-D MOSFETs-- Double Gate FETs

    Jason Woo IWSG2009P. Wong

  • 8/10/2019 JWoo_advanced MOSFETs Final

    13/112

    3D FETs -- Nanowire Transistors(1D Transport)

    Samsung 2005

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    14/112

    I-V Ballistic DOS Ca acitance

    Taur, TED 2008

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    15/112

    Essentially, Try to Make Scaled

    s o ow ca ng

    Device Miniaturization byimproving Electrostatic and

    ranspor mo y an v

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    16/112

    Alternatives?

    Novel Transports Mechanisms

    New Materials High Mobilities Bnadgap Engineering

    Others

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    17/112

    Lateral Asymmetric Channel (LAC) MOSFETConventional

    L =0.12 m

    Tilt angle LAC1018

    1019

    1020

    ity

    ation

    3)

    LAC: Tilt=10o

    polypoly BF2(NMOS)

    S D 151016

    1017

    Impu

    LACConcent

    (cm

    -0.1 -0.05 0 0.05 0.1Lateral Position (m)

    Formation of Channels in the Simulated channel profiles for devices

    LAC and conventional structures.Usual tilt angle: 10o-15owith same Vth from source to drain1.5 nm away from the SiO2/Si interface.

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    18/112

    LAC Transistor

    2LACDPConventional

    2

    /s)

    LAC

    DPConventional

    1

    1.5

    locity(1

    07c

    05V/cm

    )

    0.5

    eCarrierVe

    Ey(1

    -0.05 0 0.05Lateral Position y (m)

    0-0.05 0 0.05Lateral Position y (m)

    0Av

    LAC Devices: Hi her do in near the source end

    Ids = W Cox(Vgs-Vth(y)-V(y))v(y)

    High lateral electric field near the source end in channel region High average carrier drift velocity near the source end in channel region High current drive,

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    19/112

    0.4LAC Tox =25

    LAC Tox =36

    15Vgt=0.3V, V ds=0.8V for Conv.Vds=0.8V, I ds same as Conv.

    ~

    0.2

    0.3 Conv. T ox =25

    Conv. T ox =36

    mS/m

    )

    10

    Id(V-1)

    gt . - . .

    0.1NMOS=

    gm(

    5

    LAC Tox=25LAC =36

    gm

    0 0.2 0.4 0.6 0.8 1.00

    Ids same at same Lg & Toxds .

    0 0.2 0.4 0.6 0.8 1.00

    Conventional, T ox=25Conventional, T ox=36

    NMOS

    Lg(m)Lg(m)

    g m is higher in SP devicesg m/Id ratio is very high compared to conventional devices when biased at same

    current density :

    Jason Woo IWSG2009

    - ue to g current r ve, sma gt s nee e . so g gm

  • 8/10/2019 JWoo_advanced MOSFETs Final

    20/112

    Hi h do in near the source Lower Mobilit

    Sharp doping profile in sub45 nm transistors

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    21/112

    Split Gate Design

    1.3

    Potential profile for the HL device

    H L L =45nm

    H -- L gate

    0.3

    0.5

    cm) H-L gateH gate

    0.9

    1.1

    potential(V

    ) Vds=0.2 V

    Vds=0.4 V

    Vds=0.6 V

    Vds=0.8 V

    Vds=1.0 V

    WH-WL=0.3eV

    Vgt=0.2V, Vds=0V

    Source Drain

    -0.1

    0.1

    ield(M

    V

    10.0 20.0 30.0 40.0 50.0 60.0

    Channel position (nm)

    0.5

    .

    p- sub

    -0.5

    -0.3

    ateralE-

    0

    20

    40

    EX(kV/cm) H gate

    H - L gate

    s= . The work-function of the H gateis higher than that of the L gate 0.0 20.0 40.0 60.0

    Channel position (nm)

    -0.7Channel-X (nm)

    An electric field peak is generated in the channel close to the sourceside which enhances source carrier injection into the channel ( gm ).

    Jason Woo IWSG2009

    out can e ncrease ue o e re uce c anne - eng -mo u a on.

  • 8/10/2019 JWoo_advanced MOSFETs Final

    22/112

    Simulation: Gm and Rout in scaled MOSFETs

    2250Empty Symbol: H deviceSolid Symbol: HL device

    50 400Empty symbol: H gate

    1750

    /mm)

    30

    40

    (K

    100

    200

    300Solid symbol: HL gate

    Lg = 130 nmRout(K

    1250

    Gm(mS

    =

    20Rou

    0 50 100 150 200 2500

    Bias current ( m)

    750

    Lg = 90 nmLg = 130 nmLg = 180 nm 0 100 200 300 400

    0

    Lg = 45 nm

    Both g and r can be improved by using this split gate design

    0 100 200 300 400 500Bias current ( m)

    Jason Woo IWSG2009

    for different channel length considered.

  • 8/10/2019 JWoo_advanced MOSFETs Final

    23/112

    Sb-induced Work Function Shift in the NiSi Gate

    T = 2.6nm

    NiSi/Oxide Capacitor, 100m x m

    2.6nm

    100

    e(pF) undoped NiSi

    50

    Capatan

    (1.5x1015cm-2)

    -2.0 -1.5 -1.0 -0.5 0.0 0.5Gate Bias (V)

    0

    NiSi Gate: Gate full silicidation and no oxide degradation. Antimony implantation in the polysilicon gate reduces the

    Jason Woo IWSG2009

    .segregation effect at the NiSi/oxide interface.

  • 8/10/2019 JWoo_advanced MOSFETs Final

    24/112

    Process Flow

    PR Sb

    PolySiN

    SiNPoly oxide 4.5nm/50nm/200nm

    Sb im lant ener

    (a) (c)

    dose and angle: 25KeV,1.5x1015 cm-2, 30o

    L TO

    SiN SiNNiSi

    NiSi NiSiSiN SiN

    r e spacer w :~ 80nm

    Si Si

    (b) (d)

    10mins @ 450 oC

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    25/112

    Id-Vg and Id-Vds curves

    (Substrates are undoped)5.0m ti lt-angle doped(Sb) NiSi gate

    4.0m Lg=0.6

    m Vg=2 V

    =

    n ope gate

    10

    m

    )

    1E-4

    10

    m)

    2.0m

    . .

    Vg =1.0 V

    rrent(A/.

    VDS=0.1 V

    rrent(A/

    Undoped NiSi

    1E-5

    0.0

    1.0m Vg=0.5 V

    Vg=0 VDrainc

    -1E-7

    1E-6

    Drainc

    Tilt-angle Sb

    -doped NiSi

    Improved current drive capability is observed for the NiSi gate

    . . . . . .

