+ All Categories
Home > Documents > Kaatze_1995

Kaatze_1995

Date post: 04-Jun-2018
Category:
Upload: sunny-arora
View: 218 times
Download: 0 times
Share this document with a friend
18
8/13/2019 Kaatze_1995 http://slidepdf.com/reader/full/kaatze1995 1/18 Pergamon 0969-806X 94)00070-0 Radiat. Phys. Chem. Vol. 45. No. 4, pp. 549-566. 1995 Copyright © 1995 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0969-806X/95 $9.50 + 0.00 MICROWAVE DIELECTRIC PROPERTIES OF LIQUIDS UDO KAATZE Drittes Physikalisches Institut, Universitgt G6ttingen, BiirgerstraBe 42-44. D-37073 Grttingen. Germany Abstract--An account is given on dielectric relaxation spectroscopy as a domain of current interest in liquid state physics. Based on results mainly from this laboratory, dielectric properties of liquids at microwave frequencies are summarized and the underlying molecular mechanisms are discussed. Particular attention is paid to the unique behaviour of aqueous systems. 1. INTRODUCTION: DIELECTRIC RELAXATION SPECTROSCOPY OF LIQUIDS Liquids are characterized by a short-range molecular order which rapidly varies in time. To monitor this order and its thermal fluctuations dielectric spec- troscopy utilizes electrical charge distributions as naturally present molecular marks (Brown, 1956; Fr6hlich, 1958; Daniel, 1967; Hill et al., 1969; Davies, 1972, 1975, 1977; B6ttcher, 1973; B6ttcher and Bor- dewijk, 1978; Grant et al., 1978; Scaife, 1989). Par- ticularly suitable labels are permanent electric dipole moments ~. Hence special emphasis is usually di- rected toward the study of dipolar liquids. However, examples are given below to show that nonpolar liquids may be also of interest. Among the variety of dipolar liquids water and aqueous mixtures are most important with respect to applications in medicine, biology, chemical engineering, and environmental science as well (Franks, 1972, 1973a, b, 1975a, b, 1979, 1982; Franks, 1985, 1986, 1988, 1989). Conse- quently, much attention has been paid (and will be given in this review) to aqueous systems. Basically, dielectric spectroscopy aims at the pre- cise knowledge of two quantities, (i) the r.m.s, value p = (p2(t)),/2 (1) of the noise signal of the electric polarization P at thermal equilibrium ((P(t))= 0), and (ii) the nor- malized autocorrelation function (P(t)- P(O)) qb(t ) = (2) (P(O) • P(O)) of this signal. ~(t) is also called dielectric decay function . At thermal equilibrium, however, the noise resulting from the fluctuating polarization of the liquid is masked by the noise from the measuring apparatus itself. It is thus impossible to monitor the fluctuating polarization of the sample with sufficient accuracy if equilibrium remains completely undis- turbed. To increase the sensitivity in the measure- 549 ments the sample liquid is usually exposed to a monochromatic electric field E(v) of low field strength (P-E0<<kT; E0, amplitude). Varying the frequency v the polarization P(v) is measured as a function of v and the dielectric properties of the liquid are expressed by the complex (electric) permittivity defined by E (v) = ¢'(v) = iE (V) = 1 P(v) eo E v~ + 1. (3) Herein, e 0 denotes the electric field constant. The real part e'(v) of the permittivity represents the inphase component of the polarization while the (negative) imaginary part E (V) represents the contri- butions to P (v) with a ~/2 phase shift with respect to E (v). Hence use of a complex permittivity allows to take into account possible phase lags between the responding polarization and the exciting sinusoidal electric field which may result from molecular inter- actions preventing P (v) from instantaneously follow- ing E(v). A phase lag between P(v) and E(v) means that electric energy is dissipated as heat within the sample liquid. If displayed as a function of v the negative imaginary part e therefore looks like an absorption curve (Fig. 1). As predicted by the fluctu- ation/dissipation theorem the real part e'(v) shows dispersion characteristics (Fig. 1). Let us briefly return to the time domain. Inter- molecular forces are also reflected by the noise signal of the polarization and thus by a non-trivial dielectric decay function. Following linear systems theory the complex permittivity e (v) and the autocorrelation function ~(t) of the polarization noise signal are related according to the Laplace transform 1Ps f~[ dqb(t)le ,~Vtdt+l e (v) = E0E~ J0 dt = [E (0) - 11 ~- e-'~ 'dt + 1 (4)
Transcript
Page 1: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 1/18

P e r g a m o n 0 9 6 9 - 8 0 6 X 9 4 ) 0 0 0 7 0 - 0

Ra d i a t . Ph ys . Ch em . Vol. 45. No. 4, pp. 549-566. 1995

Copy righ t © 1995 Elsevier Science LtdPrinted in Gre at Britain. All rights reserved

0969-806X/95 $9.50 + 0.00

MICROWAVE DIELECTRIC PROPERTIES OF LIQUIDS

U D O K A A T Z E

Drit tes Physikalisches Inst i tut , Universi tgt G6tt ingen, BiirgerstraBe 42-44. D-37073 Grt t ing en. Germ any

Abstract--An account is given on dielectric relaxa tion spectroscopy as a dom ain of current interest inl iquid s tate physics . Based on results mainly from this laboratory, dielectric propert ies of l iquids atmicrowave frequencies are summarized an d the underlying mo lecular mechanisms are discussed. Part icularat tent ion is paid to the unique behaviour of aqueous systems.

1. INTRODUCTION: DIELECTRIC RELAXATION

SPECTROSCOPY OF LIQUIDS

L i q u i d s a r e c h a r a c t e r i z e d b y a s h o r t - r a n g e m o l e c u l a r

o r d e r w h i c h r a p i d l y v a r i e s i n t i m e . T o m o n i t o r t h i s

o r d e r a n d i t s th e r m a l f l u c t u a t i o n s d i e l e c t r i c s p e c -

t r o s c o p y u t i li z e s e l e c t ri c a l c h a r g e d i s t r i b u t i o n s a s

n a t u r a l l y p r e s e n t m o l e c u l a r m a r k s ( B r o w n , 1 95 6;

F r6 h l i ch , 1 9 5 8 ; Dan i e l , 1 9 6 7 ; H i l l et al . , 1969 ; Dav ies ,

1972, 1975, 1977; B6 t tche r , 1973 ; B6 t tch er and Bo r-

d e w i j k , 1 9 7 8 ; G r a n t et al . , 1978 ; Scai fe , 1989) . Par-t i c u l a r l y su i t a b l e l a b e l s a r e p e r m a n e n t e l e c t r ic d i p o l e

m o m e n t s ~ . H e n c e s p e c i a l e m p h a s i s i s u s u a l l y d i -

r e c t ed t o w a r d t h e s t u d y o f d i p o l a r l i q ui d s. H o w e v e r ,

e x a m p l e s a r e g iv e n b e l o w t o s h o w t h a t n o n p o l a r

l i q u id s m a y b e a l s o o f i n te r e s t. A m o n g t h e v a r i e ty o f

d i p o l a r l i q u id s w a t e r a n d a q u e o u s m i x t u r es a r e m o s t

i m p o r t a n t w i t h r e s p e c t t o a p p l i c a t i o n s in m e d i c i n e ,

b i o l o g y , c h e m i c a l e n g i n e e r i n g , a n d e n v i r o n m e n t a l

s c i en ce a s we l l (F ran k s , 1 9 72 , 1 9 7 3 a , b , 1 9 7 5 a , b ,

1979, 1982; Franks, 1985, 1986, 1988, 1989). Conse-

q u e n t l y , m u c h a t t e n t i o n h a s b e e n p a i d ( a n d w i l l b e

g i v e n i n t h i s r e v i e w ) t o a q u e o u s s y s t e m s .B a s i c a l l y , d i e l e c t r i c s p e c t r o s c o p y a i m s a t t h e p r e -

c i se k n o w l e d g e o f t w o q u a n t i t i e s , ( i) t h e r . m . s , v a l u e

p = (p 2 ( t ) ) , / 2 (1 )

o f t h e n o i s e s i g n a l o f th e e l e c t r i c p o l a r i z a t i o n P a t

t h e r m a l e q u i l i b r iu m ( ( P ( t ) ) = 0 ), a n d ( ii ) t h e n o r -

m a l i z e d a u t o c o r r e l a t i o n f u n c t i o n

( P ( t ) - P (O ) )qb(t ) = (2)

(P (O) • P (O) )

o f th i s si g n a l . ~ ( t ) i s a l s o c a l le d d i e l e c t r i c d e c a y

f u n c t i o n . A t t h e r m a l e q u i l ib r i u m , h o w e v e r , t h e

n o i s e r e s u l t i n g f r o m t h e f l u c t u a t i n g p o l a r i z a t i o n o f

t h e l i q u id is m a s k e d b y t h e n o i s e f r o m t h e m e a s u r i n g

a p p a r a t u s i t s e lf . I t is th u s i m p o s s i b l e t o m o n i t o r t h e

f l u c t u a t i n g p o l a r i z a t i o n o f t h e s a m p l e w i t h s u f f i c i e n t

a c c u r a c y i f e q u i l i b r iu m r e m a i n s c o m p l e t e l y u n d i s-

t u r b e d . T o i n c r e a s e t h e s e n s i ti v i t y i n t h e m e a s u r e -

549

m e n t s t h e s a m p l e l i q u i d is u s u a l l y e x p o s e d t o a

m o n o c h r o m a t i c e l e c t r ic f i e ld E ( v ) o f l o w f ie l d

s t r e n g t h ( P - E 0 < < k T ; E 0 , a m p l i t u d e ) . V a r y i n g t h e

f r e q u e n c y v t h e p o l a r i z a t i o n P ( v ) i s m e a s u r e d a s a

f u n c t i o n o f v a n d t h e d i e l e c t r ic p r o p e r t i e s o f t h e l i q u i d

a r e e x p r e s s e d b y t h e c o m p l e x ( e l e c tr i c ) p e r m i t t i v i t y

d e f i n e d b y

E (v ) = ¢ ' (v ) = iE (V) = 1 P ( v )eo Ev ~ + 1 . (3 )

H e r e i n , e0 d e n o t e s t h e e l e c t r i c f ie l d c o n s t a n t . T h e

r e a l p a r t e ' ( v ) o f t h e p e r m i t t i v i t y r e p r e s e n t s t h e

i n p h a s e c o m p o n e n t o f t h e p o l a r i z a t i o n w h i l e t h e

( n e g a t i v e ) i m a g i n a r y p a r t E ( V ) r e p r e s e n t s t h e c o n t r i -

b u t i o n s t o P ( v ) w i t h a ~ / 2 p h a s e s h i f t w i t h r e s p e c t t o

E ( v) . H e n c e u s e o f a c o m p l e x p e r m i t t i v i t y a ll o w s t o

t a k e i n t o a c c o u n t p o s s i b l e p h a s e l a g s b e t w e e n t h e

r e s p o n d i n g p o l a r i z a t i o n a n d t h e e x c i t i n g s i n u s o i d a l

e l e c t ri c f i e ld w h i c h m a y r e s u l t f r o m m o l e c u l a r i n t e r -

a c t i o n s p r e v e n t i n g P ( v ) f r o m i n s t a n t a n e o u s l y f o l l o w -

i n g E ( v ) . A p h a s e l a g b e t w e e n P ( v ) a n d E ( v ) m e a n s

t h a t e l e c t r ic e n e r g y i s d i s s i p a t e d a s h e a t w i t h i n t h es a m p l e l i q u id . I f d i s p l a y e d a s a f u n c t i o n o f v th e

n e g a t iv e im a g i n a r y p a r t e t h e r e fo r e l o o k s l ik e a n

a b s o r p t i o n c u r v e ( F i g . 1 ). A s p r e d i c t e d b y t h e f l u c t u -

a t i o n / d i s s ip a t i o n t h e o r e m t h e r e a l p a r t e ' ( v ) s h o w s

d i s p e r s i o n c h a r a c t e r i s t i c s ( F i g . 1 ).

L e t u s b r i e f ly r e t u r n t o t h e t i m e d o m a i n . I n t e r -

m o l e c u l a r f o r c e s a r e a l s o r e f l e c te d b y t h e n o i s e s i g n a l

o f th e p o l a r i z a t i o n a n d t h u s b y a n o n - t r i v i a l d i e l e c t r ic

d e c a y f u n c t i o n . F o l l o w i n g li n e a r s y s te m s t h e o r y t h e

c o m p l e x p e r m i t t i v i ty e ( v) a n d t h e a u t o c o r r e l a t i o n

f u n c t io n ~ ( t ) o f t h e p o l a r i z a t i o n n oi s e s ig n a l a r e

r e l a te d a c c o r d i n g t o t h e L a p l a c e t r a n s f o r m

1 P s f ~ [ d q b ( t ) l e , ~ V t d t+ le (v) = E0 E~ J0 dt

= [E (0 ) - 11 ~ - e - '~ 'd t + 1 (4 )

Page 2: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 2/18

550 UDOKAATZE

8 0

4

2

~

t c 1 . } _ 7 _ _ -0 I ~ t I

4 L i t i i

10 I 1

1 2 ~ r

0 I I I I I

2 / , 7 1 0 2 0 G H z t O 7 0

V

Fig. 1 . Real par t e ' ( v ) and nega t i ve im ag ina ry pa r t e ( v ) o fthe com plex perrni t t iv i ty plot ted versus f requency v forwater a t 25 °C (Kaatze , 1989a). The ful l curves are grap hs o fthe D ebye - type r e l axa ti on func t i on de f ined by equa t ion (6 )wi th the fol lowing va lues for the parameters: E oo)= 5.2 ,

e (0) - 78.36, z = 8.27 ps.

w h e r e P s , E ~ , a n d e ( 0 ) d e n o t e s t a t i c v a l u e s (v ---*0) .I n F i g . 2 , a s a n e x a m p l e , t h e d i e le c t r ic d e ca y f u n c t i o n

o f w a t er , c o r r e s p o n d i n g w i t h th e s p e c t r u m s h o w n i n

F i g . 1 , i s d i s p l a y e d v s t i m e t . T h e a u t o c o r r e l a t i o n

f u n c t i o n e x h i b i t s a s t e e p d e c r e a s e a t s m a l l t . S u c h

d e c r e a s e i s c o m m o n t o a l l l i q u i d s . I t r e s u l t s f r o m

d i s p l a c e m e n t p o l a r i z a t i o n m e c h a n i s m s r e s p o n d i n g

t o o f a s t ( < 1 0 - 1 2 s ) t o b e re s o lv e d b y m i c r o w a v e

s p e c t r o s co p y [ ( 2 ~ - 1 0 -1 2 s ) - l = 1 60 G H z ] . H e n c e t h e

i n i t i a l f a s t d e c a y i n t h e a u t o c o r r e l a t i o n f u n c t i o n

( F ig . 2 ) a n d , c o r r e s p o n d i n g l y , t h e e x t r a p o l a t e d

h i g h f r e q u e n c y p e r m i t t i v i t y e ( o o ) ( F i g . 1 ) a r e n o t

c o n s i d e r e d h e r e .T h e s l o w e r d e c a y i n g p a r t ( I ) r( t) o f ~ ( t ) r e p r e s e n t s

r e l a x a t i o n b e h a v i o u r . C r ( t ) o f w a t e r a t r o o m t e m -

p e r a t u r e c a n b e a l m o s t r e p r e s en t e d b y a n e x p o n e n t i a l

( K a a t z e , 1 9 8 % . 1 9 9 3 ) ,

@~( t ) = Or (0 )e - ' JL (5 )

T h e d e c a y t i m e z o f th i s f u n c t i o n i s c a l le d d i e l e c tr i c

r e l a x a t i o n t i m e . I f a c c o r d i n g t o e q u a t i o n ( 4) t h e

e x p o n e n t i a l d e c a y f u n c t i o n i s t r a n s f o r m e d i n t o t h e

f r e q u e n c y d o m a i n a D e b y e - t y p e r e l a x a t i o n s p e c t r a l

f u n c t i o n r e s u l t s ( D e b y e , 1 92 9). H e n c e t h e d i e l e c tr i cs p e c t r u m s h o w n i n F i g . 1 c a n b e a n a l y t ic a l l y r e p -

r e s e n t e d a s

E 0 ) - e o o )e ( v ) = e ( ~ ) + ( 6 )

1 - r i o g z

w h e r e co = 2 n v .