    Vds (V)

    . . . . . .

    Vg (V)

    Jason Woo IWSG2009

    ev ce w ang e b mp an a on rom e ra n s e, .e, e

    split-gate device.

  • 8/10/2019 JWoo_advanced MOSFETs Final

    26/112

    Scalable?

    2250

    1750m)

    Solid Symbol: HL device

    1250(mS/

    40

    50

    )

    750

    g

    10

    20

    30

    Rout(K

    0 100 200 300 400 500250

    0 100 200 300 400

    Bias Current (A/m)

    0Lg = 45 nm

    Jason Woo IWSG2009

    Bias Current (

    A/

    m)

  • 8/10/2019 JWoo_advanced MOSFETs Final

    27/112

    Improved speed-gain performance

    350Vth=0.15--0.25Vth=0.25--0.35

    300Hz)

    Lg=45nm

    IDS =100

    A/

    m

    g= nm

    250FT(G

    200Lsp=27.5 nmLsp=30 nmLsp=35 nmLsp=40 nmLsp=45 nmEmpty symbol: H device

    -

    -- --

    10 20 30 40Intrinsic Gain

    150

    Jason Woo IWSG2009

    performance compared with conventional MOSFETsperformance compared with conventional MOSFETs

  • 8/10/2019 JWoo_advanced MOSFETs Final

    28/112

    Laterally Asymmetric SiGe MOSFET

    channel

    Channel Engineering using Band gap Engineering Concept: Modificationof threshold voltage across the channel

    across the channel

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    29/112

    Tension Compression Tension

    zzz

    Si1-xGexSi1-yCySi

    SiSi Si1-xGex

    Ec EcEc

    Strained

    Ec~5y [eV] Ec~0.6x [eV]

    zzz

    Ev Ev Ev

    Si1-xGexStrained -SiSi1-xGex SiStrainedSi1-yCySi

    Ev~0.5x [eV]

    Jason Woo IWSG2009

    Suitable for

    PFET

    Suitable for

    NFET

    Suitable for

    NFET

  • 8/10/2019 JWoo_advanced MOSFETs Final

    30/112

    -

    Gate

    Poly-Si

    Source Drain

    P Si0.30Ge0.70n+ Si0.30Ge0.70 n

    + Strned-SiP Strned-Si

    BOX

    Si

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    31/112

    Digital Performance: Ion/IoffComparison

    Lg=50 nm, tsi=20 nm, tox=1.5 nm, Na=2x18 cm-3

    Ioffsame, VDS=1.0V1.6x10-3 As mmetric

    A/m)

    1x10-4

    10-3

    1.0x10-3

    1.2x10-3

    1.4x10-3

    /m)

    Asymmetric

    Channel MOSFET

    ra

    incurrent

    1x10-5

    -4

    6.0x10-4

    8.0x10-4

    raincurrent(

    anne

    Conventional

    Si MOSFET

    0.0 0.2 0.4 0.6 0.8 1.0

    10-7

    10-6

    0.0 0.2 0.4 0.6 0.8 1.0

    2.0x10-4

    .DSi MOSFET

    Gate Voltage(V)Gate Voltage(V)

    Improved Ion/Ioff ratio (15% improvement)

    Jason Woo IWSG2009

    Comparable Subthreshold Swing (S)

  • 8/10/2019 JWoo_advanced MOSFETs Final

    32/112

    Analog Performance Trends: Gm & Rout ComparisonsLg=50 nm, tsi=20 nm, tox=1.5 nm, Na=2x18 cm-3

    Ioffsame, VDS=1.0V

    -3

    2.2x10-3

    3.0x104

    /m)

    1.6x10-3

    1.8x10

    -3

    . x

    2.0x104

    2.2x104

    2.4x104

    2.6x104

    2.8x10

    m)

    AsymmetricChannel MOSFET Asymmetric

    Channel MOSFET

    Gmsat(S

    1.0x10-3

    1.2x10-3

    1.4x10-3

    41.2x10

    4

    1.4x104

    1.6x104

    1.8x104

    Rout

    (/

    ConventionalSi MOSFET

    Conventional

    Si MOSFET

    0 100 200 300 400 500

    6.0x10-4

    8.0x10-4

    0 100 200 300 400 500

    4.0x103

    6.0x103

    8.0x103

    .

    Ibias (A/m ) Ibias (A/m )Higher gm & gm/Ids ratio (low power) due to enhanced source injection

    Jason Woo IWSG2009

    Higher Intrinsic gain (gm x rout)

  • 8/10/2019 JWoo_advanced MOSFETs Final

    33/112

    Best Semiconductor Junctions

    Jason Woo IWSG2009S.M. Sze Semiconductor devices Wiley, 1985

  • 8/10/2019 JWoo_advanced MOSFETs Final

    34/112

    III-V/Si Co-Inte ration IssuesIssues: Incom atibilit with Si CMOS rocess/infrastructure in lar e area

    material growth and wafer bonding

    Poor device yield Poor device reliability

    Serious thermal mismatch

    Potential Solutions: m e e eterogeneous growt at t e nanosca e ev ce eve n

    selective drain/channel/source areas

    Choose the best heterojunctions for the best circuit functions

    ,

    carrier transport, higher breakdown and lower leakage currents Continue to use silicon as a substrate for mass production

    compatibility

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    35/112

    Selective Heterojunctions for Functions

    Si Si

    o y

    Oxide INSb/InAs/Ge InPGaN?

    High-K Insulator

    InSb/InAs/Ge?Si/SiGe

    Si Substrate/SOI Si Substrate/SOI

    -

    device areas may lead to ultra-high performanceand excellent reliabil ity

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    36/112

    195z)

    P=50W/cm2

    P=100W/cm2PotentialP=10W/cm2155

    cy

    (G

    P=200W/cm2

    Scaled CMOS95

    115

    r

    eque

    55

    75

    tching

    1535Sw

    Jason Woo IWSG2009

    node (nm)

  • 8/10/2019 JWoo_advanced MOSFETs Final

    37/112

    Analog Behavior -

    27000z)210 COSMOSGoals

    17000

    a

    in(G160

    t(GHz

    > 4X

    > 10X

    7000

    12000

    ft*

    60Silicon CMOS

    200030507090110130150170

    Node nm

    10

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    38/112

    Novel Source Injection MOSFETNovel Source Injection MOSFET

    I. As mmetricI. As mmetric SchottkSchottk TunnelinTunnelin

    Source Injection MOSFETSource Injection MOSFETA novel device structure incorporating gate controlledA novel device structure incorporating gate controlled

    source injection by schottky barrier tunnelingsource injection by schottky barrier tunneling