I n v i e w o f m o l e c u l a r m o d e l s o f l i q u i d s i t i s d e s i r -

a b l e t o d i s c u s s m a c r o s c o p i c a l l y a c c e s s i b l e p o l a r i z -

a t i o n r e l a x a t i o n p r o c e s s e s i n te r m s o f d i p o l e

a u t o c o r r e l a t i o n t i m e s % . H o w e v e r , t h e r e d o e s n o t

e x i s t a g e n e r a l l y v a l id r e l a t i o n , w i t h a l l q u a n t i t i e s

a c c e s s ib l e , b e t w e e n d e c a y t i m e s o f q~ ( t ) a n d t h o s e o ft h e ( n o r m a l i z e d ) d i p o l e a u t o c o r r e l a t i o n f u n c t i o n

~k~( t ) de f ined by

O , ( t ) . l , 0 ) >

¢ /~ ( t ) < / t (0 ) . / t (0 )> (7 )

T h e c o m p l e x i t y o f t h e p r o b l e m c a n b e r e a li z ed b y

u s i n g i n e q u a t i o n ( 2) t h e d e f i n i ti o n o f t h e p o l a r i z a ti o n

a s t h e t o t a l e le c tr ic m o m e n t p e r v o l u m e V o f a g i v e n

v o l u m e e l e m e n t ,

P ( t ) = ] ~ L / t , ( t ) . ( 8 )r i = i

I n t h i s e q u a t i o n , N v d e n o te s t h e n u m b e r o f m o l ec u -

l a r d i p o le s w i t h i n t h e s a m p l e v o l u m e . I n s e r t i o n o f t h e

s u m [ e q u a t i o n ( 8 ) ] i n t o e q u a t i o n ( 2) i n d i c at e s t w o

e s s e n t i a l l y d i f f e r e n t c o n t r i b u t i o n s to P ( t ) , p r o d u c t s

b e t w e e n i d e n ti c a l d i p o l e m o m e n t s ( s e l f t e r m ) a n d

t h o s e b e t w e e n d i f f e r e n t m o l e c u l a r d i p o l e m o m e n t s

( d i s t i n c t t e rm ) . H e n c e b e s i d es th e d i p o l e a u t o -

c o r r e l a t i o n f u n c t i o n q G ( t ) a l s o t h e c r o s s c o r r e l a t i o n

f u n c t i o n

< t ~ , t ) . Y ~ ~ , j 0 ) >

J* i (9)¢~ . ( t ) = O , (0 ) - ~ , ( 0 ) >

m a y a c t a n i n fl u e n c e o n ¢ ( t ) . O n e h a s t h u s t o b e

c a r e fu l w h e n i n t e r p r e t i n g m a c r o s c o p i c a l ly m e a s u r e d

c o l l e c t i v e r e l a x a t i o n t i m e s a s m o l e c u l a r a u t o c o r r e l a -

t i o n t i m e s . I t h a s b e e n s h o w n , h o w e v e r , t h a t w i t h

l i q u i d w a t e r

z . ~ z (10 )

i f , i n c o r r e s p o n d e n c e t o z , % r e f e r s t o t h e s l o w l yd e c a y i n g p a r t o f t h e a u t o c o r r e l a t i o n f u n c t i o n ( K a a t z e

a n d P o t t e l , 1 9 9 2 ) .

1 [

0 5

I E ~ { O ] I

0 I I I0 ¢ 8 1 2 p s 1 6

f

Fig. 2. D ielectric decay fun ctio n @(t ) of w ater at 25°Cdisplayed as a funct ion of t ime t .

Page 3: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 3/18

Microwave dielectric properties of liquids 551

2 E X P E R IM E N T A L M E T H O D S

Basically, the complex dielectric permittivity of a

liquid is determined by measuring either the complex

reflection coefficient at a sample/solid interface or the

complex tr ansmission coefficient of a liquid column,

preferably at variable thickness (Hill e t a l . , 1969;

Bennett and Calderwood, 1971; Gra nt e t a L , 1978;

Kaatze and Giese, 1980a; Bailey, 1985; Bryant, 1988;

Barthel e t a l . , 1991). Nowadays microprocessor con-

trolled network analyzer combined with broadband

coaxial line components are utilized up to consider-

ably high frequencies (v ~> 20 GHz) . These methods

compete with time domain techniques in which the

sample is exposed to a step voltage pulse (van

Gemert, 1973; Cole, 1977; Cole e t a l . , 1989; Clarkson

e t a L , 1977; Kaatze and Giese, 1980a; Gestblom and

Noreland, 1988; Gestblome t a l . ,

1987; Nozaki andBose, 1990). Time dom ain spectroscopy, however,

suffers from an unfavourabl e power spectrum (~tv-2)

of the exciting signal. Also in use above about 5 GHz

and mandatory at higher frequencies (v/> 20 GHz)

are smallband waveguide devices.

At microwave frequencies measurements of the

reflection coefficient are accompanied by a standing

wave pattern. Analysis of this pattern constitutes a

suitable method for the study of liquids with low

dielectric loss. Matched to high-loss liquids are

methods in which a travelling wave is transmitted by

the sample. This method normally involves a bridgecircuit in order to probe the electromagnetic field

within the sample interferometrically. If only small

amounts of liquids are available (Kaatze, 1973) or if

liquids of very low loss are investigated (Stumper,

1973) resonator techniques are to be preferred in

which the effect that the sample exerts on the electro-

magnetic field is substantially increased by multiple

reflections (Sucher and Fox, 1963).

The way in which complex permittivity measure-

ments on liquids are performed at microwave fre-

quencies may be illust rated by two different methods.

Up to a critical frequency which is mainly given bythe TM0rmode cut-off frequency vc of the circular

waveguide (Marcuvitz, 1951) of the specimen cell

(Fig. 3) the det erminat ion of the reflection coefficient

R (v) of this cell as a function of frequency v has

proven a powerful method. This cell essentially con-

stats o f a coaxial line/ci rcular waveguide transition.

The waveguide is excited below its cut -off frequency

re. When filled with a lossless sample (E = 0) vc is

given by the relation

2c(11)

vc v e/~72.61d

where c denotes the speed of light in empty space and

d the diameter of the cell.

The cut-off mode of operation results in a strong

decrease in the ampli tude of the electromagnetic field

within the waveguide. Hence the shape of the surface

of the liquid column does not affect the measurements

q /c i v i c

¢ F E ¢1vlC2

Co

P

Fig. 3. Sketch of the apparatus for broadband reflectioncoefficient measurements and electrical equivalent circuit ofthe sample cell (1). l(a), l(b), waveguide below cut-off andcoaxial line section of the cell, respectively; l(c), matcheddielectric window; l(d), coaxial feeding line; 2, reflection estset basically consisting of a directional coupler (2a) and a

beam splitter (2b); 3, network analyzer; 4, process controlcomputer.

so that easy to handle open cells can be used. In order

to reach optimum sensitivity in the measurements he

length l of the coaxial line (lb, Fig. 3) can be adjus ted

to the dielectric properties of the sample under test

and also to the frequency range of interest.

Via a reflection test set (2) the cell (1) is connected

to a computer-controlled network analyzer (nwa,3).

With the aid of the beam splitter (2b) of the test set

part of the signal from the generator (G) of the nwais fed back to the nwa reference port (R). The other

part is transmitted to the cell (1). A high-precision

directional coupler (2a) allows the wave reflected by

the cell to be received by the nwa (L6nnecke-Gabel,

1990).

In many cases it is sufficient to represent the cell

characteristics by two parameters to be found by

calibration measurements with liquids of well-known

dielectric properties. Suitable parameters for this

purpose are the length L of the feeding coaxial line

(ld, Fig. 3) and a n effective length le~ of the liquid-

filled part. Due to the aperiodic field in the waveguide

which acts like a capacity termination the effective

length exceeds/. At small I electric flux lines passing

the dielectric window (lc) and the sample liquid as

well become impor tan t (Kaatze and Giese, 1987a). As

has been shown by modal analysis it is sufficient to

consider the effect of these flux lines by two further

Page 4: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 4/18

552 UDO KAATZE

I

1~ .~ 16

3

I

1 2 3 3 3 1 /, 1 5 3 2

Fig. 4 . Schematic representation of autom atic microwave double -beam interferometers for off-balancemeasurem ents of the complex perm ittivity of liquids. I , mon och rom atic oscillator; 2, uniline; 3, directionalcoupler; 4, power sensor of 5, level meter; 6, frequency counter; 7, circular waveguide sample cell with8, dielectric window and 9 , shiftable pro be; 10, stepping m oto r with 1 , c ont rol unit; 12, digita l distancemeter; 13, flexible waveguide; 14, vari able attenu ator ; 15, varia ble phase shifter; 16, process con trol

computer.

p a r a m e t e r s a n d t o r e p r e s e n t t h e s a m p l e c e l l b y t h e

e q u i v a l e n t c i r c u i t s h o w n i n F i g . 3 . W e a p p l y t h i sm e t h o d i n m e a s u r e m e n ts b e t w e en 1 M H z a n d 3 G H z

w i t h t h e u p p e r l i m i t b e i n g g i v e n b y t h e f r e q u e n c y

r a n g e o f t h e a v a i l a b l e n w a .

A t f r e q u e n c i e s a b o v e s o m e G H z e l e c t r o m a g n e t i c

f i e ld s o f a g r e e a b l e w a v e l e n g t h 2 a r e s e t u p i n t h e

s a m p l e l iq u i d s. A s a c o n s e q u e n c e w a v e p r o p a g a t i o n

p r o p e r t i e s c a n b e d i r e c t l y m e a s u r e d . I n F i g . 4 a n

o u t l i n e o f a n a p p a r a t u s i s p r e s e n t e d w h i c h i n a

c o m p u t e r - c o n t r o l l e d m o d e o f o p e r a t i o n e n a b l e s t h e

f i e l d w i t h i n t h e l i q u i d t o b e p r o b e d i n t e r f e r o m e t r i c a l l y

( W a l l u s c h e t a L , 1 9 95 ). T h e s am p l e i s co n t a i n e d i n a

w a v e g u i d e ( 7 ) w h i c h i s s e a le d b y a d i e l e c t r i c w i n d o w

( 8 ). A r e c e i v i n g p r o b e ( 9 ), b a s i c a l l y a ls o a c i r c u l a r

w a v e g u i d e ( 9 ) i s i m m e r s e d i n t h e l i q u i d . P r o v i d e d

w i t h h i g h p r e c i s i o n b a l l b u s h g u i d e s t h i s p r o b e c a n b e

p r e c i s e l y s h i f t e d f re e o f b a c k l a s h a l o n g t h e d i r e c t i o n

z o f w a v e p r o p a g a t i o n . A n e s p e c ia l ly d e s i g n ed h e a d

o f t h e p r o b i n g w a v e g u id e p r e v e n t s w a v e s f ro m c o m -

i n g t o t h e u p p e r s u r f a c e o f th e l i q u i d c o l u m n . S i g n a l s

r e f l e c t e d f r o m t h i s s u r f a c e , t h e p o s i t i o n o f w h i c h

c h a n g e s w h e n s h i f t i n g t h e p r o b i n g w a v e g u i d e , h a v e

t h u s n o t t o b e t a k e n i n t o a c c o u n t i n t h e c o n s i d e r a t io n

o f t h e e l e c t r o m a g n e t i c f ie l d w i t h i n t h e s a m p l e v o l u m e .

D e p e n d i n g o n t h e d i e l e c tr i c p r o p e r t i e s o f t h e l i q u i d

u n d e r t e s t t h e s ig n a l m a y , h o w e v e r , b e m o r e o r

l e s s f r e q u e n t l y r e f l e c t e d b e t w e e n t h e w i n d o w / s a m p l e

i n t e r f a c e a n d t h e s a m p l e / p r o b e in t e r f a c e .

W i t h t h e a i d o f d i r e c t i o n a l c o u p l e r s t h e r e s u l t i n g

m i c r o w a v e s i gn a l t ra n s m i t t e d t h r o u g h t h e s a m p l e i s

c o m b i n e d w i th a r e f e r e nc e w a v e t h e a m p l i t u d e a n d

p h a s e o f w h i c h c a n b e a p p r o p r i a t e l y a dj u s t ed . F o r

t h i s p u r p o s e t h e r e f e r e n c e b r a n c h o f th e i n t e r f e r o m e -t e r is p r o v i d e d w i t h a v a r i a b l e a t t e n u a t o r ( 1 4) a n d a

v a r i a b l e p h a s e s h i f t e r ( 1 5 ) , r e s p e c t i v e l y . M e a s u r e -

m e n t s a r e p e r f o r m e d b y f i r s t a d j u s t i n g t h e r e f e r e n c e

w a v e a n d b y s u c c e s s iv e l y s h i f t in g t h e p r o b i n g w a v e g -

u i d e ( 9 ) a f t e r w a r d s . D u r i n g t h i s s h i f t t h e v o l t a g e U 0

o f t h e o u t p u t p o w e r s e n s o r is m o n i t o r e d u s i n g a

s u i t a b l e l e v el m e t e r . I n p u t v o l t a g e U~ i s m e a s u r e d b y

a n o t h e r p o w e r s e n s o r / l e v e l m e t e r u n i t . T h e r e f o r e ,

p o s s i b l e c h a n g e s i n t h e p o w e r o f t h e o s c i l l a t o r (1 ) c a n

b e c o n s i d e r e d b y f o r m i n g t h e r a t i o U o / U i . T h i s

r a t i o i s s t o r e d b y t h e p r o c e s s c o n t r o l c o m p u t e r ( 1 6 )

a s a f u n c t i o n o f d is c r e t e p r o b e p o s i t i o n s z,,

( n = 1 . . . . N ) . T h e c o m p l e x p e r m i t t i v i ty o f t h e

s a m p l e i s f o u n d b y f i t t in g t h e a n a l y t i c a l e x p r e s s i o n

f o r t h e i n t e r f e r o m e t e r v o l t a g e r a t i o t o t h e m e a s u r e d

U o ( z n ) / U ~ r e l a t i o n , a n e x a m p l e o f w h i c h i s d i s p l a y e d

in F ig . 5 .

3. DIP OLE FLUCTU ATIONS. ROTATI ONAL AND

TRANSLATIONAL MOTIONS

W i t h m a n y l i q u i d s o f i n t e r e s t d i e l e c t ri c r e l a x a t i o n

i s p r e d o m i n a n t l y d u e t o r e o r i e n t a t i o n a l m o t i o n s o f

d i p o l a r m o l e c u l e s . N e v e r t h e l e s s c h a n g e s i n t h e

a m o u n t # = i /l [ o f t h e d i p o l e m o m e n t m a y a l s o

c o n t r i b u t e t o t h e d i e l e c t r ic r e l a x a t i o n s p e c t r u m .

L e t u s f i r s t c o n s i d e r a p r o t i c d i m e t h y l s u l f o x i d e

( D M S O , F i g . 6) a s a n e x a m p l e . I t s d i e l e c t ri c s p e c t r u m

e x t e n d s o v e r a s o m e w h a t b r o a d e r f r e q u e n c y r a n g e

t h a n a D e b y e - t y p e r e l a x a t i o n s p e c t r u m . T h i s fi n d i n g

Page 5: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 5/18

M icrowave die lec t ric pro per t ies o f l iquids 553

1 m i m

-- 0.5o

0

0.5 ~.5

x

I ~ I/ I m

1.5 2.5 3.5

z l k

Fig. 5 . Plot of the interferom eter vol tage ra t io U0/Ui (Fig. 4)a s a func t i on o f t he p robe pos i t i on t o wave l eng th ra t i o , z / 2 .Figure sym b ol s m a rk d a t a m easured a t d i scret e z , va lue s(n = 1 . . . . N ) . T he fu l l cu rve i s t he g raph o f t he t heore t ic a lU o / U versus z / 2 func t i on wi th pa ram e te r s found by a

regression analysis (Wal lusch et al., 1995).

i s a n i n d i c a t i o n o f a n u n d e r l y i n g d i s t r i b u t i o n o f

r e l a x a t i o n ti m e s . I t w a s f o u n d t h a t t h e D M S O s p ec -

t r u m c a n b e w e l l r e p r e s e n t e d b y t h e f u n c t i o n p r o -

p o s e d b y D a v i d s o n a n d C o l e ( 1 9 5 0 ) w h i c h c a n b e

e x p r e s s e d a s

E o ) - ~ o o )e ( v ) = e ( ~ ) q (1 + ia~zs) (1-/~) (12 )

T h i s s p e c tr a l f u n c t i o n c o r r e s p o n d s w i t h a n u n s y m -

m e t r i c c o n t i n u o u s r e l a x a t i o n t i m e d i s t r i b u t i o n i n

w h i c h z s d e n o t e s t h e l a r g e s t r e l a x a t i o n t i m e . P a r -

a m e t e r f l m e a s u r e s t h e w i d t h o f th e r e l a x a t i o n t i m e

d i s t r i b u t i o n .