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    39/112

    MotivationMotivationScaled MOSFET performance is increasingly limited by:

    1. Parasitic Resistances : 2. Electrostatics and transport :Source / Drain junction resistance Non Scalability of subthreshold swing

    (diffusion limited) as well as built involtage of p-n junctions

    Metal Source/ Drain junctionsSource injection of carriers through

    Schottky Source Tunneling MOSFET:Schottky Source Tunneling MOSFET:

    Fully Silicided Source/Drain junctions

    Gate controlled source injection through schottky barrier

    Jason Woo IWSG2009

    tunneling

  • 8/10/2019 JWoo_advanced MOSFETs Final

    40/112

    Schottky Barrier FETsSchottky Barrier FETsIssues and ProblemsIssues and ProblemsGateMetal

    Lar e causes reduction in drive current

    Source DrainDrain Side SB causes reverse drain leakage as

    well as degradation in current in the linear regionHigh resistance region under the spacer causes

    potential drop

    Resistance likeResistance likebehavior observedbehavior observed

    in the linear regionin the linear regionof the Iof the IDD--VVDD curvescurves

    Jason Woo IWSG2009

    QQ.. TT.. ZhaoZhao etet al,al, MicroelectronicMicroelectronic EngineeringEngineering,,VolVol.. 7070,, pppp.. 186186,, 20032003..

  • 8/10/2019 JWoo_advanced MOSFETs Final

    41/112

    Schottky Barrier FETsSchottky Barrier FETsPotential solutionsPotential solutions

    Gate

    se sma b m n mum: . e r or

    electrons and 0.25eV (PtSi) for holes)but b always positiveSource Drain

    Use doped extension under the spacer

    reducing eff. bEliminates high Resistance region

    under the ate

    Doped extension

    The sourceThe source--channel andchannel anddrain channel contactsdrain channel contactsare now ohmic and notare now ohmic and not

    but transistor becomes conventionallike

    eliminates advantages of

    Jason Woo IWSG2009

    schottky in natureschottky in natureSchottky Barrier

  • 8/10/2019 JWoo_advanced MOSFETs Final

    42/112

    How about Analog Applications Source injection of carriers by tunneling atthe source schottky junction

    N+ Region on the drain side to form ohmic

    contact between drain and channel

    0 . 3 0

    0 . 4 5J

    T h e r m i o n i c I n c r e a s i n gG a t e V o lt a g e

    ge(eV)

    0 . 0 0

    0 . 1 5T u n n e l i n g

    ctionBandEd

    Source

    The gate controls tunnelingthrough the schottky barrier

    by changing the tunneling

    -4 -2 0 2 4 6 8 1 0 1 2 1 4

    - 0 . 3 0

    - 0 . 1 5

    Cond

    width as well as the availabledensity of states on thesemiconductor side

    Jason Woo IWSG2009

    D is ta n c e a l o n g c h a n n e l ( n m )

  • 8/10/2019 JWoo_advanced MOSFETs Final

    43/112

    Effect of Barrier Height (b

    )

    1x102

    = 0.25eV

    At same tOX, subthreshold

    1x100

    1x101

    0.45eV

    .

    at high b

    1x10-2

    1x10-1

    0.65eV

    A

    /m)

    is limited by the virtualcathode point in the channel

    1x10-4

    1x10-3

    tOX

    = 20

    =

    ID( us on m e

    However, Short Channel

    1x10-6

    1x10-5 D

    .

    VD= 1.0Vec s are

    considerably improved withtunneling at high b

    Jason Woo IWSG2009

    . . . . . .V

    G(V)

  • 8/10/2019 JWoo_advanced MOSFETs Final

    44/112

    Effect of Drain pocket (NDrn

    )

    1200

    1500

    b= 0.45eV

    Vg=1.0 V

    no drain pocketwith drain pocket

    Degradation in ID mainly caused

    600

    900t

    OX= 5

    Vg=0.6 V

    Vg=0.8 V

    (A/

    m)

    due to a drop across the forward

    biased schottky junction at the drain

    0.0 0.2 0.4 0.6 0.8 1.00

    Vg=0.4 VID.

    1

    10

    Sim.D

    1n10n

    100nno pocket

    F(A/m)

    Increase in IOFF due to back injectionof holes from drain to source

    1p10p

    p

    n+ drainpocket

    IOF

    A n

    +

    type pocket makes the drain sidejunction ohmic and hence prevents back-injection

    Jason Woo IWSG2009

    . . . . .V

    D(V)

  • 8/10/2019 JWoo_advanced MOSFETs Final

    45/112

    Scalability of the STS-FET

    Dramatic Improvement in-0.25

    0.30

    150)

    Induced Barrier Lowering(DIBL) with increasing b0.150.20

    Vth(V

    )

    6090

    -(

    b

    =0.25eV)

    (b=0.45eV)

    =0.65eV L(m

    V/

    0.45

    e60 90 120 150 180

    0.05

    0.10

    0

    30 DI

    0.00

    0.15

    0.30

    increase in VD

    BandEdL

    G(nm)

    source side is not affected

    b drain volta e immune-0.30-0.15 Increasing Drain

    Voltagenductio

    n

    Jason Woo IWSG2009

    to drain field) 0 20 40 60 80 100- .

    C

    Distance along channel (nm)

  • 8/10/2019 JWoo_advanced MOSFETs Final

    46/112

    Analog Performance: gm

    1 0 0 0

    1 2 0 0

    6 0 0

    8 0 0

    (S/

    m)

    4 0 0 F D - S O I

    B H = 0 . 3 0 e V

    Gm

    0 5 0 1 0 0 1 5 0 2 0 00

    B H = 0 . 4 5 e V B H = 0 . 5 5 e V

    B i a s C u r r e n t (

    A /

    m )At low bias currents, gm of the STSFET is higher than that of the conv.

    -

    Jason Woo IWSG2009

    .is higher as the barrier height decreases.

  • 8/10/2019 JWoo_advanced MOSFETs Final

    47/112

    Analog Performance: ROUT1 0

    4

    1 03

    (K-m)

    1 02 F D - S O I

    B H = 0 . 3 0 e V

    B H = 0 . 4 5 e V

    Rout

    0 5 0 1 0 0 1 5 0 2 0 01 0

    1

    B H = 0 . 5 5 e V

    At low bias currents, ROUT of STSFET is superior to conv. SOIFET due~

    Jason Woo IWSG2009

    . . . . Tunneling mechanism high ROUT

  • 8/10/2019 JWoo_advanced MOSFETs Final

    48/112

    Analog Performance: Gain (AV)1 0 3

    1 02

    F D - S O I

    B H = 0 . 3 0 e V B H = 0 . 4 5 e V in

    (A

    v)

    1 01

    B H = 0 . 5 5 e VG

    0 5 0 1 0 0 1 5 0 2 0 01 0

    0

    B i a s C u r r e n t A / m

    The gain is ~10X more than that of conventional SOI-FETIncrease in gm and ROUT for low bias currents (

  • 8/10/2019 JWoo_advanced MOSFETs Final

    49/112

    Frequency-Gain PerformanceSTS-FETSOI-FET

    2.0x103 STS-FET

    SOI-FET

    10

    Ibias

    = 100 (A/m)Gain

    1.5x103

    Gain

    102

    n

    trinsic

    2

    1.0x10 Ibias = 100 (A/m)

    Vth= 0.2 - 0.35V

    ntrinsic

    101

    Vth= 0.2 - 0.35V

    0.0

    .

    ft(GHz) ft(GHz) Improvement in Frequency-Gain performance for different

    Jason Woo IWSG2009

    Suitable for High performance, low power transistors

    N FET d i

  • 8/10/2019 JWoo_advanced MOSFETs Final

    50/112

    N-FET device

    1x102

    1x103

    1.1VVD=1.6V

    ID-VG char. for the NiSi STS nFET LG = 0.15m

    250

    300

    350 Sim. DataExp. Data

    ldSwing

    ec)

    1x10-1

    1x1001x10

    1 c ott yTunneling Current

    0.1V

    0.6V

    m)

    100

    150

    200

    SS = 60 + 4.7 x tO X

    Subthresh

    (mV/

    -4

    1x10-3

    1x10-2

    =

    ID(A/

    0 10 20 30 40 5050

    O xide thickness ()

    0 1 2 3 41x10

    -6

    1x10-5

    . t

    OX=30

    10n100n

    1

    no pocket

    Sim.Exp.

    /m)

    G

    1p10p

    100pn+ drain

    pocket

    IOFF(

    Observed drain leakage due to back-injection of h+ (ambipolar transport)

    Jason Woo IWSG2009

    0.0 0.4 0.8 1.2 1.6V

    D(V)

    S

  • 8/10/2019 JWoo_advanced MOSFETs Final

    51/112

    Summary Need to explore alternate structures to achieve high

    erformance low ower transistors

    Asymmetric Schottky Tunneling Source MOSFETconcep s n ro uce

    b

    ~ 0.3 0.65eV, EOT < 10,

    Drain-side pocket to improve linear characteristics

    Optimized device structure highly immune to Short

    Channel Effects Very Scalable Transistor Structures

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    52/112

    gm is higher than conv. SOI-FET at low bias currents,

    applications

    Big Improvement in ROUT and intrinsic gain(g

    mxR

    OUT) even at L

    G< 90nm at low currents

    Exceptional frequency-gain performance for low,

    Promising Alternative for mixed mode, RF and SOC

    Jason Woo IWSG2009

    applications

    N l S I j ti MOSFETN l S I j ti MOSFET

  • 8/10/2019 JWoo_advanced MOSFETs Final

    53/112

    Novel Source Injection MOSFETNovel Source Injection MOSFET

    II. QM-Injection Transistors

    Vs/dbVth Vsupply

    concepts made possible bynano-dimensions to achieves eep su res o sw ng anballistic carrier transport togive high Ion.

    g er off an re uce on offrat o

    Jason Woo IWSG2009

    s/db -Vth Threshold Voltage

    S Subthreshold Swing

    B k d

  • 8/10/2019 JWoo_advanced MOSFETs Final

    54/112

    BackgroundChallenges arising due to scaling in the sub-30nm regime

    Channel Trans ort Parasitic EffectsSource/Drain-

    to ChannelElectrostatic

    Limitation

    (MobilityReduction, Velocity

    (Source/Drain

    Resistance/Capacitance, Gate

    Subthreshold Swing >

    60mV/Decade min VTH for given

    sa ura on ea age off low Ion/Ioff

    Improved Device Architecture (Double or Tri-gate MOSFETS) New materials to enhance transport (SiGe or Ge channel) New Gate Dielectrics to reduce gate leakage (High-K dielectrics)

    Rationale of these approaches:

    Make the device Long-channel like

    Jason Woo IWSG2009

    (instead of exploiting new device physics opportunitiesafforded by nano-dimensions)

    54

    V Scaling

  • 8/10/2019 JWoo_advanced MOSFETs Final

    55/112

    V Scaling Low power devices with continued VDD scaling need

    - Reduced V to have reasonable I at low V

    - Small IOFF

    even with low Vth

    Conv. MOSFET Subthreshold Swing limited to

    60mV/dec (@300K) due to diffusion mechanism

    Alternate mechanisms of carrier injection not limited

    by diffusion limited swing:

    Tunneling

    Impact IonizationNeed of high VDD (> EG/q) to have working FETs

    Jason Woo IWSG200955

    M ti ti

  • 8/10/2019 JWoo_advanced MOSFETs Final

    56/112

    Motivation

    In order to continue scaling of transistors for low power,

    These alternate structures must be optimized for both analogand di ital erformance conducive to SOC a lications

    The Tunnel Source MOSFET:

    PNPN FET

    Significant low-power

    Jason Woo IWSG2009

    H g Res stance to SCEs xtreme y sca a ePerformance improvementOver conventional devices

    56

    Tunnel Transistors

  • 8/10/2019 JWoo_advanced MOSFETs Final

    57/112

    Tunnel TransistorsPrevious efforts on p-i-n structure using gate modulatedtunneling injection

    TFET (P-I-N)Nirschl. T et al, EDL, vol. 28, 4, pp. 315, 2007

    Vertical TFETBhuwalka et al, TED, vol. 51, 2, pp. 279, 2004

    , . , . , . , . - ,

    W. M. Reddick and G. A. J. Amaratunga, APL., vol. 67, no. 4, pp. 494497, 1995 Qin Zhang, Wei Zhao, Alan Seabaugh, EDL, Vol. 27, No. 4, 2006, pp. 297-300

    Jason Woo IWSG2009

    ,junction causes 100X reduction in current

    57

    Tunnel Transistors

  • 8/10/2019 JWoo_advanced MOSFETs Final

    58/112

    Tunnel Transistors

    Experimental TFETW. Y. Choi et al, EDL, vol.28, 8, pp. 743

    p-i-n FETK. Boucart et al, ESSDERC 2006, pp. 383

    Experimental verification of the p-i-n concept, however a 100Xreduction in current compared to conv. FET