B e s i d e s t h e c h a r a c t e r i s t i c r e l a x a t i o n f r e q u e n c y

vs = (2nz~) - l t he f r eq ue nc y Ym= ( 2n Z m ) - 1 o f t h e m a x i -

m u m d i e l e ct r i c l o s s i s a l s o s h o w n i n F i g . 6 . T h i sf r e q u e n c y , d e f i n e d b y

d E ( v ) / d v l , , m = 0 , d 2 e ( v ) / d v 2 l v < 0 ( 1 3 )

i s p a r t i c u l a r l y u s e f u l i f r e s u lt s f o r u n s y m m e t r i c r e l a x -

a t i o n t i m e d i s t r i b u t i o n s a r e c o m p a r e d w i t h s u c h f o r

s y m m e t r ic d i s t r ib u t i o n s .

S i n ce m o l e c u l e s c a n n o t f o r m h y d r o g e n b o n d s i n

p u r e D M S O t h e a m o u n t o f t h e m o l e c u l a r d i po l e

m o m e n t m a y b e a s s u m e d t o b e i n d e p e n d e n t o f t im e .

L e t ® ( t ) d e n o t e t h e a n g l e t h r o u g h w h i c h t h e d ip o l e

c h a n g e s i t s d i re c t i o n d u r i n g t. T h e n o r m a l i z e d d i p o l e

a u t o c o r r e l a t i o n f u n c t i o n ( e q u a t i o n 7 ) c a n t h e n b e

w r i t t e n a s

~b~( t ) = ( c os O ( t ) ) (14 )

T h e d i e l e c t r i c r e l a x a t i o n t i m e (Zm ~ Z s) m a y t h u s b e

c o n s i d e r e d t h e r e o r i e n t a t io n t i m e % r. F r o m

( c o s ® ( % r ) ) = l / e f ol l o w s ® ( % r ) = 6 8 °. T h o u g h

D M S O i s a n o n - a s s o c i a t i n g l i q u i d th e r e e x is t in d i -

c a t i o n s f o r e f f e c t s o f a n t i - p a r a l l e l d i p o l e o r d e r i n g

( K a a t z e e t a l . , 1 9 8 9 b ) . A s a c o n s e q u e n c e , t h e s t a t i c

p e r m i t t i v i t y E ( 0 ) is d e t e r m i n e d b y

/tefr = g /2#. (15 )

A

x

50

4 0

30

20

10

25

20

15

10

5

~ o - ~ - o - o - ~ 6 ~ o '- c'(O)

ki k

I I I

/ ? \iI \m

, , o i i

~ 6 I I \

v

0

0.1 0.3 1 3 10 30 GHz 100

V

Fig. 6 . Co mp lex die lec t ric s pect rum of dim ethyl sulfoxide a t25°C (Kaatze et al . , 1989b).

I n e q u a t i o n ( 1 5 ) g d e n o t e s a ( s t a ti c ) c o r r e l a t i o n

p a r a m e t e r w h i c h m e a s u r e s t h e l o c al m o l e c u l a r o r d e r -

i n g o f t h e p e r m a n e n t d i p o le m o m e n t s ( K i r k w o o d ,

1 9 3 9 ) . A s i m i l a r s i t u a t i o n i s f o u n d w i t h v a r i o u s

l iq u i d s . F l u c t u a t i o n s e i th e r o f t h e a m o u n t o r o f t h e

o r i e n t a t i o n o f m o l e c u l a r d i p o l e m o m e n t s c o n t r i b u t e

p r e d o m i n a n t l y b u t n o t s o l e l y to t h e d i e l e c tr i c s p e c -

t r u m . D i e l ec t ri c s p e c t ra o f l i q u i d s c o n t a i n i n g n o n -

d i p o l a r e l e c tr o n d o n a t o r a n d a c c e p t o r m o l e c u le s h a v e

b e e n d i s cu s s e d a s to b e d u e t o f o r m a t i o n o f d i p o l a r

c h a r g e t r a n s f e r c o m p l e x e s ( G 6 t t m a n n , 1 9 7 6) . I f t h e

k i n e ti c s o f c o m p l e x a t i o n i s p r e s e n t ed b y t h e r e a c t i o n

s c h e m e

kr

a c c e p t o r + d o n a t o r ~ - - - c o m p l e x ( 16 )kb

t h e r e l a x a t i o n t i m e Zm i s g i v e n b y

1 t 1

- - - - ~ 1 7 )

T m Cohere Tor

w h e r e

I(18 )

Cchem - (1 -- x ) k f + k b

H e r e i n x d e n o t e s t h e m o l e f r a c t i o n o f c o m p l e x e s i n

t h e m i x t u r e . I n d e r i v i n g e q u a t i o n ( 1 8 ) i t h a s b e e n

t a c it ly a s s u m e d t h a t t h e r e o r i e n t a t i o n a l m o t i o n s o f

d i p o l a r c o m p l e x e s a r e c h a r a c t e r i z e d b y a d i s c r e t e

RPC 45 z~42

Page 6: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 6/18

554 U d o K a a t z e

Table 1. Diele ctric e laxatio n time ~m,chem ical relax ation time %h~m[equation (18)], and dip ole reorientation tim e zo, for som e liquid

electron transfer systems at 20 r'C (G6ttman n, 1976)

Tm T c h e m t'orAcceptor Dona tor ps ps ps

p-Benzoquinone p-X yle ne 4.9 6.7 19

p-Be nzo quin one Mesitylene 5.2 6.8 22D u r oqu inon e Mes i ty tene 4 .7 5 .6 22

r e o r i e n t a t i o n t i m e Z o r. T a b l e 1 p r e s e n t s d a t a f o r s o m e

c h a r g e t ra n s f e r s y s t e m s t o s h o w t h a t cm i s i n d e e d

m a i n l y g i v e n b y ~chem b u t t h a t i t i s a l s o i n f l u e n c e d b y

t h e d i p o l e o r i e n t a t i o n t i m e % r -

A n e x a m p l e o f re l a x a ti o n m e c h a n i s m i n w h i c h

b o t h c h e m i c a l k i n e ti c s a n d m o l e c u l a r d y n a m i c s c o u l d

a c t a s a n i n f l u e n c e o n t h e r e s u l t in g r e l a x a t i o n t i m e i s

t h e f o r m a t i o n o f io n c o m p l e x e s i n s o l u t i o n ( P o t te l ,

1 9 6 5, 1 9 66 ; F a l k e n h a g e n , 1 9 71 ; K a a t z e a n d G i e s e ,1 9 8 7 a ; K a a t z e e t a l . , 1 9 8 7 b ) . I n F i g . 7 t h e c o m p l e x

d i e l e c t r i c s p e c t r u m o f a 0.1 m o l a r s o l u t i o n o f

S c 2 ( S O 4 ) 3 i s d i s p l a y e d a s a n e x a m p l e . T h e d i e l e c t r i c

c o n t r i b u t i o n e ( v ) t o t h e t o t a l ( n e g a t i v e ) i m a g i n a r y

p a r t E '(o t(V ) o f t h e p e r m i t t i v i t y i s s h o w n i n t h a t

d i a g r a m . I t h a s b e e n c a l c u l a t e d u s i n g t h e r e l a t i o n

E t ' (v ) = e ' t' ot (Y) - - O (E0( .O) - I ( 19)

t o s u b t r a c t t h e c o n t r i b u t i o n d u e t o d r i f t o f i o n s. I n

e q u a t i o n ( 1 9 ) cr d e n o t e s t h e s p e c i f i c e l e c t r ic c o n d u c -

, , , , , 4 , H - - i, , - , - , 4 - t i /

°° . .

s ~fo6o

4

2

o J J p ~(, )-- - I00

~ 3

1

0 3 i

1 0 0 = t I I

10 .....

~ 3 l - ........ ( 2 n ~ ) - ' .) '::i.(2 rrr3 )-' ........1 / , I I ,':':. [ , I , 1

0 . 0 0 0 1 0 . 0 0 1 0 .0 1 0 .1 1 1 0 G H z 1 0 0

Fig . 7 . Complex d ie lec t r ic spec t r um w i thout conduc t iv i tycontr ibutions ( ful l points ; Kaatze and Giese, 1987a) and

ultrasonic excess abso rption spectrum (circles ; Bonson et al . ,1978) of a 0 .1 mo la r aqueou s so lu t ion of s candium su l fa tea t 25° C. D ashed cur ves ind ica te the subdiv i s ion of thedielectr ic spectrum into solvent water ( sw ) and solute ioncomplex ( u ) cont r ibu t ions . D ot ted cur ves a r e gr aphs ofthe D ebye- type r e laxa t ion te r ms w hich accor d ing to thechemica l equi l ib r ium be tw een d i f f e r en t ion complexconf igur a t ions ( equa t ion 20) cont r ibu te to the u l t r a sonic

absor p t ion .

t i v i ty . A l s o s h o w n i n F i g . 7 is t h e u l t r a s o n i c e x c e s s

a b s o r p t i o n s p e c t r u m o f t h e 0 .1 m o l a r S c2 (S O4 )3

s o l u t i o n . I t e x h i b i t s t h r e e D e b y e - t y p e r e l a x a t i o n r e -

g i o n s a t f r e q u e n c i e s b e l o w s o m e G H z . T h e s e u l t r a -

s o n i c re l a x a t i o n s h a v e b e e n a t t r i b u t e d ( B o n s e n e t a l . ,

1 9 7 8 ) t o t h e e q u i l i b r i a i n t h e E i g e n - T a m m m e c h a n -i s m ( E i g e n a n d T a m m , 1 9 62 ) o f st e p w is e d i s s o c i at i o n

o f s a lt s w h i c h m a y b e g e n e r a ll y r e p r e s e n t e d b y t h e

r e l a t i o n

kfl[Mm + ]aq q- [L~- ] aq- ~ [ Mm +( H 2 0) 2 L=- ]aq

kbl

k 2 kox . [ M m + ( H 2 0 ) t ' - ] a q . - [ M m + L ~ - ].q . ( 20)

k b k b 3

M m + a n d L I - a r c s h o r t h a n d n o t a t i o ns f o r t h c m + f ol d

c h a r g e d r e c ta l i o n a n d t h c I - f o l d c h a r g c d l i g an d ,

r e s p e c t i v e l y .

T h e d i e le c tr i c s p e c t r u m o f t h e S c 2 ( S O 4 ) 3 s o l u t i o n

r c v c a l s t w o r c l a x a t i on re g i o n s o n l y o n c o f w h i c h i s

c l e a rl y d u c t o t hc s o l vc n t w a t c r ( s w ) . H c n c c t h c

f o r m a t i o n a n d d c c a y o f i o n c o m p l c x c s a s w e l l a s t h ei r

r e o r i c n t at i o n a l m o t i o n s o b v i o u s l y r c s u l t i n a si n g l c

r e l a x a t i on o n l y . T h c r c a r c t w o r c a s o n s f o r t h i s ( o n a

f ir st l a n c e , s u r p r i s i n g ) r e s ul t . T h c r c o r i c n t a t i o n t i m e s

o f t h e d i p o l a r s p e c i c s i n t hc e q u i l i b r iu m ( 2 0 ) a p p e a r

t o b e m u c h s m a l l c r t h a n t h c r cl c v an t c h e m i c a l r c l a x -

a t i o n t i m es s o t h a t Z ~ > > Z ~ m t h r o u g h o u t . I n a d -

d i t i o n , t h c r c o r i c n t a t i o n t i m c s o f t h e d i f f c r e n t d i p o l a r

i o n s p e c i e s n e a rl y a g r e e w i t h a n o t h e r ( K a a t z c a n d

G i e s e , 1 9 8 7 a ) s o t h a t t h c d i f f c r cn t r c l a x a t i o n r e g i o n s

a s d u c t o f l u c t u a t io n s i n i o n c o m p l e x o r i e n t a ti o n

s t r o n g l y o v c r l a p .

A n o t h e r p h c n o m c n o n i n w h i c h d i e l e c t r i c r c l a x -

a t i o n m a y r c f lc c t r c o r i c n t at i o n a l a n d t r a n s l at i o n a l

m o t i o n s a s w c l l i s t h e s o l v a t i on b y d i p o l a r s o l v c nt s .

A p r o m i n c n t e x a m p l e i s t h e h y d r a t i o n ( h ) o f s m a l l

i o n s i n w h i c h d i e l ec t r i c s a t u r a t i o n c f f c c ts ( S e c t i o n 6 )

r c s u l t i n a n o r i e n t a t i o n c o r r e l a t i o n f a c t o r g h s m a l l e r

t h a n t h a t o f t h e b u l k s o l v c n t w a t c r g . F l uc t u a t i o n s i n

t h e d i e le c tr i c p o l a r i z at i o n o f t h c s o l u t i o n s m a y t h u s

n o t o n l y b c c a u s c d b y c h a n g e s i n t h e o r i e n t a ti o n o f

t h c d i p o l a r s ol v c n t m o l c c u l e s. S i n c e a n c x c h a n g c o f

a w a t e r m o l e c u l e b e t w e e n t h e h y d r a t i o n r c g i o n a n d

t h e b u l k p h a s e i s a c c o m p a n i c d b y a c h a n g e

( g l / 2 _ g ~ / 2 ) ~ i n t h e e f f e c t iv e d i p o l e m o m e n t , t r a n s l a .

t i o n a l m o t i o n s w i ll a l so c o n t r i b u t e t o p o l a r i z a t i o n

f l u c t u a t i o n s ( G i e s e e t a l . , 1970; Giese, 1972) . In

g e n e r a l t h e r e s u l t i n g d i e l e c t r ic r e l a x a t i o n t i m e Lm

d e p e n d s o n t h e r e o r i e n t a t i o n t i m e s T ho r a n d Vsw a n d

m e a n r e s id e n c e t i m e s , g a n d * ** o f w a t e r m o l e c u l e s

i n t h e h y d r a t i o n r e g i o n a n d b u l k p h a s e , r e sp e c t iv e l y ,

a n d a l so o n t h e o r i e n t a t i o n c o r r e l a t i o n f a c t o r gh a n d

n u m b e r Z h p e r i o n o f w a t e r m o l e c u l e s w i t h gh 4= g

( F ig . 8 ) .

H y d r a t i o n w a t e r e x c h a n g e i s c e r t a in l y o n e r e a s o n

f o r t h e r e m a r k a b l e f i n d i n g t h a t t h e d i e l e c t r i c r e l a x -

a t i o n t i m e o f w a t e r a r o u n d s m a l l io n s m a y b e s h if t ed

t o w a r d s m a l l e r v a l u e s w i th r e s p e c t to p u r e w a t e r

( T a b l e 2 ). A n e n h a n c e m e n t o f t h e r e o r ie n t a t i o n t i m e

Page 7: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 7/18

Microwave dielectric properties of liquids 555

of hyd ration molecules in strong Coulombic fields is

to be expected and has indeed been found by

measurements of nuclear magnetic longitudinal relax-

ation rates (1/TI) of electrolyte solutions (Hertz,

1973). The reorientation time for the proton-proton

vector of Li + hydra tion water, for example, has avalue of about 20 ps (Endom e t a l . , 1967)while the

residence time in the hydration region amounts to

about 40 ps (Hertz a nd Zeidler, 1963).

In Table 2 the shift in the dielectric relaxation time

of water around ionic solutes is expressed by individ-

ual B~ coefficients which have been calculated

according to the additivity rule

m + m -- - B ~ - + - - B 2 = B e 2 1 )m m

assuming Ba = --0.01 (mol/kg) -1. In equat ion (21)

m, m +, and m - denote the molal concentration ofsalt, cations and anions, respectively, and

1 /' dZm xBd = n l i ra / -/ . (22)

Cw m ~ 0 ~ , dm J

Subscript w is used to identify paramete rs of

non-affected water. The negative B2 values of small

bi- and trivalent cations, however cannot be due to

hydrat ion water exchange since the residence time of

water molecules in the dielectrically saturated hy-

drat ion region (g~ <g) is too long (e.g. ~* >/1/~s

aro und AP+; Hertz, 1973) to cont ribute to the dielec-

tric spectrum in the microwave region. Effects ofnegative hydration a nd of kinetic depolarization to be

discussed below may also reduce the dielectric relax-

ation time of water around ionic solutes.

4 . A S S O C I A T I N G L I Q U I D S . W T E R

Dielectric relaxation of associating liquids could

reflect changes in p resulting from the continuous

rupture a nd reformation of hydrogen bonds. Due to

recent advances, particularly in computer simulation

studies, a deeper insight in the microdynamics of

water is currently achieved. Much interest is thusdirected toward this unique liquid in the following.

Rather surprisingly, the microwave dielectric spec-

trum of water (v ~< 100 GHz, Fig. 1) at temperatures

between 0 and 60°C can be adequately represented by

a discrete relaxation term (Kaatze, 1989a). Small but

systematic deviations from the single Debye term

spectrum are found if near millimetre wavelength

data (100 GHz ~< v -%<410 GHz; Blue, 1980; Hasted e t

a l . , 1987) are also taken into account. The David-

son-Cole function (equation 12) and the double

Debye term relaxation spectrum

+ , ~ j AEw, (23)e ( v ) = ew (o o ) = 1 + iOOZw,,

appear to be more suited to describe the measured

water relaxation spectra in the extended frequency

range. Nevertheless deviations from a single Debye-

type relaxation are small (flw ~ 0.04 if equation 12 is

oM :.bg

©Fig. 8. Sketch of hydration model for small ions.

applied, Aewl/Aew2~ 0.02, %1 ~ 1 ps; Barthel e t a l . ,

1991; Kaatze , 1993). Since we are ma inly interested in

the microwave behaviour here it is sufficient to as-sume a discrete pure water relaxation time %(=%2,

Aewl = 0 in equati on 23). This relaxation time de-

creases from 17.7 to 4.0 ps if temperature is raised

from 0 to 60°C (Kaatze, 1989a).

The following picture on the interrela tion of struc-

tural a n d dynamic properties and the kinetics of

H-bonds develops from computer simulations of

water (Geiger e t a l . , 1986; Tan aka and Ohmine, 1987;

Ohmine e t a l . , 1988; Bertolini e t a l . , 1989; Sciortino

and Fornili, 1989; Sciortino e t a l . , 1990; Sciortino e t

a l . , 1991; Sciortino e t a l . , 1992). In liquid water

molecules are almost totally connected forming arandom H-bonded network well above the percola-

tion threshold. The strength of each bond fluctuates

rapidly within intervals between 0.1 and 1 ps. Rup-

ture of bonds, however, results in significant reorien-

tational motions of a molecule only if two

preconditions are simultaneously fulfilled. The mol-

ecule has, of course, to be unbonded or weakly

T a b l e 2 . C a t i o n i c a n d a n i o n i c r e l a t i v e m o l a l s h i f t s B ~ o f d i e l e c t r i c

r e l a x a t i o n t i m e s a t 2 5 C . T h e d a t a h a v e b e e n c a l c u l a t e d u s i n g

e q u a t i o n ( 2 1 ) a n d d a t a f o r a q u e o u s s o l u t i o n s w i t h o u t i n d i c a t i o n s

f o r n o t i c e a b l e e f f e c t s o f i o n c o m p l e x f o r m a t i o n ( G i e s e , 1 9 7 0;W e n a n d K a a t z e , 1 97 7; K a a t z e , 1 9 8 3 ). R a d i i r e f o r s m a l l i o n s

a c c o r d i n g t o C o n w a y ( 1 9 81 ) . R a d i i f o r la r g e i o n s e s t i m a t e d f r o m

t h e i o n i c a p p a r e n t m o l a r v o l u m e s ( K a a t z e , 1 9 83 ). X : X N ÷ ,

a z o n i a s p i r o a l k a n e s

r + BJ- r + BJ-

C a t i o n / ~ ( m o l / k g ) - t C a t i o n , ~ ( m o l / k g ) - i

L i + 0 . 6 0 - 0 . 0 4 M e 4 N + 3 . 22 0 . 1 7

N a + 0 . 9 5 - - 0 . 0 7 E t 4 N + 3 . 8 5 0 . 3 9

K + 1 . 33 - 0 . 0 7 P r 4 N - - 4 . 3 6 0 . 7 3

R b + 1 . 48 - - 0 . 0 7 B u 4 N + 4 . 7 5 0 . 8 8

N H ~ - 1 . 48 - 0 . 0 4 4 : 4 N + 3 . 6 5 0 . 2 9

C s + 1 . 69 - 0 . 0 5 5 : 5 N + 3 . 9 0 0 . 3 7

6 : 6 N + 4 . 1 3 0 . 4 3

r + B + r Bd-

C a t i o n /~. ( m o l / k g ) i A n i o n ~ ( m o l / k g ) i

B e 2 + 0 . 3 1 - - 0 . 0 8 F - 1 . 36 0 . 0 5

M g 2 + 0 . 65 - - 0 . 1 4 C I - 1 .8 1 - 0 . 0 1

C a 2 + 0 . 9 9 - -0 . 1 6 B r 1 .9 5 - 0 . 0 3

S r 2 + 1 . 13 - - 0 . 1 3 J 2 . 1 6 - 0 . 0 5

B a 2 + 1 . 35 - - 0 . 1 7 B F 4 2 . 8 - 0 . 1 3

A I 3 + 0 . 5 0 - - 0 . 0 7 N O { 2 . 9 - 0 . 0 5

y 3 + 0 . 9 3 - - 0 . 0 7 B ( P h ) 4 4 . 8 0 . 4 4

L a 3 + 1 .1 5 - - 0 . 1 0 C O ~ 2 . 5 0 . 1 8

Page 8: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 8/18

556 Udo Kaatze

bonded and, in addition, an extra site for a new

H-bond has to be offered by an appropria tely located

and orientated water molecule ( fifth neighbour ). If

these preconditions exist the reorientation of a water

molecule occurs within about 0.1 ps ( H-bond

switching ). Hence the dielectric relaxation time %(= 10ps at room temperature) of liquid water is

mainly given by the time passing until favourable

conditions to switch H-bonds follow from thermal

fluctuations.

Computer simulation studies furthermore showed

that an almost perfect tetrahedral structure exists at

reduced water density only (84% four coordinated

molecules at p = 0.75 g/cm 3 and T = 0°C; Sciortino e t

a l . , 1992). With increasing p more and more network

defects appear so that one third o f all water molecules

is five coordinated at p = 1 g/cm 3 and there is an

additional 12% with even six neighbours. The exist-ence of defects leads to bi furcated hydrogen bonds

and to a smearing of the binding energy. Hence

within the framework of these computer simulation

results the comparatively high mobility of water

molecules reflects the catalytic activity of network

defects. The dielectric relaxat ion time of aqueous

systems, and probably more generally of associating

liquids, should therefore significantly depend on the

density of relevant defects. There are in fact various

findings which may be taken to verify, at least

qualitatively, this statement. Some indica tions will be

presented below.First of all it is worthy to notice that the reduced

relaxati on time of water under high hydrostatic press-

ure (Pottel e t a l . , 1989) corresponds with the result

from compu ter simulation studies at reduced density.

As a result of high pressure the density of water

increases and, as a consequence, the density of appro-

5

s

2

0.5

0.2

0.1

0.05

0.02

0.01

0 0 0 5

5

I I I I

1 9

~,87 ~ H CH2)mOH

I I I I7 10 20 molll 50

C O H

70

Fig. 9. Relaxation time rm (equation 13) plotted versus theconcentration Coil of hydrogen bonding groups for theprimary alcohols (closed symbols; Gestblom and Sjrblom,

1984a, b) and water (circle; Kaatze, 1989a) at 20°C.

500

200

100

50

20~Y

1

5

2

1

I I I I I I I

I I I I t I I

1.5 2 3 ¢ 5 7 10

i~ 1

15

Fig. 10. Bilogarithmicplot of the relaxation time ratio cm/'Cversus the inverse H-bonding group density ~ -t (equation24) for monohydric alcohol water mixtures (open symbols)

at 25°C and for the primary alcohols (full points, Fig. 9) at20°C. El, isopropanol (Kaatze et al. , 1989c); A, primarybutanol (Mashimo and Kuwabara, 1989); V, tert.-butanol

(Kaatze, 1991a).

priate defects in the H-bond network. The variation

of the dielectric relaxation time within the homolo-

gous series of monohydric alcohols (Fig. 9) offers

another obvious confirmation of the above ideas on

the mechanism of dielectric relaxation in H-bonded

liquids. The relaxation time decreases drastically as

the concentration of hydrogen bonding groups isincreased, thus indicating tha t 17m i> 17w is predomi-

nant ly due to the smaller probabi lity for the existence

of network defects with the alcohols. Based on the

relaxation behaviour of mixtures much evidence for

the essential role of defects has been obtained recently

(Pottel, 1992; Kaatze and Pottel, 1992; Kaatze e t a l . ,

1994). In Fig. 10, as an example, relaxation times of

alcohol/water mixtures are compared with those of

the primary alcohols. For this purpose ratios Z m / Z w

are displayed as a function of ~ -t defined by

- ' = C w ( Cs w + cZ ¢ ) I . (24)Herein, Cw = Csw(C = 0) and Csw are the molari ty of

(pure) water and of the water in the mixtures, respect-

ively. Z~ denotes the number of H-bonding groups

per organic molecule and c the concentration of the

molecules which are capable of forming hydrogen

bonds. Again, with increasing t3 the dielectric relax-

ation time zm decreases. Part icularly striking, the

behaviour of the alcohol/water mixtures closely cor-

responds to that of the series of pure primary alco-

hols. Since, however C m / C w V S / ~ - l relations with

substantially different slope in the double logarithmic

plot have been found with other mixtures (Pottel,1992; Kaatze and Pottel, 1992) this correspondence

should not be overestimated. Lacking a well-founded

theoretical approach relating the kinetics of fluctuat-

ing H-bonded networks to the dielectric relaxati on of

associating liquids, parameter/5 is just an empirically

introduced quantity. It is indeed suited to indicate the

Page 9: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 9/18

Micr ow ave d ie lec t ric p r oper t ie s o f l iqu ids 557

/2 -

J

5

I I I/ O OO

t

2 2.5 3

Fig. 11. Relaxation t ime rat io [m/'l~was a functio n of #7 - j

( equa t ion 24) f or aqueous so lu t ions of qu inoxa l ine ( 25° C,A ; 3 5 ° C , O ; K a a t z e et al. , 1988).

t r e n d s i n t h e r e l a x a t i o n t i m e s b u t t h e r e a r e , o f c o u r s e ,

f a c to r s o t h e r t h a n t h e d e n s it y o f H - b o n d i n g g r o u p s

w h i c h a c t a s a n o t i c e a b l e i n f l u e n c e o n t h e r e l a x a t i o n

t i m e . W i t h m i x t u r e s o f w a t e r a n d q u i n o x a l i n e , f o r

e x a m p l e , t h e Z m / % r a ti o w h e n p l o t t e d v s / 3 -~ e x h i b i ts

a r e la t iv e m a x i m u m a t n e a rl y t h e e q u i m o l a r c o m p o -

s i t i o n ( F i g . 1 1 ) . T h i s b e h a v i o u r m a y b e t a k e n t o

r e f le c t t h a t ( p a r t i c u l a r l y a t l o w w a t e r c o n t e n t ) t h e

w a t e r h y d r o g e n s i n t e r a c t a l s o w i t h t h e d e l o c a l i z e d

e l e c t r o n s o f t h e q u i n o x a l i n e r in g s .

F o r r e a s o n s o f s i m p l i c it y t h e g l o b a l l y d e f i n e d r e l a x -

a t i o n t i m e Z m h a s b e e n u s e d i n t h e a b o v e d i s c u s s i o n .

I t is o n l y b r i e f l y m e n t i o n e d h e r e t h a t d i e l e c t r i c s p e c t r a

o f o r g a n i c so l v e n t s ar e n o r m a l l y m o r e c o m p l i c a t e d

t h a n t h a t o f p u r e w a t e r ( C r o s s l e y , 1 9 7 0 ). R e c e n t

m e a s u r e m e n t s b e t w e e n 1 M H z a n d a b o u t 7 0 G H z o f

s o m e a l c o h o l s s h o w t h a t t h e i r s p e c t r a c a n b e w e l l

r e p r e s e n t e d b y a s u m o f a D e b y e f u n c t i o n a n d a

D a v i d s o n - C o l e t e r m

£ a AEb

e ( v ) = e ( ~ ) = 1 + i o g z ~ F (1 -~-iog'Cb) {l-/~b) ( 25)

w i t h p a r a m e t e r v a l u e s g i v e n i n T a b l e 3 ( K a a t z e e t a l . ,

1989c , 1991a) .

A n i n t e r e s t i n g q u e s t i o n y e t t o b e a n s w e r e d i s t h e

a p p l i c a b i l i t y o f r e c e n t t h e o r e t i c a l a p p r o a c h e s ( e . g.

D i s s a d o a n d A l i s o n , 1 99 3) i n s te a d o f s e m i - e m p i r ic a l

r e l a x a t i o n f u n c t i o n s t o t h e m e a s u r e d d i e l e c t r i c

s p e c t r a .

x

A-x

¼

q

14

12

1 0

8

6

/

2 -

I05 h

4

3

2

1

00 . 0 0 0 1 0 . 0 0 1

I I

[

0 . 0 1 0 . 1 1 1 0 S H z 1 0 0

Fig . 12 . Complex d ie lec t r ic spec t r um of a mor phol ine /n-butanol mix tur e a t 30° C ( mole f r ac t ion o f mor p hol inex = 0.25; Kaatze et al. , 1991c) . The drawn curves representthe D avidson- Cole r e laxa t ion spec t r a l f unc t ion ( equa t ion12) with the fol lowing values for the parameters :

E(or ) = 2.4, ~ (0) = 13.4, r~ = 213 ps, fl = 0.38 (zm= 145 ps).

5. RELAXATION CHARACTERISTICS OF BINARY

MIXTURES OF DIPOLAR CONSTITUENTS.

MICROHETEROGENEITY

I n t h e a b o v e d i s c u s s i o n , i t h a s b e e n t a c i t l y a s s u m e d

t h a t l i q u i d m i x t u r e s o f t w o d i p o l a r c o n s t i t u e n t s f o r m

a n a l m o s t d i e le c t ri c a l ly h o m o g e n e o u s p h a s e s o t h a t

t h e m i c r o w a v e s p e c t r u m i s d o m i n a t e d b y o n e d i s -

p e r s i o n ( d U ( v ) / d v < 0 ) / d i e l e c t r i c l o s s (E ( v ) > O)

r e g i o n . T h e u n d e r l y i n g r e l a x a t i o n m a y b e s u b j e c t t o

a c o n t i n u o u s d i s t r i b u t i o n o f re l a x a t i o n t i m e s a s i s t h e

c a s e w i t h t h e e x a m p l e g i v e n in F i g . 1 2 . T h e s p e c t r u m

f o r th e b i n a r y s y s t em m o r p h o l i n e / n - b u t a n o l i s p r e -

s e n t e d t o s h o w t h a t i t c a n b e w e l l r e p r e s e n t e d b y o n e

D a v i d s o n - C o l e r e l a x a t io n f u n c t i o n ( e q u a t i o n 1 2 ). I n

v i e w o f t h e d i e l e ct r ic p r o p e r t i e s o f p u r e a l c o h o l s

( S e c t i o n 4 ) a n a d d i t i o n a l D e b y e - t y p e r e l a x a t i o n c o u l d

b e a s s u m e d t o a l s o c o n t r i b u t e t o t h e s p e c t r u m

( e q u a t i o n 2 5 ). I f s u c h a c o n t r i b u t i o n e x i s ts , h o w e v e r ,

i t s a m p l i t u d e i s t o o s m a l l t o a l l o w f o r a s e p a r a t i o n

f r o m t h e d o m i n a t i n g D a v i d s o n - C o l e d i s t r i b u t i o n .