    Jason Woo IWSG2009

    ambipolar nature of the device

    58

    Alternative Tunnel Transistor

  • 8/10/2019 JWoo_advanced MOSFETs Final

    59/112

    Alternative Tunnel Transistor

    Possible solutions

    Increase the lateral electric field at the source sideunc on an re uce unne ng w

    Asymmteric structure to eliminate ambipolar conductionAlternative Solution:

    Tunnel source PNPN-FET has advantages over p-i-n

    Reduced potential drop at the tunnel junction Improved drive current Reduced ambi olar conduction

    Jason Woo IWSG200959

    Device Concept

  • 8/10/2019 JWoo_advanced MOSFETs Final

    60/112

    Device Concept

    Novel device concept based on Band-to-Band Tunneling

    (Tunneling width is reduced by the fully depleted N+

    layer)SilicideSilicideSilicide

    n+ source

    fully

    depleted

    Gaten+ source

    fully

    depleted

    Gaten+ source fully

    depleted

    pocket

    Gate

    o ypocket

    P+ Source N+ Drain

    o ypocket

    P+ Source N+ Drain

    o y

    P+ Source N+ Drain

    Bulk (p)Bulk (p)BOX

    Jason Woo IWSG200960

    Tunnel Source PNPN n MOSFET

  • 8/10/2019 JWoo_advanced MOSFETs Final

    61/112

    Tunnel Source PNPN n-MOSFET

    Gate Electrode controls the source-to-channel tunnelingcurren y

    -band of the tunneling-source junction and the conduction

    band of the channel, thus modulating the availability ofdensity of states for tunneling

    mo u at ng t e tunne ng w t w c s a rea y ma esmall because of the narrow and fully depleted n-pocket)

    Jason Woo IWSG200961

    Device Concept

  • 8/10/2019 JWoo_advanced MOSFETs Final

    62/112

    Device Concept

    Conduction Band Conduction Band

    a

    Valence Band Valence Band

    When VG < VTurnon, I is small since the electrons from the P+

    valence band can tunnel only to the trap states When V

    G

    > VTurnon

    , electrons from the P source valenceband tunnel to empty states in the conduction band of thechannel

    Jason Woo IWSG2009

    (VTurnon Gate voltage required for conduction and valence

    bands to overlap) 62

    FD Pocket Essential

  • 8/10/2019 JWoo_advanced MOSFETs Final

    63/112

    FD Pocket Essential

    1.0

    1.5

    (eV)

    W= 4 nm

    1.0

    1.5W= 15 nm

    (eV)

    -0.5

    0.0

    0.5

    Energy

    ECEV -0.5

    0.0

    0.5

    EC

    EVEne

    rgy

    -2.0

    -1.5

    - .

    Electro

    Just Full Depletion -2.0-1.5

    -1.0

    Electro

    0.00 0.05 0.10 0.15 0.20- .

    Distance along channel (m)0.00 0.05 0.10 0.15 0.20

    -2.5

    Distance along channel (m)

    W width of the n+pocket

    Band diagrams illustrate the importance of full depletion of thepocket. For pocket which is only partially depleted, injection

    Jason Woo IWSG2009

    mechanism is no longer tunneling

    63

    Device Simulation

  • 8/10/2019 JWoo_advanced MOSFETs Final

    64/112

    Device Simulation

    Quantum Mechanical TunnelingBand-to-Band

    governed by

    Tunneling Probability (Tt)

    Fermi Selection RuleFFVV(E)*(E)* [1[1--FFCC(E)(E)]*]*u(E)u(E)

    Where u(E) =1 if there is availability of states

    governe y

    Tunneling width

    (incorporating phonon

    to tunnel to; 0 otherwise. FV(E) and FC(E) are

    Fermi-Dirac distribution functions for the

    initial and final energy states.

    Tunneling current: Esaki Diode integralIV-C=AFV (E)*nV (E)*Tt *[1-FC (E)]*nC (E)* u(E)dE

    Jason Woo IWSG200964

    Methodology for ATLAS simulations

  • 8/10/2019 JWoo_advanced MOSFETs Final

    65/112

    Methodology for ATLAS simulations

    Initial Guess for ATLAS

    Band-to-Band tunneling

    ATLAS Device Simulator

    with Band-to-Band tunneling

    parameter (BB.A)o e on use o eva ua e

    channel current (Ichan

    )

    Esaki tunnel diode formalism used

    to calculate tunneling current (Itun)

    at the tunneling source junction using

    Solution converged

    Used as starting guess

    simulated structure from ATLAS

    0.999 < Itun/Ichan < 1.001?Tweak parameter

    BB.A

    NoYes

    Jason Woo IWSG200965

    Device Calibration

  • 8/10/2019 JWoo_advanced MOSFETs Final

    66/112

    Device Calibration

    m2) Parameters:

    sity(A/c Effective mass m,

    tuned to obtain a fit

    rentDen with the

    experimental data

    Cu rom s con unne

    diodes

    Reverse Voltage (V)

    Theoretical Reverse bias tunneling diodecurrent matched with ex erimental +/n+

    Jason Woo IWSG2009

    diodes.Ref: M.W. Dashiell et al, TED, Vol.47, no.9, 1707 (2000)

    66

    Pocket Design

  • 8/10/2019 JWoo_advanced MOSFETs Final

    67/112

    Pocket Design

    300

    360

    W=4nm

    Pocket Doping = 5x1019

    cm-3

    1.6x1020

    70

    80ID= 1 nA/m

    ID= 100 nA/m

    180

    240W=15nmConv SOI

    mV/dec)

    8.0x1019

    1.2x1020

    AX(c

    m-3)

    50

    60

    V/d

    ec)

    0

    60

    120SS

    0.0

    4.0x1019N

    D

    20

    30 SS(

    -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1V

    G- V

    T(V)

    Pocket should be fully depleted for subthreshold swing to go below

    2 4 6 8 10Pocket Width W (nm)

    Pocket width should be small (

  • 8/10/2019 JWoo_advanced MOSFETs Final

    68/112

    ev ce Sca ab ty

    0.30

    0.32

    260

    0.26

    0.28

    (V) 220

    240

    V/V)