Table 3. Parameters of equation (25) for some alcohols at 2 5C (Kaatze e t a l . , 1989c; Kaatze e t a l . , 1991a;Kaatze and L6nnecke-Gabel, 1991b)

Ca ~'bAlcohol ~ ( ~ ) AE~ ps A~b ps fib

Methano l 2.1 +0 .5 3.3_4 -1 1.1 ± 1 27 .2 2_ __ 0. 2 48.7_+ 1 ---0lso propanol 2.8 ± 0.2 0.6 ± 0.2 9.7 ± 1.5 19.35 ± 0.2 344 ± 2 =-0t-Butanol 2.5 ± 0.2 0. 4+0 .2 6. 0+ 2 9.3 0+0 .2 49 5± 5 0.08 ± 0.01

Page 10: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 10/18

558 Udo Kaatze

Spectra reflecting almost homogeneous behaviour

with respect to the dielectric properties are normally

found with completely miscible liquids. Other binary

mixtures of dipolar constituents may exhibit two

relaxation regions (Fig. 13) of which one can be

attributed to the solvent [Rs(v)], the other one to thesolute [Ru(v)]. Hence

E ( v ) = E ( o e ) + R ~ ( v ) + R u ( v ) (26)

where Rs(v) and R u ( v ) may be given by a Debye term,

respectively, or by terms reflecting a distribution of

relaxation times. Besides the unsymmetric David-

son-Cole distribution the symmetric Co le ~o le dis-

tribution is frequently applied. It corresponds with

the relaxation term (Cole and Cole, 1941)

A£~iu

R ~ , , ( v ) 1 + (icons,u) l- ~.~) (27)

Also used is an empirical relation which includes the

Davids on-Cole and the Cole-Cole behaviour as lim-

iting forms (Havriliak and Negami, 1966)

AE~,u

R s ' u ( V ) = [ 1 - ~ - ( i ( D ' ~ s ,u ) < 1 ~ s , u ) ] ( l -[ I s , u ) (28)

A clear subdivision of the spectra into cont ri-

butions R ~ ( v ) and R , ( v ) allow the effect of the solute

on the solvent relaxation and, vice versa, of the

solvent on the relaxation of the solute to be studiedseparately. Solvation phenomena have been exten-

sively studied in the past and are still of considerable

interest. Some illustra ting examples will be presented

in the following sections. The interrelation between

50c O)

~0

3 0 e s ( O )

2 0

10

0

15

.-~-- 1 0 I• 0 5

0

0 . 0 0 1

I I

c ( - )

I I I

I I I ~ I

_ s

~ _ . . , , 1~ ..'<.R ~ (v)

0 . 0 1 0 . 1 1 f i H z 1 0

V

Fig. 13. Complex dielectric spectrum of a 0.1 molarsolution of 1,2-dihexadecylglycero-L-3-phosphatidyl-N,N,N-trimethyl-N-hexanolamine (C~6-ether-PN6-1ecithin) inmethanol at 25°C (Kaatze et al. , 1985a). Dashed curvesindicate the subdivision of the spectrum into a solvent (% )

and solute ( u ) relaxation.

t~0

- - T o o o o o o o o o o o o o o

A C s l ° ' o \

1 0 - , A e f a

0 I I 1 I

1 0 i i l G o °oOO %

5

~ o I 1 I 1

0 _ ~ . ~ , . , ., ln n ~ o o o J I I I I0 . 0 0 1 0 . 0 1 0 . 1 1 1 0 G H z 1 0 0

V

Fig. 14. Complex dielectric spectrum of a 6.4 molar aqueoussolution of butyric acid at 25°C (Kaatze et al. , 1991d). Suffix

sl marks a slow relaxation, suffix fa a faster one.

solvent properties and the solute dielectric relaxation

becomes obvious if, for example, in solutions of

lecithins (Fig. 13) methanol is exchanged for water.

The dielectric relaxation time % of the zwitterionic

phospholipid head groups increases substantiallythereby thus reflecting the formation of extended

bilayer structures with restricted head group mob ility

instead of small molecular clusters (Kaatze e t a l . ,

1985a; Kaatze and Pottel, 1985b).

A special behaviour has been found with aqueous

solutions of carboxylic acids (Fig. 14). Again the

dielectric spectrum appears to be composed of two

contributions with relaxation characteristics. These

contributions, however, cannot be attributed to the

motions of carboxylic acid and water molecules,

respectively. Instead, evidence has been obtained

from the dielectric spectra of mixtures of acetic acid,propioni c acid and butyric acid with water that

the slow relaxation process ( sl ) is due to a mi-

crophase of low water content and that the faster

process ( fa ) reflects a subphase of higher water

content.

The system butyric acid/water exhibits an upper

critical demixing point at an acid concentration of

corit = 4.33 mol/1 and a temperature of Tcrit -- --3.0°C.

Obviously, in this system a microheterogeneous

structure exists al ready far away from Tcrit. Even

more surprising, indica tions for precritical behaviour

are also found with the lower homologues propionicacid and acetic acid that are completely miscible with

water. These indications from the dielectric spectra

are confirmed by results from broad-band ultrasonic

absorption measurements which are currently per-

formed on carboxylic acid/water systems (Kfihnel

e t a l . , 1995).

Page 11: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 11/18

M icrowa ve dielectr ic proper t ies of l iquids 559

6 . S O L V E N T C O N T R I B U T I O N T O T H E S T A T IC

P E R M I TT I V IT Y . O R I E N T A T I O N C O R R E L A T I O N ,

K I N E T IC D E P O L A R I Z A T I O N , D I E L E C T R I C

S A T U R A T I O N

I n b i n a r y s o l u ti o n s t h e e x t r a p o l a t e d s t a t i c

p e r m i t t i v i t y

e~(0) = l im R ~ ( v ) + e ( ~ ) ( 2 9)v ~ 0

o f t h e s o l v e n t c o n t r i b u t i o n t o t h e d i e le c t ri c s p e c t r u m

( F i g . 1 3 ) o f f e rs v a l u a b l e i n f o r m a t i o n o n s t r u c t u r a l

p r o p e r t i e s . F i r s t o f a l l , h o w e v e r , e ~ ( 0 ) r e f le c t s t h e

t r i v i a l e f f e ct o f d i l u t i o n o f a d i p o l a r s o l v e n t , n a m e l y

t h e r e d u c t i o n o f t h e n u m b e r N~, ( e q u a t i o n 8 ) o f

s o l v e n t d i p o l e m o m e n t s p e r v o l u m e b y t h e p r e se n c e

o f s o l u t e . V i a i n t e r n a l e l e c t r i c f i e l d s e ~ ( 0 ) o f h o m o -

g e n e o u s s o l u t i o n s d e p e n d s o n t h e s h a p e o f t h e s o l u te

p a r t i c l e s [ a n d e~ ( 0) o f d i e l e c t r i c a l l y h e t e r o g e n o u s m i x -

t u r e s d e p e n d s o n t h e s h a p e o f t h e s u b p h a se ] . F o r t h i s

r e a s o n m e a s u r e m e n t s o f th e s t a ti c p e r m i t t i v i ty a r e

u s e d a s a t o o l t o i n v e s t i g a t e s t r u c t u r a l a s p e c t s o f

m i c r o e m u l s i o n s ( S j r b l o m e t a l . , 1 9 9 1 ; S a e t e n e t a l . ,

1 99 2) A l s o f o r t h i s r e a s o n E ~(0 ) v a l u e s o f s u s p e n s i o n s

w i t h r e l e v a n c e in b i o l o g y a n d m e d i c i n e f r e q u e n t l y a r e

u n e x p e c t e d l y s m a l l. W a t e r t r a p p e d i n ce l ls ( L r n -

n e c k e - G a b e l , 1 9 90 ) a s in t h e c o r e o f p h o s p h o l i p i d

8

b i l a y e r v e s i c l e s ( P o t t e l e t a l . , 1 9 8 4 ; K a a t z e e t a l . ,

1 9 8 4 a) i s e x p o s e d t o s t r o n g d e p o l a r i z i n g f i el d s. H e n c e

t h i s w a t e r a d d s a r e d u c e d c o n t r i b u t i o n t o t h e d i e l e c -

t r i c s p e c t r u m e v e n i f i t s m o l e c u l a r p r o p e r t i e s a r e t h e

s a m e a s in t h e p u r e s o l v e n t . S o m e t i m e s t h i s e ff e c t i s

m i s i n t e r p r e t e d b y a s s u m i n g t h e d i e l ec t ri c d e c r e m e n to f h e t e r o g e n e o u s m i x t u r e s t o b e s ol e ly d u e t o i r r o t a -

t i o n a l l y b o u n d w a t e r .

U n f o r t u n a t e l y , e v e n f o r a h o m o g e n e o u s s o l u ti o n o f

e x a c t l y s p h e r i c a l l y s h a p e d s o l u t e p a r t i c l e s t h e e f fe c t o f

i n t e r n a l f i el d s c a n n o t b e r i g o r o u s l y t a k e n i n t o a c -

c o u n t . D i f f e r e n t a p p r o a c h e s t o a p p r o x i m a t e l y t r e a t

t h e s e f i e l d s l e a d t o a v a r i e t y o f m i x t u r e f o r m u l a e

r e l a t i n g t h e r e s u l t i n g p e r m i t t i v i t y Es 0 ) o f a c o m p o s i t e

d i e l e c t r i c t o t h e p e r m i t t i v i t i e s E a n d e2 o f t h e c o n s t i t u -

e n ts . T h e g r a p h s o f t w o c o m m o n l y u s e d m i x t u r e

r e l a t i o n s a r e d i s p l a y e d i n F i g . 1 5 t o i l l u s t r a t e t h e

d i s c r e p a n c y i n t h e p r e d i c t i o n s o f d i f f e r e n t f o r m u l a e .R e p r e s e n t e d f o r a q u e o u s s o l u t i o n s a t 2 5 ° C

[E l = E , ( 0 ) = 7 8 . 3 6 , e2 = 2 ] a r e t h e B r u g g e m a n m i x t u r e

r e l a t i o n ( B r u g g e m a n , 1 9 35 ) g i v e n b y

V l 3 = 1 v= (30 )EI--E~ LEAO

a n d a f o r m u l a o r i g i n a l l y d e r i v e d b y M a x w e l l ( 1 8 9 2 )

a n d W a g n e r ( 1 9 14 ) ( P o l d e r a n d v a n S a n t e n , 1 9 46 ;

B r o w n , 1 9 5 6 ; v a n B e c k , 1 9 6 7 : B r t t c h e r a n d B o r -

d e w i j k , 1 9 7 8 )

75

70

- 6 st

60

55

500 0 3

O~AO

\ t

0 1 0 2

V

Fig. 15. Solvent con tr ibutio n E~(0) (=Esw ) to the s tat ic

per mi t t iv i ty a t 25° C d isp layed as a f unc t ion of vo lumef r ac t ion v2 of so lu te f or aqueo us so lu t ions of low w eightnon -dipo lar molecu les [Es(0 = E (0) , ful l points ; P ottel andK aa tze , 1969; K aa tze an d W en, 1978a ; K aa tze e t a l . , 1988],of synthet ic polymers (circles ; Kaatze, 1975; Kaatze e t a l . ,

1978b), and of large ions (tr iangles ; Wen and Kaatz e, 1977~K aa tze , 1980b) . The f u l l and d ashed cu r ve a r e gr aphs o f themix ture relat ions def ined by equ ation s (30) and (31) , re-

spectively.

3v2 el I, 2 - ¢1 )

es(0 ) = El - 2EI ~- ¢2 -- V2(E2 -- El) (31 )

I n t h e s e e q u a t i o n s , Vz d e n o t e s t h e v o l u m e f r a c t i o n o f

c o n s t i t u e n t 2 , t h e s p h e r i c a l l y s h a p e d s o l u t e .

A l s o d i s p l ay e d i n t h e d i a g r a m a r e d a t a f o r a q u e o u s

s o l u t io n s o f o r g a n i c s o l u t e s f o r c o m p a r i s o n . M o s t

i n t e r e s t i n g l y , t h e s c a t t e r i n t h e e x t r a p o l a t e d s t a t i c

p e r m i t t i v i t y d a t a i s s m a l l i n d i c a t in g t h a t t h e o r i e n t a -

t i o n a l p o l a r i z a b i li t y o f w a t e r d e p e n d s w e a k l y o n l y o n

s p e c i a l i n t e r a c t i o n s w i t h t h e s o l u t e . T h e t e n d e n c y i n

t h e e x p e r i m e n t a l d a t a t o s l i g h t ly e x c e e d t h e p r e d ic -

t i o n s b y t h e m i x t u r e r e l a t i o n s s e e m s t o b e c h a r a c t e r -

i s ti c t o h y d r o p h o b i c h y d r a t i o n e f fe c t s ( S e c t i o n 7 ;

K a a t z e a n d P o t t e l , 1 99 2). I n t h e c a s e o f d i l u t e

s o l u t io n s i t is a n o b v i o u s a t t e m p t t o a s s u m e t h e

d i s t u r b i n g a c t i o n o f s o l u t e p a r t i c le s t o b e r e s t r i c te d t o

a l i m i t e d n u m b e r Z so lv o f s o l v e n t m o l e c u l e s a r o u n d

t h e s o l u t e a n d t o t h u s t r e a t t h e s p e c t r a i n t h e f r a m e -

w o r k o f a s o l v a t i o n m o d e l ( K a a t z e a n d P o t t e l,

1 9 8 5 b ) . A p p l y i n g s u c h m o d e l c h a n g e s i n t h e e f f e c t i v e

d i p o l e m o m e n t a r e a tt r i b u t e d t o a l t e ra t i o n s i n th e

d i p o l e o r i e n t a t i o n c o r r e l a t i o n f a c t o r ( g s o ~ v =~ g ) o f t h e

Z so l~ s o l v a t i o n m o l e c u l e s . F o r a q u e o u s s o l u t i o n s

gsolv = gh , Zs o l v = Zh ( F i g . 8 ) . I f r u l e o f t h r e e i s s i m p l y

u s e d i n s te a d o f t h e e x a c t t r e a t m e n t o f t h e p r o b l e m

( w h i c h d u e t o t h e i n t e r n a l d e p o l a r i z i n g f i e ld s i s

s o m e w h a t m o r e c o m p l i c a t e d ) r e l a t i o n

gs°i---Z= 1 + c ~ e . . . . . (0) -- Es,calc 0) (32 )

g c2Z~o lv Es ,ca lc (O - - e ( o 0 )

Page 12: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 12/18

560 Udo Kaatze

1.t~

1.3

1 2

1 1

1 0

0 9

I I

t . J A

~ ~

I

I

f

I

I

-r

0 8

0 7

I0 /*0

Z

\ : z : :

\

\

\

\

\

\

I I

8 1 2

~ 1

I

\ S

P

160 2 0 0

Fig. 16. Ratio gsoi~/g of solvation shell to solvent dipoleorientation correlation factor (equation 32) versus staticpermittivity E~ of solvent for solutions of TED in various

liquids at 25°C (Kaatze e t a l . , 1984b).

follows with E . . . . . ( 0 ) denoting the values extrapo-

lated from the measured spectra and E s , c a l c ( 0 those

predicted by a mixture relation (e.g. equat ion 30). In

equation (32), cl and c2 are the solvent and soluteconcent rations, respectively, and g is the dipole orien-

tation correlation factor of the undisturbed solvent.

For simplicity esolv(~) = E ( ~ ) has been used in deriv-

ing equation (32).

In Fig. 16, g s o l v / g ratios are shown for solutions of

nicely spherically shaped non-dipolar 1,4-diazabicy-

clo[2,2,2]octane (triethylenediamine, TED) molecules

in some dipolar solvents. Estimat ing these data it has

been assumed that the number of solvation molecules

nearly agrees with the numb er of neighbouring mol-

ecules. Hence the absolute values of the orientat ion

correla tion factor ratios should not be overestimated.Some interesting trends, however, are found in the

data.

Dimethyl sulfoxide (DMSO) and N,N-dimethyl-

formamide (DMF) are aprotic liquids and are thus

unable to form hydrogen bonds in the pure liquid.

Since TED offers also hydrogen bond accepting

abilities only g s o l v / g > 1 for DMSO and DM F

mixtures seems to most unambiguou sly reflect the

induction of enhanced solvent dipole orientation

correlation around non-dipolar solutes. It has been

briefly mentioned above that there are indi cations for

some antiparallel dipole alignment in pure DMSO(Kaatze e t a L , 1989b). Possibly the molecular order

resulting thereby is reduced by the presence of the

solute. It seems to be likely that a (rapidly fluctuating)

clathrate-like solvent structure is formed around

TED. Such structures are suggested to exist in

aqueous solutions of partly hydrophobic solutes.

TED is well-known to be especially effective in pro-

moting the structure of the hydration water around

it (Kaatze and Wen, 1978a). A similar behaviour with

a somewhat smaller g s o l v / g ratio, however, is found

with solutions of TED in formamide. Formamide

resembles water by its variety of H-bon ding capabili-ties. In contrast, methanol and N-methylformamide

offer just one H-bond donating site. These solvents

are therefore assumed to form chainlike associates

with preferentially ~r al le l orientation of neighbour-

ing dipole moments within the chains. Obviously,

addition of TED and other organic molecules

(Kaatze e t a l . , 1984b) leads to disrupture of highly

ordered chains and to a formation of structure with

a lower degree of orientation correlation (gso~v<g ;

Fig. 16).

Aroun d small inorganic ions the dipole orientation

correl ation factor g~o~v may be reduced by the orien-tation o f molecules in strong Coulombic fields. This

effect is called dielectric saturat ion or structure

saturation . Normally the extent of saturation is

expressed by a numbe r Z +- of apparently irrotation -

ally bound solvent molecules per cation or anion,

respectively. Besides dielectric saturation, however,

the extrapolated static permittivi ty of electrolyte

solutions reflects also the kinetic depolarizati on

mechanism (Hubbard e t a l . , 1977a; Hubbard and

Onsager, 1977b; Hubbar d, 1978; Hubbard e t a l . ,

1979). An ion which moves through a dipolar liquid

in an external electric field sets up a non-uniformhydrodynamic flow. The solvent molecular dipoles

are turned thereby in the direction opposed to that in

which they are orienta ted due to the external field. In

the Onsager-Hubbard continuum theory the kinetic

dielectric decrement is given by the re lation (Hubbard

e t a l . , 1979).

2 E ( 0 ) - q ( ~ )(~EH O = O 171 (33)

3 e0e I (0)

if perfect slip bound ary conditions on solvent flow are

assumed at the ion surfaces. Again, suffix l is used

to indicate parameters of the solvent. Hence 6eHo isexpected to predominan tly depend on the specific

electric conductivity of the solution and on the

dielectric relaxation time z~ of the solvent. Molecular

theories predict the kinetic polarization deficiency to

also increase with decreasing ion radius (Hubbard e t

a l . , 1979; Hub bard and Kayser, 1981; Wolynes, 1980;

Kusalik and Patey, 1983). Since dielectric satura tion

is expected to depend on the ion size in a similar

manner it is impossible to rigorously with respect to

es.ca~c(0) [calculated from equation (30) or equation

(31) wi thou t considering ionic field effects] divide

measured total dielectric decrements

6 E = E . . . . . (0) -- e~.cal~ 0) (34)

into contri buti ons from the different molecular mech-

anisms. Nevertheless, as shown by Fig. 17, the 5e

values derived from measured spectra may substan-

tially exceed the predictions due to either theoretical

Page 13: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 13/18

M icro w av e d i e l ec tr i c p ro p er t i e s o f l i q u id s 5 61

-t,

- 8

-12 -

- 1 6

..% . ~ U~'HO• x ~' - . .~

.. . ~

0 • . ~

0 ~. .

' - . °

tlO

o- 2 0 I I I

0 t~ 8 Slm 12O

F ig . 1 7. Th e d i e l ec t ri c d ec remen t ( eq u a t i o n 3 4 ) a t 2 5 ° Cp l o t t ed as a fu n c t i o n o f t h e sp ec i f i c e l ec t r i c co n d u c t i v i t y afo r a q u eo u s so lu t i o n s o f L iNO 3 ( fu ll p o in t s ) a n d L iC1(circles ; K aat ze an d Pot te l . 1984c I . Th e fu l l curv e repres en tst h e c o n t i n u u m m o d e l o f k i n e t i c d e p o l a r i z a t i o n ( e q u a t i o n3 3 ) . Th e d ash ed an d d o t t ed cu rv es i n d i ca t e t h e p red i c t i o n sb y t h e m o l e c u l a r m o d e l o f H u b b a r d et al. (1 9 7 9 ) an d b yth e mic ro sco p i c mo d e l o f Ku sa l i k an d P a t ey (1 9 8 3 ) ,

respect ively .

m o d e l . S i n c e t h e r e m a i n i n g d i f f e r e n c e is l i ke l y to b e

d u e t o d i e l e c tr i c s a t u r a t i o n , i t m a y b e a r g u e d t h a t

w i t h r e s p e c t t o t h e k i n e t i c d e p o l a r i z a t i o n s m a l l i o n s

t o g e t h e r w i t h i t s s h e l l o f s a t u r a t e d s o l v e n t m o l e c u l e s

m a y b e c o n s i d e r e d o n e m o v i n g u n i t ( K a a t z e , 1 98 3;

K a a t z e a n d P o t t e l , 1 9 84 c ). I t is t h e n j u s t if i e d t o a p p l y

t h e c o n t i n u u m t h e o r y ( e q u a t i o n 3 3 ) t o c a l c ul a t e t he

k i n e ti c d e p o l a r i z a t i o n 6eHo p r o d u c e d b y t he s e u n it s

a n d t o e v a l u a t e a r e m a i n i n g d i f f e re n c e f i e - & n o in

t h e d i e l e c tr i c d e c r e m e n t i n t e r m s o f s a t u r a t i o n e f fe c ts .

Z ÷ v a l u e s fo r s o m e c a t i o n s i n a q u e o u s s o l u t i o n s a r e

t a b u l a t e d i n F i g. 1 8. W i t h t h e e x c e p t i o n o f F - f o r

w h i c h Z - ~ 1 h a s b e e n f o u n d a n i o n s s ee m n o t t o

i n d u c e d i e l e c t r i c s a t u r a t i o n e f f e c t s .

T h e Z ÷ d a t a p r e s e n t e d i n F i g. 18 h a v e b e e n

d e r i ve d f r o m s p e c t r a f o r a q u e o u s s o l u ti o n s o f m o d e r -

a t e s o l u t e c o n c e n t r a t i o n ( c < 1 m o l / 1) w h i c h d i d n o t

r e v e a l i n d i c a t i o n s o f i o n c o m p l e x f o r m a t i o n . D u e t o

t h e i r r e d u c e d e l e c tr i c fi e ld i o n c o m p l e x e s f o r m a

s m a l l e r s h el l o f s a t u r a t e d s o l v e n t th a n c o m p l e t e l y

d i s s o c i a t e d c a t i o n s . A s t o b e e x p e c t e d a t e n d e n c y i n

t h e Z + v a lu e s o f m a i n g r o u p c a t i o n s e m e r g e s t o

d e c r e a s e w i t h d e c r e a s i n g c h a r g e o f t h e i on a n d w i t h

i n c r e a s i n g i o n i c r a d iu s . I t is i m p o r t a n t t o n o t i c e t h a t

s a t u r a t e d s o l v e n t m o l e c u l e s a r e f ix e d w i t h r e s p e c t t o

t h e i r e le c t r ic d i p o le a x i s o nl y . R o t a t i o n s a r o u n d t h i s

a x i s a r e s t il l p o s s i b l e a n d , a s m e n t i o n e d a b o v e , d e -

p e n d o n t h e i o n . T h e r e m a y o c c u r m o r e o r le ss fa s t

e x c h a n g e p r o c e s s e s b e t w e e n t h e s a t u r a t e d s o l v e n t a n d

t h e b u l k p h a s e .

7 . R E L A X A T I O N S P E C T R U M O F A Q U E O U S S O L U T I O N S .

H Y D R O P H O B I C A N D N E G A T IV E H Y D R A T I O N

I n t h e p a s t d e c a d e s a g r e a t v a r i e t y o f r e l a x a t i o n

s t ud i e s h a s b e e n p e r f o r m e d o n a q u e o u s s o l u t io n s o f

h i g h w a t e r c o n t e n t . T h e d i e l e c tr i c s p e c t r a n o r m a l l y

r e v e a l e d a s o l v e n t p a r t R~ ( v ) ( e q u a t i o n 2 6 ) w i t h a

d i e l e c t r i c r e l a x a t i o n t i m e z s d i f f e r e n t f r o m t h e p u r e

w a t e r v a l u e zw a t t h e s a m e t e m p e r a t u r e . I n a d d i t i o n ,

t h e R s ( v ) t e r m e x te n d s o v e r a s o m e w h a t b r o a d e r

f r e q ue n c y r a n g e t h a n t h e D e b y e t e r m c h a r a c t e r i z in g

t h e p u r e s o l v e n t . T h i s l a t t e r f i n d i n g c a n b e a l t e r n a -

t i v e l y d i s c u s s e d .

I t is c o m m o n p r a c t i c e t o c o n s i d e r s o l u t e i n d u c e d

c h a n g e s i n t h e d i e l e c t r i c r e l a x a t i o n o f t h e s o l v e n t

w a t e r b y a s s u m i n g a c o n t i n u o u s r e l a x a t i o n t im e

d i s t r i b u t i o n , h e n c e t o r e p r e s e n t R~ ( v ) b y a D a v i d -

s o n - C o l e , C o l e ~ o l e o r H a v r i l i a k - N e g a m i t e r m

( e q u a t i o n 2 8 w i t h a p p r o p r i a t e l y f i x e d c ~ a n d f l s ,

r e s p e c t i v e l y ) . T h e e f f e c t i n t h e r e l a x a t i o n t i m e a s i n

S e c t i o n 3 is c o n s i d e r e d b y i ts r e la t i v e m o l a l i n c r e m e n t

B d . N o r m a l l y , B d v a l u e s a r e g i v e n f o r t h e p r i n c i p l e

r e l a x a t i o n t i m e z s i n s t e a d o f t h e m o r e g l o b a l ~'m u s e d

i n e q u a t i o n ( 22 ). I n t h e c a s e o f d i l u t e a q u e o u s

s o l u t i o n s , h o w e v e r , d e v i a t i o n s f r o m s y m m e t r i c r e l a x -

a t i o n t i m e d i s t r i b u t i o n s a r e s m a l l s o t h a t z S ~ Z r~ .

B d - v al u es f o r s o l u t i o n s o f s o m e s e r ie s o f o r g a n i c

s o l u t e s a r e l is t e d in T a b l e 4 t o s h o w t h a t a g e n e r a l

t e n d e n c y o f z ~ e x i st s t o i n c r e a s e w i t h t h e n u m b e r o f

a l i p h a t i c g r o u p s p e r s o l u t e m o l e c u l e . T h i s f i n d i n g is

a r e f le c t i o n o f s o l u t e - w a t e r i n t e r a c t i o n s n a m e d

h y d r o p h o b i c h y d r a t i o n . I n t h e f ra m e w o r k o f t h e

a b o v e w a t e r r e l a x a t i o n m o d e l ( S e c t i o n 4 ) t h e i n c r e a s e

i n th e d i e l e ct r ic r e l a x a t i o n t i m e o f w a t e r a r o u n d

h y d r o p h o b i c p a r ti c le s p r e d o m i n a n t l y r e s u lt s f ro m t h e

r e d u c e d d e n s i t y o f h y d r o g e n b o n d i n g s i te s a t t h e

s o l v e n t - s o l u t e i n t e r fa c e . O f c o u r s e , f a c t o r s o t h e r t h a n

Li ÷ ~ Be2÷3.9 ~ 6.5

2.6 7.0 11.5

K+ ~ Ca2+

• ~

Rb @ st2. ~ y 3 .• 0 7.0 12.7

Cs+ ~ Ba2* ~ La3+• 0 5 . / 1 3 . /

F ig . 1 8. Nu m b er s o f d i e lec t r i ca ll y sa tu ra t e d wa t e r mo lecu l esp er i o n fo r t h e f i r s t t h r ee m ain g ro u p ca t i o n s as we l l a s y 3 +an d La 3 ÷. F u l l c i r cu l a r a r eas sh o w th e s i ze o f t h e b a re i o n s ,sh ad ed a r eas i n d i ca t e t h e sh e l l o f ap p aren t l y i r ro t a t i o n a l l y

b o u n d w a t e r m o l e c u le s .

Page 14: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 14/18

562 Udo Kaatze

T a b l e 4 . R e l a t i v e m o l a l s h i ft s Be i n t h e p r i n c i p a l r e l a x a t i o n t i m e z s o f t h e s o l v e n t c o n t r i b u t i o n R ~ t o t h e d i e l e c t r i c

s p e c t r u m f o r a q u e o u s s o l u t i o n s o f s o m e c y c l i c s o l u t e s a n d f o r u r e a a n d d e r i v a t i v e s a s w e ll a s t h e c a t i o n i c p a r t

B~- to Bd fo r a q u e o u s s o l u t io n s o f t h e a m m o n i u m i o n a n d t h r ee s e r ie s o f o r g a n i c c a ti o n s . M o s t d a t a r e f e r to2 5 ' C . t h o s e f o r p y r i d i n e a n d d e r i v a t i v e s t o 2 0 ' C ( K a a t z e a n d P o t t e l , 1 9 9 2)

S o l u t e B d ( m o l / k g ) - ' S o l u t e B d ( m o l / k g ) i

P y r a z i n e 0 . 1 3 U r e a 0 . 0 3

M e t h y l p y r a n z i n e 0 . 19 M e t h ) l u r e a 0 . 0 82 . 3 - D i m e t h y l p y r a z m e 0 . 2 4 N . N - D i m e t h y l u r e a O . 1 7

2 . 5 - D i m e t h y l p y r a z m e 0 . 2 7 N . N ' - D i m e t h y l u r e a 0 . 18

2 . 6 - D i m e t h y l p y r a z l n e 0 . 2 5 E t h y l u r e a 0 . 1 3

E t h y l p y r a z l n e 0 . 21 T r i m e t h y l u r e a 0 . 2 4

2 . 3 . 5 -T r i m e t h y l p y r a z in e 0 . 3 2 N - P r o p y l u r e a 0 . 1 9

Q u i n o x a l i n e 0 . 1 9 T e t r a m e t h y l u r e a 0 . 3 0

2 - M e t h y l q u i n o x a l i n e 0 . 2 4 N . N - D i e t h y l u r c a 0 . 30

P y r i d i n e 0 . 1 9 N - B u t y l u r e a 0 . 2 l

2 - M e t h y l p y r i d i n e 0 . 2 7

3 - M e t h y l p y r i d i n e 0 . 2 2

2 , 4 - D i m e t h y l p y r i d i n e 0 . 2 7

2 . 6 - D i m e t h y l p y r i d i n e 0 . 2 8

C a t i o n B J ( m o l / k g ) - i C a t i o n B+ ( m o l / k g ) - i

A m m o n i u m - 0 . 04 T e t r a m e t h y l a m m o n i u m 0 .1 7

N - B u t y l a m m o n i u m 0 .2 8 T e t r a e t h y la m m o n i u m 0 .3 9

N - H e x y l a m o n i u m 0 .3 7 T e t r a p r o p y l a m m o n i n m 0 .7 3N - H e p t y l a m m o n i u m 0 .3 8 T e t r a b u t y l a m m o n i u m 0 .8 8

N - O c t y l a m m o n i u m 0 . 4 4 5 - A z o n i a s p i ro [ 4 , 4 ] n o n a n e 0 . 2 9

6 - A z o n i a s p i r o [ 5 , 5 ] u n d e c a n e 0 . 3 7

7 - A z o n i a s p i r o [ 6 , 6 ] t r i d e c a n e 0 . 4 3

the local concent ration of hydrogen bonding groups

are also important in determining the hydration

water properties. These factors may include the over-

all size and shape of the solute molecule, its flexibility

and the chemical nature and steric arrangement of its

H-bonding groups. The hydration water relaxationtimes are thus not only given by the chemical compo-

sition of the solute, as illustrated, for example, by

the Bd-values for the stereoisomers ethylurea

(0.13 mol/kg) and n,n' -dime thylurea (0.18 mol/kg).