    0.22

    0.24

    VTHLIN

    180

    200 SOI

    IBL(

    40 50 60 70 80 90 1000.18

    0.20

    140

    160

    anne engtG

    nm

    Optimized structure is very scalable

    Jason Woo IWSG2009

    . -respect to Vth roll off and DIBL

    68

    Low Standby Power Performance

  • 8/10/2019 JWoo_advanced MOSFETs Final

    69/112

    5

    1x106

    PNPN

    1x104OFF

    1x102

    1x103

    T =60nm

    TOX

    = 1.1nmT

    OX= 2.5nm

    ION/

    40 50 60 70 80 90 1001x10

    1 Conv SOI

    LG

    (nm) Degradation in subthreshold swing and IOFF with scaling is

    negligible for the tunneling device

    Jason Woo IWSG2009

    As a result, ION/IOFF is improved by 3 orders over conventional

    SOI with scaling highly beneficial for low standby power

    applications 69

    Low Operating Power Performance

  • 8/10/2019 JWoo_advanced MOSFETs Final

    70/112

    3540

    (a)T

    OX= 1.1nm

    TOX

    = 2.5nm

    ) 3035

    (b)T

    OX= 1.1nm

    TOX

    = 2.5nm

    2025

    30 LG = 45nmV

    TH

    = 0.3-0.35 V

    (K

    20

    25PNPN

    G= nm

    VTH

    = 0.3-0.35V

    xROUT

    51015

    Conv. SOI

    PNPN

    ROU

    510 Conv. SOIG

    M

    0 200 400 600 800 10001200

    ID(

    /

    m)0 200 400 600 800 10001200

    0

    ID(/m)

    Tunnel n-FET also exhibits an improvement in ROUT

    over theconventional SOI for the given channel length as in (a). This can beattributed again to reduced drain coupling and resistance to SCEs.

    Jason Woo IWSG2009

    Intrinsic gain (GM x ROUT) is higherthan the conventional device, asshown in (b), especially at low IBIAS.

    70

    Vertical PNPN MOSFET

  • 8/10/2019 JWoo_advanced MOSFETs Final

    71/112

    Ve c OS

    Tunneling junction doping profile needs to be sharp,

    than ion implantation

    Vertical PNPN Transistor

    p+ Source n+ poc et

    In addition, vertical transistors have the advantages: Immunity to short-channel effects (multi-gate

    structure

    chann

    e

    Gate

    Gate

    Lithography independent critical dimensions (lessprocess variation) Higher on-current (multiple channels in one device)

    n+ Drain

    l

    Potential in 3-dimensional integration

    Jason Woo IWSG200971

    Summary

  • 8/10/2019 JWoo_advanced MOSFETs Final

    72/112

    y Need to explore alternate structures to continue scaling for lowpower applications

    The Tunnel Source MOSFET (PNPN tunnel nFET) has very lowstandb ower due to smaller than 60mV/dec subthreshold swin

    Optimized device structure highly immune to Short ChannelEffects Very Scalable Transistor Structures

    Achievement of Sub-threshold swing well below the diffusionlimit of 60mv/dec (at 300K) with Very Low IOFF and consequently a

    g er ON OFF rat o

    Improvement in intrinsic gain (gmxROUT) even for sub-90nm

    Jason Woo IWSG200972

  • 8/10/2019 JWoo_advanced MOSFETs Final

    73/112

    Ultimate High-Mobility Channel

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    74/112

    0D

    fullerenes

    1D

    carbon nanotube

    3D

    graphite

    0D fullerenes, 1D carbonnanotube and 3D graphite can beregarded as the wrap and stacksof several layers of graphene.

    Graphene

    rap ene:

    single sheet of graphiteunwrapped SWNT

    Jason Woo IWSG2009

    Graphene Deposition Methods

  • 8/10/2019 JWoo_advanced MOSFETs Final

    75/112

    Mechanical exfoliation

    Jason Woo IWSG2009

    P i ip Kim, et a . (2005) K.S.Novoselov, et al. (2004)

    Graphene Deposition Methods

  • 8/10/2019 JWoo_advanced MOSFETs Final

    76/112

    Epitaxial growth ---- thermal desorption of Si on (0001) face of singlecrystal 6H-SiC;

    Jason Woo IWSG2009

    Walt A.de Heer, et al. (2006)

    Chemicall Converted Gra hene

  • 8/10/2019 JWoo_advanced MOSFETs Final

    77/112

    Review: Graphite is oxidized via modified Hummers method andsimultaneously reduced and dispersed in anhydrous hydrazine.

    N2H5+

    N2H5+

    Thermall anneal

    N2H5+

    Solution processable chemically converted graphene has been

    2 5

    Jason Woo IWSG2009

    growth tests with the CERA team.

    77

    Chemicall Converted Gra hene

  • 8/10/2019 JWoo_advanced MOSFETs Final

    78/112

    1. Reduction of these new graphite oxides have been achieved2. Sin le sheet dis ersions usin urification techni ues

    previously described is being investigated

    3. These films are useful for the development of Graphene

    propoerties.

    10 um

    Jason Woo IWSG200978

    Graphene Deposition Methods

  • 8/10/2019 JWoo_advanced MOSFETs Final

    79/112

    4. Chemical vapor deposition using Ni as catalyst.

    Alfonso Reina, et al. Nano Lett. (2009)

    Jason Woo IWSG2009

    Graphene Deposition Methods

  • 8/10/2019 JWoo_advanced MOSFETs Final

    80/112

    Chemical synthesize from reduced graphite oxide.

    N2H4

    Spin coat onsubstrate

    Vincent Tung, et al. Nature Nanotech., (2009)

    Jason Woo IWSG2009

    Graphene Deposition Methods

  • 8/10/2019 JWoo_advanced MOSFETs Final

    81/112

    Radio frequency plasma-enhanced chemical vapor deposition.

    Jason Woo IWSG2009

    J.J.Wang, et al. (2004)

  • 8/10/2019 JWoo_advanced MOSFETs Final

    82/112

    Current Technology1. Mechanical Exfoliation

    Scotch tape is used to peel and stamp single and/or few layers fromHOPG (the yield is exceedingly low).

    2. Reduction of Silicon Carbide1,100C can be used to make very small regions ofgraphitic carbon

    .Difficulty is the strong van der Waals forces between sheets

    Graphene properties demonstrated to date are marginal for RFElectronics not clear that this process can be easily enhanced to

    Jason Woo IWSG2009

    .

  • 8/10/2019 JWoo_advanced MOSFETs Final

    83/112

    Fundamental Challenges of CVD Grapheneon Ni

    Non-homogeneity of graphene thickness;

    The expected grain boundaries in graphene.

    The multiple grained structure of blank Ni films on

    various substrates:

    The unavoidable multiple nucleation of graphene; The inability to control the location of graphene grain

    Jason Woo IWSG2009

    boundaries.

    83

    Large size monolayer graphene and the Raman spectra

  • 8/10/2019 JWoo_advanced MOSFETs Final

    84/112

    One

    LTwo

    L

    30um

    -

    OM

    image

    o

    t e

    grap ene

    graphene film without grain boundary

    Jason Woo IWSG2009

    One layer graphene

    84

    Graphene transfer using PDMS

  • 8/10/2019 JWoo_advanced MOSFETs Final

    85/112

    Pickup Transfer

    Continuous film

    tGraphene

    PDMS

    (Grapn/Ni/)SiO2/Si

    Sample062920093

    (1) Pick-up process : Attaching the PDMS with the CVD-grown Grapn/Ni/SiO2/Si and

    2 3 (2) Transfer process : Putting the FLG/PDMS onto the 300 nm SiO

    2/Si substrate to transfer

    Jason Woo IWSG2009

    - of 2 inch diameter wafer.

    85

    Graphene as grown and after transferred

  • 8/10/2019 JWoo_advanced MOSFETs Final

    86/112

    Graphene was synthesized by CVDusin cam hor as carbon source

    SEM image of the graphenegrown on Ni poly-crystalinesurface at 850oC.

    Transfer

    2699

    Jason Woo IWSG2009

    after transferred onto SiO2surface.

    Raman spectrum of the transferredgraphene which indicates the graphene.

    86

  • 8/10/2019 JWoo_advanced MOSFETs Final

    87/112

    1. Pattern and etch of annealed Ni film;

    2. Thick Ni film deposited on patterned surfaces +anneal + CMP

    3. Annealin of atterned Ni with a ca in la er

    Jason Woo IWSG2009

    Process flow

  • 8/10/2019 JWoo_advanced MOSFETs Final

    88/112

    SiO2 SiO2TiN

    Si substrate

    Pattern TiN/SiO2substrate

    Deposit Ni/SiO2on SiO2

    Anneal at1000C 5minTiN

    Ni

    SiO2

    Jason Woo IWSG2009

    emoveo geflat surface

    88

    SEM icture of annealed

    Part 1

    l

  • 8/10/2019 JWoo_advanced MOSFETs Final

    89/112

    sample

    Jason Woo IWSG2009

    Over 90% Ni patterns havebecome single crystal

    89

    Structure of Graphene

  • 8/10/2019 JWoo_advanced MOSFETs Final

    90/112

    2-dimensional Dirac-Fermions

    In plane: honey comb structure

    w eren a oms an

    Out of plane: Van de Waals force Zero band-gap

    Jason Woo IWSG2009

    Linear E-k relationship

    Physical Properties of Graphene

  • 8/10/2019 JWoo_advanced MOSFETs Final

    91/112

    Semi-metal with zero band-gap and large .

    High mobility in the plane ( ~15,000cm2

    /Vsat room tem erature

    Nearly ballistic transport in m scale( velocity ~108cm/s )

    2D structure more compatible withcurrent MOSFET process technology.

    ---- Graphene has great potential to be usedas a channel material in MOSFET devices.

    Jason Woo IWSG2009

    Carrier Densities in Monolayer Graphene

  • 8/10/2019 JWoo_advanced MOSFETs Final

    92/112

    Linear E-k relationship

    E = k is reduced Planck constant,

    Fis Fermi velocity ~ 1x106m/s

    Carrier Densities per unit area in monolayer graphene

    6

    7

    cm-2)

    electron densityhole densit

    ,1)(2 0

    /)(2 +=

    +

    + kTEEF

    vse

    e

    dggn

    Fc

    h

    3

    4

    nh(x1012

    ,1)(2 0

    /)(2 +=

    +

    + kTEEF

    vsh

    e

    dggn

    Fv

    hni =10

    11cm-2

    Intrinsic Carrier Density -0.2 -0.1 0 0.1 0.2 0.30

    1ne,

    -0.3

    2,2 == vs gg

    Jason Woo IWSG2009

    ni ~ 1011/cm2-1012/cm2 F

    - c,v

    Metal-Oxide-Graphene Capacitor Structure

  • 8/10/2019 JWoo_advanced MOSFETs Final

    93/112

    0.8

    Metal Oxide

    0.6

    .

    Cox

    Graphene

    0.4

    0.5Ctot2

    -1 -0.5 0 0.5 10.3 monolayer graphene ~ 3.37 gate oxide: tox=2nm

    Jason Woo IWSG2009

    G metal-graphene =

    Graphene Field-effect Transistors with Metal Source and

    Drain - Simulation

  • 8/10/2019 JWoo_advanced MOSFETs Final

    94/112

    n+Metal n+MetalGrapheneMetal Metal -1

    101

    Total Current

    )

    p-SiSiO2p-SiSiO2

    10-3Electron Current Hole Current(m

    A/

    -

    10-5IDS tgraphene ~ 3.37

    gate oxide: tox=2nm metal- ra hene =0

    Ambipolar conduction: IDS = Ie+Ih

    -1.0 -0.5 0.0 0.5 1.0

    VGS(V)

    Jason Woo IWSG2009

    on off ~ or GS= an GS=

    Issues of Graphene Field-effect Transistors

    T di l i d i i

  • 8/10/2019 JWoo_advanced MOSFETs Final

    95/112

    Choose different gateTop-gate dielectric deposition:-- Function layer needed

    Gate

    TH -- ause ranspor egra a onin graphene

    Bottom dielectric

    Si substrate

    Graphene

    Interaction between grapheneand bottom dielectricSeries resistance

    Contact resistance

    -- cause ranspor egra a on

    Add to parasitic resistances and Trap states in graphene consume

    Jason Woo IWSG2009

    charges but not conductive

    Effect of Parasitic Resistance and Capacitance on Current

    LV

  • 8/10/2019 JWoo_advanced MOSFETs Final

    96/112

    sc

    c

    Gc

    sGc

    DD RQ

    WQ

    LVR

    RVR

    VI

    =

    += .resistanceparasiticischarge,conductiveis,)(,

    )(

    oxgraccDsDD

    CCCCC

    VQ

    VQ

    VIRVW

    VI

    ++==2

    ,)(

    defgraox

    gra

    D

    DsDDox

    egraox

    CCC

    C

    V

    IRVVC

    L

    W

    ++

    = 2)(

    Ideal expression

    Effect of parasitic resistance

    Effect of quantum capacitance of graphene and defect capacitance.

    Jason Woo IWSG2009

    Effect of Parasitic Resistance

    on Current

  • 8/10/2019 JWoo_advanced MOSFETs Final

    97/112

    on Current0.25 Ideal case, on/off ~ 68

    0.20

    /m)

    s= , on o ~Rs=100, on/off ~ 20Rs=200, on/off ~ 12

    W/L=1;

    =15,000cm2

    /Vst =2nm

    0.10IDS(m

    DS= .ox

    VDS=10mV

    0 0.2 0.4 0.6 0.8 10

    .