Bd-values reflect both the relaxation time Zh and the

extent of the hydration region around a solute mol-

ecule. To achieve more detailed insights into the

effects of hydration and to be able to derive %, the

orientat ion correlation factor gh, and the num ber Z h

of hydration molecules per solute particle from the

measured spectra, Rs(v ) is frequently discussed in

terms of the aforementioned hydration model(Kaatze and Pottel, 1985b). With aqueous solutions

of organic solutes a simplified version of the hy-

drati on model is normal ly sufficient in which Rs(v) is

represented by a sum of two Debye relaxation terms.

T a b l e 5 . R a t i o z h / % o f t he h y d r a t i o n w a t e r t o p u r e w a t e r r e l a x a ti o n

t i m e f o r s o m e l o w w e i g h t o r g a n i c so l u t es ( 2 Y C ; K a a t z e a n d

W o e r m a n n , 1 98 2; K a a t z e a n d P o t te l , 1 9 8 5 b ; K a a t z e et a l . , 1986)

S o l u t e % / %

1 , 4 - D i o x a n e

E t h y l e n e g l y c o l

P y r i d i n eP y r a z i n e2 - M e t h y l p y r a z i n e

2 , 6 - D i m e t h y l p y r a z i n e

Q u i n o x a l i n e

2 - M e t h y l q u i n o x a l i n e

1 , 4 - D i a z a b i c y c l o - [ 2 , 2 , 2 ] o c t a n e ( T E D )

A c e t a m i d e

U r e a

1.6

2.1

1.81.5

1.61.9

1.9

2.22.22.12.1

One term, with the relaxation time r h, describes the

relaxation of the hydration water. The other term,

with relaxation time %, considers the non-affected

water in the solution. A few hydration water relax-

ation times are collected in Table 5. These data span

a small range of values only, though there may besignificant differences in the hydration behaviour of

the solutes. Urea, for instance, though Zh/Zw= 2.1,

does hardly affect water (B d = 0.03 mol/kg) while

TED with nearly the same relaxation time ratio

(zh/Zw -- 2.2) is particularly effective in promoting the

water structure around it (Bd- 0.36mol/kg). The

explanation for this striking result is as follows.

The most hydrophillic urea molecule exhibits a

remarkable structure as the six directions for the

formation of hydrogen bonds are restricted to a

plane. On its periphery the planar urea molecule thus

offers a high density of H-bond sites. It seems not tochange the relaxation time of water in this region.

Only in the directions perpendicular to the plane

defined by the structure of the urea molecule this

outs tand ing solute appears to be hydrophobic. Hence

only a few water molecules change the relaxation time

with respect to pure water. Nearly spherically shaped

TED, due to the positions of its H-bonding sites and

to the a rrangement of its hydrophobic groups relative

to these sites, obviously promotes a more extended

clathrate-like hydration structure around it and thus

produces a high Bd-value.

Aromati c rings induce smaller Bo-values tha n com-parable aliphatic molecules. This behaviour may be

taken to result from some weak H-bondi ng inter-

actions between water molecules and the delocalized

electrons which, as bifurcated H-bond in pure water

(Section 4) reduce the activat ion enthalpy or reorien-

tational motions. A similar situation may exist

Page 15: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 15/18

Micr ow ave d ie lec t ric p r oper t ie s o f l iqu ids

a r o u n d i o n s th a t e x h i b i t h y d r a t i o n w a t e r r e o r i e n t a -

t i o n t i m e s % d i s t i n c t l y s m a l l e r t h a n % ( Bd < 0 , n e g a -

t i v e h y d r a t i o n , T a b l e 2 ). A p r o m i n e n t e x a m p l e is

i o d i d e f o r w h i c h ( % / Z w ~ 0 . 5 ; P o t t e l e t a l . , 1974) .

A r o u n d t h is la r g e m o n o v a l e n t a n i o n a n e n h a n c e d

w a t e r m o b i l i t y m a y b e c a u s e d b y t h e c o m p a r a t i v e l ys o f t e l e c t r o n s h el l p r o v i d i n g r o t a t i n g w a t e r m o l e c u l e s

w i t h t r a n s i e n t H - b o n d - l i k e i n t e r a c t io n s . A l s o ( a t le a s t

i n p a rt s ) a r e fl e c t io n o f a n e n h a n c e d d e n s i t y o f

H - b o n d s it e s ( w h i c h c a n a ct as a p p r o p r i a t e n e t w o r k

d e f e c t s ) m a y b e t h e n e g a t i v e B J- v a l u e f o r s m a l l

c a t i o n s m e n t i o n e d i n S e c t i o n 3 . E l e c t r o s t r i c t i v e e f f e c t s

w i l l i n c r ea s e t h e d e n s i t y o f h y d r a t i o n m o l e c u l e s i n t h e

s t r o n g C o u l o m b i e f i el d s o f th e i o n . T o w a t e r m o l -

e c u l e s a t t h e i n t e r f a c e b e t w e e n t h e d i e l e c t r i c a l l y s a t u -

r a t e d s h e l l a n d t h e b u l k p h a s e a h i g h e r d e n s it y o f

H - b o n d i n g s i t e s i s t h e r e f o r e o f f e r e d t h a n i n p u r e

w a t e r a t t h e sa m e t e m p e r a t u r e a n d h y d r o d y n a m i cp r e s s u r e . A g a i n t h i s d e n s i t y e f f e c t m a y r e s u l t i n f a s t e r

r e o r i e n t a t i o n a l m o t i o n s .

8. COLLOI DAL SYSTEMS

A s b r i e f ly m e n t i o n e d a b o v e d i e l ec t r ic s p e c t r o s c o p y

o f e m u l s io n s , m i c r o e m u l s i o n s , a n d c o l l o i d a l s o lu t i o n s

h a s a t t r a c t e d m u c h a t t e n t i o n , p a r t i c u la r l y f o r re a s o n s

o f t h e o c c u r r e n c e a n d u s a b i li t y o f s u c h s y s t e m s i n

b i o l o g y a n d i n i n d u s t r i a l a n d m e d i c a l p r o c e s s e s.

M e r e l y t h e s p e ct r a o f t w o c o m p a r a t i v e l y s i m p l y

s t r u c t u r e d c o l l o i d a l s y s t e m s m a y b e d i s c u s s e d h e r e( F i g . 1 9 ), n a m e l y o f m i c e l l a r a q u e o u s s o l u t i o n s o f a

z w i t t e r i o n i c a n d a c a t i o n i c s u r f a c t a n t , r e s p e c t i v e l y .

1 0 0. . . _

%

\2O

0 I I ~ I I I I I

5 0 ~ ~ i i t i ~ i ~ I

f t . 105 o d ~ V l ~ ~ 2 / r r s ]

f J/ t , , 2 7 r u , , ' , , I

I

0 0 0 0 5 0 2 0 5 1 2 5 1 0 G H z 5 0

Fig . 19. Semi logar i thmic p lo t o f the r ea l pa r t U ( v) anddouble logar i thmic p lo t o f the d ie lec t r ic cont r ibu t ion ~ ( v)to the nega t ive imaginar y pa r t o f the d ie lec t r ic spec t rum a t25° C d isp layed f or a 0 .2 m ola r aq ueous so lu t ion of zw i t te-r ionic n-hexadecyl-sulfopropylbetaine (open circles ; Pottelet al. , 1978) and a 0 .155 mo la r aqu eous so lu t ion of n - hex-

adecyl - t r ime thylam monium br omide ( fu ll po in t s) .

563

B o t h s p e c t r a d i s p l a y e d i n F ig . 1 9 a r e c o m p o s e d o f a

s o l v e n t a n d a s o l u t e c o n t r ib u t i o n . A s d i s c u s se d a b o v e

f o r t h e m o l e c u l a r l y d i s p e r s e d s o l u t i o n s i n f o r m a t i o n

o n t h e h y d r a t i o n b e h a v i o u r o f th e m i c e ll e s c a n b e

d e r i v e d f r o m a n a n a l y s i s o f R ~ ( v ) . R u ( v ) f o r t h e

z w i t t e r i o n i c m i c e l l e s y i e l d s t h e m o b i l i t y u u a n d t h ed i p o l e o r i e n t a t i o n c o r r e l a t i o n f a c t o r gu o f t h e d i p o l a r

h e a d g r o u p a t t h e m i c e l l a r s u r f a c e ( P o t t e l et a l . ,

1 9 78 ). T h e e x i s t e n c e o f a s o l u t e t e r m R u ( v ) i n t h e

s p e c t r u m f o r t h e s o l u t i o n o f i o n i c m i c e l l e s i s a l e ss

o b v i o u s r e s u l t . R o ( v ) i s d u e t o t h e r e s t r i c t e d m o t i o n s

o f i o n s a t t h e s u r f a c e o f m i c el l es . A t t e m p t s t o t h e o r -

e t i c a l l y d e s c r i b e t h i s e f f e c t h a v e b e e n f i r st m a d e b y

S c h w a r z ( 1 9 6 2 ) w h o a s s u m e d t h e c o u n t e r i o n s t o b e

r e s t r ic t e d t o a n i n f i n i t e s i m a l l y t h i n l a y e r a r o u n d t h e

m i c e ll e s a n d w h o c o n s i d e r e d o n l y t a n g e n t i a l m o t i o n s

o f c h a r g e s w i t h i n t h i s l a y e r. S c h u r r ( 1 9 64 ) e x t e n d e d

t h is m o d e l f o r ra d i a l m o t i o n s o f c o u n t e r i o n s . I na n a l o g y w i t h t h e e x c h a n g e o f s o l v a t i o n m o l e c u l e s

d i s c u s s e d i n S e c t i o n 3 h e a l l o w e d f o r a n e x c h a n g e o f

i o n s b e t w e e n t h e th i n c o u n t e r i o n l a y e r a n d t h e b u l k

p h a s e. S i n c e t h e s e a n d m o r e r e c e n t t h e o r ie s ( D u k h i n

a n d S h i l o v ; 1 9 74 ; F i x m a n , 1 98 0; D e l a c e y a n d W h i t e ,

1 9 8 1; C h e w a n d S e n , 1 9 8 2; O ' B r i e n , 1 9 86 : G r o s s e a n d

B a r c h i n i , 1 9 8 6 ; G r o s s e , 1 9 8 8 ) d o n o t r e g a r d a p o s s -

i b l e l a r g e r a d i a l e x t e n s i o n o f t h e c o u n t e r i o n s h e l l

t h e s e m o d e l s a p p l y f o r s y s t e m s w i t h a d d i t i o n a l l o w

w e i g h t e l e c t r o l y t e o n l y . R e c e n t l y , h o w e v e r , a t h e o r e t i -

c a l m o d e l h a s b e e n p r e s e n t e d ( B a r c h i n i , 1 9 9 2 ) t h a t

d e s c r i b e s m i c e l l a r s o l u t i o n s a t l o w i o n i c s t re n g t h i nw h i c h d i f f u s e c o u n t e r i o n l a y e r s e x i s t .

A c k n o w l e d g e m e n t - - I am indebted to P r of es sor R . Pot te l f o rman y l ively and s t imulat ing discussions.

REFERENCES

Bailey A. E. (1985) Microwave Measurement . Peter Peregr i-nus . London.

Barchini R. (1992) Dielektr ische Spektren von w/i l3r igenL6sungen ionischer Tensid-Mizellen ohne zus~itzl ichenElekt r o ly tgeha l t . Thes is , U niver s i ty of G 6t t ingen .

Bar thel J . , Bachhuber K. , Buchner R. . Hetzenauer M. andK leebaue r M. ( 1991) A compu te r - cont r o l led sys tem oft r ansmiss ion l ines f or the de te r mina t ion of the complexperm it t ivi ty of lossy l iquids between 8.5 and 90 GH z. Ber.Bunsenges. Phys. Chem. 95, 853.

van Beek L . K . H . ( 1967) D ie lec t r ic behaviour of he te r o-geneou s systems. In Progress in Dielectrics. Vol. 7 (Editedby Birks J . B. ) . Heywood. London.

Benne t R . G . and Ca lder w ood J . H . ( 1971) Exper imenta ltechniques in dielectric studies. In Complex PermittivityTheory and Measurement (Edited by Scaife B. K. P .J TheEnglish Unive rs i ty Press , Lon don .

Ber tol ini D. . Casset tar i M. . Fer rar io M. . Gr igolini P . .Salvet t i G. and Tan i A . (198 9) Dif fus ion ef fects and

hydr ogen bond f luc tua t ions. I . L ong t ime r eg ime of thetranslat ion al and ro tat ion al diffusion of water . J . Chem.Phys. 91, 1179.

Blue M. D . (1980) Perm it t ivi ty of ice and wate r a t mil l imeterw ave length . J. Geophys. Res. 85, 1 I01.

Bonsen A. , Knoche W. , Berger W. , Giese K. and PetrucciS . (1978) Ultrasonic relaxation s tudies in aqueous sol-u t ions of a luminium su lpha te and scandium su lpha te .Ber. Bunsenges. Phys. Chem. 82, 678.

Page 16: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 16/18

564 Udo Kaatze

Brtt cher C. J. F. (1973) T heo r y o f E l e c t r i c P o lar i z a t i o n , Vol.1, 2nd edn. Elsevier, Amsterdam.

Brttcher C. J.F. and Bordewijk P. (1978) T h e o r y o f E l e c t ri cP o lar i z a t i o n , Vol. 2, 2nd edn. Elsevier, Amsterdam.

Brown W. F. (1956) Dielectrics. In Enc yc l o p ed i a o f P hys i c s ,Vol. 17 (Edited by Flfigge S.). Springer, Berlin.

Bruggeman D. A. G. (1935) Berechnung verschiedenerphysikalischer Konstanten yon heterogenen Substanzen.I. Dielektrizi tfitskonstanten und Leitf/ihigkeiten derMischkrrper aus isotropen Substanzen. Ann . P hys . , Lp z .5, 636.

Bryant G H. (1988) P r in c i p le s o f M i c r o w a v e M e a s u r e m e n t .Peter Peregrinus. London.

Chew W. C. and Sen P. N. (1982) Dielectric enhancementdue to electrochemical double layer: thin double layerapproximation. J. Chem. Phys . 77, 4683.

Clarkson T. S., Glasser L.. Tuxworth R. W. and WilliamsG. (1977) An appreciation of experimental factors intime-domain spectroscopy. A d v . M o l . R e l a x a t i o n P r o -cesses 10, 173.

Cole R. H. (1977) Time domain reflectometry. Ann . R ev .

P hys . C hem . 28 , 283.Cole R. H., Berberian J. C.. Mashimo S., Chryssikos G..

Burns A. and Tombari E. (1989) Time domain reflectionmethods for dielectric measurements to 10 GHz. J. App l .P hys . 66 793.

Cole K. S. and Cole R. H. (1941) Dispersion and absorptionin dielectrics. I. Alternating current characteristics.J. Chem. Phys . 9, 341.

Conway B. E. (1981) I o n i c H y d r a t i o n i n C h e m i s t r y a n dBiophysics. Elsevier, Amsterdam.

Crossley J. (1970) Dielectric relaxation and hydrogen bond-ing in liquids. A d v . M o l . R e l a x a t i o n P r o c e s s e s 2, 69.

Daniel V. V. (1967) D i e l ec t r i c R e laxa t i o n . Academic Press,London.

Davidson D. W. and Cole R. H. (1950) Dielectric relaxationin glycerine. J. Chem. Phys . 18, 1417.

Davies M. (1972, 1975, 1977) D i e l e c t r i c a n d R e l a t e dM o lecu la r P r o ces se s , Vols I, 2, 3. The Chemical Society,London.

Debye P. (1929) P o lar M o lecu l e s . Chemical Catalog,New York.

Delacey E. H. B. and White L. C. (1981) Dielectric responseand conductivity of dilute suspensions of colloidal par-ticles. J . C hem . S o c . Far aday T r ans . 77, 2007.