    V V

    Reduce IDS: Rs=50, IDS @VGS=1Vdecrease ~57%

    Jason Woo IWSG2009

    Reduce gm: change the shape of IDS-VGS

    Reduce Ion/Ioff: Rs=50, on/off ratio

  • 8/10/2019 JWoo_advanced MOSFETs Final

    98/112

    Evaporated SiO2 on Exfoliated Graphene

  • 8/10/2019 JWoo_advanced MOSFETs Final

    99/112

    20nm SiO2 deposited togetherwith gate metals using e-beamevaporat on an t-o process

    Current degraded (~30%) aftertop-gate stack deposition

    Jason Woo IWSG2009

    M. C. Lemme, etc. Solid-State Elec.2008

    ALD Al O on Graphene

  • 8/10/2019 JWoo_advanced MOSFETs Final

    100/112

    -

    no dangling bonds or functional groups to

    Al2O3 using functional group

    -Al2O3

    2 3

    formation

    Jason Woo IWSG2009

    ALD Al2O3 using O3 as Function Layer

  • 8/10/2019 JWoo_advanced MOSFETs Final

    101/112

    a HOPG surface treated b ozone retreatment. b ALD Al O surface onozone-treated HOPG. (c) TEM image of cross-section after Al2O3 deposition.

    Fresh HOPG sample

    Pre-treated by ozone, oxygen atoms absorbed on the surface

    ALD Al2O3 using TMA+O3

    Jason Woo IWSG2009

    , . . . .

    ALD Al2O3 using NO2 as Function Layer

  • 8/10/2019 JWoo_advanced MOSFETs Final

    102/112

    First applied on single wall carbon nanotubes

    NO2 attracted on carbon surface through physical

    Aluminum centers of TMA attracted to oxygen end ofNO2

    Jason Woo IWSG2009

    Demon B. Farmer, et al, Nano. Lett. (2006)J. R. Williams, et al. Science (2007)

    Al[CH3]3 (trimethylaluminum) and H2O precursors

  • 8/10/2019 JWoo_advanced MOSFETs Final

    103/112

    [ 3]3 ( y ) 2 p Physisorption of NO2 50 cycles of the ALD process

    ph

    ene

    ph

    ene

    SiO

    2gr

    SiO

    2gr

    Jason Woo IWSG2009

    ALD Al2O3 using Evaporated Al as Function Layer

  • 8/10/2019 JWoo_advanced MOSFETs Final

    104/112

    Graphene, covered by Al2O3

    E-beam evaporate 1~2nm Al on graphene

    Al bein oxidized in ambient before ALD

    ALD Al2O3 deposited on oxidized Al

    Jason Woo IWSG2009

    Seyoung Kim, etc. Appl. Phys. Lett. 2009

    Graphene FETs with Al O Dielectrics

  • 8/10/2019 JWoo_advanced MOSFETs Final

    105/112

    Jason Woo IWSG2009

    IBM, IEDM 2008

    Ambipolar Conduction of Graphene

    El t t1.6

  • 8/10/2019 JWoo_advanced MOSFETs Final

    106/112

    Electron current1.2m

    )Simulation of Graphene FET with

    1.2

    1.6

    ) Hole dominates 0.4

    0.8

    ID(

    mA/me a con ac s

    0.8

    (mA/

    -1.0 -0.5 0.0 0.5 1.00.0

    VG (V)

    -1.0 -0.5 0.0 0.5 1.00.0

    .I

    /m) Hole current

    1.2

    1.6

    G

    ID(m

    0.4

    0.8

    The sum of electron and holecurrent is ambipolar.

    Jason Woo IWSG2009

    VG (V)-1.0 -0.5 0.0 0.5 1.0

    0.0Electron (or hole) current only isunipolar.

    Schottky Tunneling Structure Applied in Graphene FETs

    S DG

  • 8/10/2019 JWoo_advanced MOSFETs Final

    107/112

    Em lo Schottk unctions atS DG

    source/drain

    to suppress ambipolarconduction

    n+Metaln+

    MetalGraphene

    n+-Sin+-Si

    increase Ion/Ioff

    Schottky junction at source:

    -

    p-SiSiO2p-SiSiO2

    band-bending near the junction

    always electrons tunnelingthrou h the barrier

    EC EC=EV

    B .EFn

    Schottky junction at drain: n+ drain supplies only few holesEV

    VDS =0.01V

    Jason Woo IWSG2009

    hcon ource rap ene anne

    Graphene FETs with Schottky Tunneling Source/Drain -

    Ex erimental

    LPCVD Polysilicon on insulated surface

  • 8/10/2019 JWoo_advanced MOSFETs Final

    108/112

    y

    Etch Pol silicon to form source/drain

    Spin coat chemical synthesized graphene

    Top-gate dielectric deposition -evaporate 500nm Al contacts on Polysilicon

    E-beam evaporate 500nm Al as gate

    Al

    Poly-Si Poly-SiGraphene

    AlAl

    DielectricPoly

    Poly

    2

    Si

    rap ene

    Jason Woo IWSG2009

    2 3

    ALD Al2O3 with Evaporated Al on CVD Graphene

    CVD graphene transferred to SiO2 substrate

  • 8/10/2019 JWoo_advanced MOSFETs Final

    109/112

    CVD graphene transferred to SiO2 substrate

    vapora e nm us ng e- eam evapora on

    Immediately transfer to ALD machine 2 3 2

    SiO2Graphene

    SiO2Graphene Oxidized Al

    ALD Al2O3

    SiSi

    Jason Woo IWSG2009

    AFM Images of Al2O3 on CVD Graphene

    3 05

    a) CVD Graphene on SiO2Before Al2O3 deposition

  • 8/10/2019 JWoo_advanced MOSFETs Final

    110/112

    ~3.05nmSiO2

    2.05m

    Graphene

    ~3.05nmb) 2nm evaporated Al on surface

    2.05 m

    SiO2

    After Al2O3 deposition

    Graphene ~3.05nm

    c) 8nm ALD Al2O3 on top of Al

    Jason Woo IWSG2009

    Summary

    Potential CVD Graphene Synthesis

  • 8/10/2019 JWoo_advanced MOSFETs Final

    111/112

    Potential CVD Graphene Synthesis

    Graphene Proporties Inteface Issues

    Graphene MOSFET Processes Graphene Channel FET Structures

    Graphene FETs Processing

    Jason Woo IWSG2009

  • 8/10/2019 JWoo_advanced MOSFETs Final

    112/112


Recommended