Dissado L. A. and Alison J. M. (1993) The relationshipbetween the Poley absorption and fractional power lawrelaxation in the cluster model. J . M o l . L i qu i ds 56, 295.

Dukhin S. S. and Shilov V. N. (1974) D i e l ec t r ic P h e n o m e n aa n d t h e D o u b l e L a y e r i n D i s p e r s e S y s t e m s a n d P o l y e l e c -

t ro ly tes . Keter, Jerusalem.Eigen M. and Tamm K. (1962) Schallabsorption in Elek-

trolytlrsungen als Folge chemischer Relaxation. II.MeBergebnisse und Relaxationsmechanismen fiir 2-2-wertige Elektrolyte. Ber . Bunsenges . Phys . Chem. 66107.

Endom L., Hertz H. G., Thfil B. and Zeidler M. (1967) Amicrodynamic model of electrolyte solutions as derivedfrom nuclear magnetic relaxation and self-diffusion data.Ber . Bunsenges . Phys . Chem. 71, 1008.

Falkenhagen H. (1971) T heo r i e de r E l ek t r o l y t e , p . 333.Hirzel, Leipzig.

Fixman M. (1980) Charged macromolecules in externalfields. I. The sphere. J . C hem . P hys . 72, 5177.

Franks F. (1972, 1973a, 1973b, 1975a, 1975b, 1979, 1982)

Wa ter , A Comprehens ive Treat i se , Vols I-7. Plenum,New York.

Franks F. (1985, 1986, 1988, 1989) W at er S c i ence R ev i ew s ,Vol. 1~4. Cambridge University Press, Cambridge.

Frrhlieh H. (1958) Theo ry o f Die lect r ics , 2nd edn. OxfordUniversity Press, Oxford.

Geiger A., Mausbach P. and Schnitker J. (1986) Computersimulation study of the hydrogen-bond network in

metastable water. In W a t e r a n d A q u e o u s S o l u t io n s (Editedby Neilson G. W. and Enderby J. E.), Hilger, Bristol.

van Gemert M. J. C. (1973) High-frequency time-domainmethods in dielectric spectroscopy. Philips Res. Rep. 28,530.

Gestblom B. and Noreland E. (1988) The single reflectionmethod in dielectric time domain spectroscopy. J. Phys .C hem . 88, 664.

Gestblom B., Noreland E. and Sjrblom J. (1987) A pre-cision dielectric time domain spectroscopy method in thegigahertz range. J. Phys: Chem. 91, 6329.

Gestblom B. and Sjrblom J. (1984a) Dielectric relaxationstudies of aqueous long-chain alcohol solutions. A c t aC hem . S cand . A 3 8 , 47.

Gestblom B. and Sjrblom J. (1984b) Dielectric relaxationstudy of aqueous methanol-butanol solutions. A compari-son with higher homologues. Act a C hem . S cand . A 3 8 ,575.

Giese K. (1972) Dielectric relaxation in aqueous alkalihalide solutions due to hydration water exchange: Ber.Bunsenges . P hys . Chem. 76, 495.

Giese K., Kaatze U. and Pottel R. (1970) Permittivityand dielectric and proton magnetic relaxation ofaqueous solutions of the alkali halides. J. Phys . Chem. 74,3718.

Gottman O. (1976) Dielektrische Relaxation in flfissigenbin~iren Lrsungen nichtdipolarer Elektron-Donator-undElektron-Akzeptor-Molekiile. Ber . Bunsenges . Phys .Chem. 80 280.

Grant E. H., Sheppard R. J. and South G. P. (1978)D i e l ec t r i c B ehav i o ur o f B i o l o g i ca l M o lecu l e s i n S o l u t i o n .Oxford University Press, Oxford.

Grosse C. (1988) Permittivity of a suspension of chargedspherical particles in electrolyte solution. 2. Influence ofthe surface conductivity and asymmetry of the electrolyteon the low- and high-frequency relaxations. J. Phys .C hem . 92, 3905.

Grosse C. and Barchini R. (1986) On the permittivi ty of asuspension of charged spherical particles in an electrolyte.J. Phys . D.: Appl . Phys . 19, 1113.

Hasted J. B., Husain S. K., Frescura F. A. M. and BirchJ. R. (1987) The temperature variation of the nearmillimetre wavelength optical constants of water. I n f r a r e dP hys . 27, 11.

Havriliak S. and Negami S. (1966) A complex plane analysisof ~-dispersions in some polymer solutions. J . P o l ym . S c i .C14, 99.

Hertz H. G. (1973) Nuclear magnetic spectroscopy. InWater , a Comprehens ive Treat i se , Vol. 3 (Edited byFranks F.). Plenum, New York.

Hertz H. G. and Zeidler M. (1963) Elementarvorg~inge inder Hydrathiille yon Ionen aus Protonen- undDeuteronenrelaxationszeiten. Ber . Bunsenges . Phys .C hem . 67, 774.

Hill N. E., Vaughan W. E., Price A. H. and Davies M.(1969) D i e l ec t r i c P r o p er t i e s and M o lecu la r B ehav io ur . VanNostrand Reinhold, London.

Hubba rd J. B. (1978) Dielectric dispersion and dielectricfriction in electrolyte solutions II. J . C hem . P hys . 681649.

Hubbard J. B., Colomonos P. and Wolynes P. G.(1979) Molecular theory of solvated ion dynamicsIII. The kinetic dielectric decrement. J. Chem. Phys . 71,2652.

Hubbard J. B. and Kayser R. F. (1981) Dielectric friction

and dielectric dispersion in electrolyte solutions with spin.J. Chem. Phys . 74, 3535.

Hubbard J. B. and Onsager L. (1977b) Dielectric dispersionand dielectric friction in electrolyte solutions I . J . Chem.P hys . 67, 4850.

Hubbard J. B., Onsager L., van Beck W. M. and Mandel M.(1977a) Kinetic polarization deficiency in electrolyte sol-utions. P r o c . N a t l Aead . S c i . US A 74, 401.

Page 17: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 17/18

Microwave dielectric p roper ties of liquids 565

Kaatze U. (1973) Ein Verfahren zur Messung der kom-plexen Dielektrizitfitszahl an kleinen Flfissigkeitsmengenim Frequenzbereich von 0.7-25 GHz mit Hohlraumres-onatoren. Ap p l . P hys . 2, 241.

Kaatze U. (1975) Dielectric relaxation in aqueous solutionsof polyvinylpyrrolidone. A d v . M o l . R e l a x a t i o n P r o c e s s e s

7, 71.Kaatze U. (1980b) Kinetic depolarization in aqueous sol-utions of alkylammonium bromides. Ber . Bunsenges .

P hys . C hem . 84, 1195,Kaatze U. (1983) Dielectric effects in aqueous solutions of

1 : 1, 2:1, and 3 : 1 valent electrolytes: kinetic depolariz-ation, saturation, and solvent relaxation. Z . P hys . C hem .

N . F . 135, 51.Kaatze U. (1989a) Complex permittivity of water as a

function of frequency and temperature. J. Chem. Eng .D at a 3 4 , 371.

Kaatze U. (1993) Dielectric spectroscopy of aqueous sol-utions. Hydration phenomena and hydrogen-bonded net-works. J . M o l . L i q u i d s 56, 95.

Kaatze U., Dittrich A., Grpel K.-D: and Pottel R. (1984a)

Dielectric studies of water in so lutions of purified lecithinvesicles. C hem . P hys . L i p i ds 35, 279.

Kaatze U., G abr iel B. a nd Pottel R. (1994) Dielectricspectroscopy on CiEJwater mixtures as a function ofcomposition. Ber . Bunsenges . Phys . Chem. 98, 9.

Kaatze U., Gerke H. and Pottel R. (1986) Dielectric relax-ation in aqueous solutions of urea and some of itsderivatives. J . P hys . C hem . 90, 5464.

Kaatze U. and Giese K. (1980a) Dielectric relaxationspectroscopy of liquids: frequency domain and timedomain experimental methods. J . P hys . E : S c i . I n s t r um .13, 133.

Kaatze U. and Giese K. (1987a) Dielectric spectroscopy onsome aqueous solutions of 3:2 valent electrolytes. A

combined frequency and time domain study. J . M o LL i q u i d s 36, 15.Kaatze U., Grpel K.-D. and Pottel R. (1985a) Zwitterion

motions of differently aggregated phospholipids inaqueous and methanoli c solutions. A dielectric relaxationstudy. J . P hys . C hem . 8 9 2565.

Kaatze U., Grttmann O., Podbielski R., Pottel R. andTerveer U. (1978b) Dielectric relaxation in aqueous sol-utions of some oxygen-containing linear hydrocarbonpolymers. J . P hys . C hem . 82, 112.

Kaatze U. and Lrnnecke-Gabel V. (1991b) Dielectric spec-troscopy on binary mixtures of organic solvents. J . M o l .L i q u i d s 48, 45.

Kaatze U., Lrnnecke V. and Pottel R. (1987b) Dielectricspectroscopy on aqueous solutions of zinc(II) chloride.

Evidence of ion complexes. J. P hys . C hem . 91, 2206.Kaatze U., Menzel K. and Pottel R. (1991d) Broad-band

dielectric spectroscopy on carboxylic acid/water mixtures.Dependence upon composition. J . P hys . C hem . 95, 324.

Kaatze U., Nagel A. and Sch/ifer M. (1991c) Broad-banddielectric spectroscopy on morpholine/n-butanol liquidmixtures. J. Phys .: Condens . M at te r 3, 5073.

Kaatze U., Neumann C. and Pottel R. (1984b) The staticelectric permittivity of solutions of organic molecules indipolar solvents. J . S o l u t i o n C hem . 13, 357.

Kaatze U. and Pottel R. (1984c) On the static permittivityof aqueous and non-aqueous electrolyte solutions.Z . P h y s . C h e m . N . F . 141, I.

Kaatze U. and Pottel R. (1985b) On a hydration modelutilized in the d iscussion of dielectric spectra o f aqueoussolutions. J. M o l . L i q u i d s 30, 115.

Kaatze U. and Potte l R. (1992) Dielectric properties oforganic solute/water mixtures. Hydrophobic hydrationand relaxation. J . M o L L i q u i d s 52, 181.

Kaatze U., Pottel R. and Sch~ifer M. (1989b) Dielectricspectrum of dimethyl sulfoxide/water mixtures as a func-tion of composition. J . P hys . C hem . 93, 5623.

Kaatze U., Pottel R. and Schmidt P. (1988) Dielectric

properties of aqueous quinoxaline solutions in the com-plete composition range. J . P hys . C hem . 92, 3669.

Kaatze U., Schfifer M. and Pottel R. (1989c) The complexdielectric spectrum of aqueous methanol and isopropanolsolutions. Z . P h y s . C h e m . N . F . 165, 103.

Kaatze U., Schumacher A. and Pottel R. (1991a) The

dielectric properties of tert.-butanol/water mixtures as afunction of composition. Ber . Bunsenges . Phys . Chem. 9 5

585.Kaatze U. and Wen W.-Y. (1978a) Molecular motion and

structure of solutions of triethylenediamine in H20 andD20 as studied by dielectric relaxation measurements. J.Phys . Chem. 82. 109.

Kaatze U. and Woermann D. (1982) Dielectricrelaxation measurements in binary liquid mixtures withan upper critical point. Ber. Bunsen ges. Phys . Chem.8 6 81.

Kirkwood J. G. (1939) The dielectric polarization of polarliquids. J . C hem . P hys . 7, 91 I.

Kfihnel V., Rupprecht A., Gailus T., Krah H. andKaatze U. (1995). To be published.

Kusalik P. G. and Patey G. N. (1983) Theoretical results fordielectric and structural properties of aqueous electro-lytes. The influence of ion size and charge. J . C hem . P hys .

79, 4468.Lrnnecke-Gabel V. (1990) Dielektrische Spektroskopie an

wasserarmen Mischungen zur Frage der dielektrischenRelaxation gebundenen Wassers. Thesis, University ofGrttingen.

Marcuvitz N. (1951) W a v e g u i d e H a n d b o o k , MIT Rad. Lab.Ser. Vol. 10. McGraw-Hill, New York.

Mashimo S. and Kuwabara (1989) The dielectric relaxationof mixtures of water and primary alcohols. J . C hem . P hys .

90, 3292.Maxwell J. C. (1892) E l e c t r ic i t y a n d M a g n e t is m . Clarendon,

Oxford.Nozaki R. and Bose T. K. (1990) Broadband complexpermittivity measurements by time-domain spectroscopy.I E E E T r a n s . I n s t r u m . M e a s . 39, 945.

O'Brien R. W. (1986) The high-frequency dielectric dis-persion of a colloid. J . C o l l o i d I n t e r f ace S c i . 113, 81.

Ohmine I., Tanaka H. and Wolynes P. G. (1988) Localenergy fluctuations in water. II. Cooperative motions andfluctuations. J . C hem . P hys . 8 9 5852.

Polder D. and van Santen N. J. (1946) The effectivepermeability of mixtures of solids. P h y s i c a , A m s t e r d a m12, 257.

Pottel R. (1965) Die komplexe Dielektrizit~itskonstantew/iBriger Lrsungen einiger 2-2-wertiger Etektrolyte imFrequenzbereich 0.1 bis 38 GHz. Ber . Bunsenges . Phys .

Chem. 69, 363.Pottel R. (1966) The complex dielectric cons tant of some

aqueous electrolyte solutions in a wide frequency range.In C h e m i c a l P h y s i c s o f I o n i c S o l u t i o n s (Edited by ConwayB. E. and Barradas R. G.). Wiley, New York.

Pottel R. (199 2) Kinetik des Wasserstoffbindungs-Netzwerkes in stark assoziierten flfissigen Systemenaus dielektrischer Relaxations-Spektroskopie. ReportDFG Contract Po 91/12-1. Also unpublished laboratorydata.

Pottel R., Asselborn E., Eck R. and Tresp V. (1989)Dielectric relaxa tion rate and static dielectric permit tivityof water and aqueous solutions at high pressures. Ber .Bunsenges . Phys . Chem. 93, 676.

Pott el R., Giese K. and Kaatze U. (1974) Dielectric relax-ation o f water in aqueous solutions. In S t r u c t u r e o f W a t e ra n d A q u e o u s S o l u t io n s (Edited by Luck W. A. P.). VerlagChemie-Physik Verlag, Weinheim.

Pottel R., Grpel K.-D., Henze R., Kaatze U. and UhlendorfV. (I 984) The dielectric permittivity spectrum o f aqueouscolloidal phospholipid solutions between 1 kHz and60 GHz. Biophys . Chem. 19, 233.

Pottel R. and Kaatze U. (1969) Permittivity and dielectric

Page 18: Kaatze_1995

8/13/2019 Kaatze_1995

http://slidepdf.com/reader/full/kaatze1995 18/18

5 66 U d o K a a t z e

r e l a x a t i o n o f a q u e o u s s o l u t i o n s o f h y d r o c a r b o n s . Be t .Bunsenges . Phys . Chem. 73 , 437 .

Pot tel R. , Kaatze U. and Mfi l ler S . (1978) Dielect r ic relax-a t i o n i n aq u eo u s so lu t i o n s o f zwi t t e r i o n i c su r f ac t an tmicelles. Ber . Bunsenges . Phys . Chem. 82, 1086.

S a e t e n J . O . , F 6 r d e d a l H . , S k o d v i n T . , S j 6 b lo m J . , A m r a nA. an d F r ib e rg S . E . (1 9 92 ) A d i e l ec t r ic sp ec t ro sco p ys tu d y o f t h e sy s t em t e t r ao x y e th y l en e d o d ecy l e th e r(C t2 E O4 ) /wa t e r / co p p er n i t r a t e / cy c l o h ex an e . J . C o l l o MI n t e r f ace S c i . 154, 167.

Scaife B. K. P. (1989) Princ ip les o f D ie lect r ics . O x f o r dUn i v er s i t y P ress , Ox fo rd .

S ch wa rz G . (1 96 2 ) A th e o ry o f t h e lo w- f r eq u en cy d i sp e r s io no f co l l o id a l p a r t i c l es i n e l ec t ro ly t e so l u t i o n . J . P hys .C hem . 66, 2636.

S ch u r r J . M . ( I 9 6 4 ) On t h e t h eo ry o f t h e d i e l ec tr i c d i sp e r s io no f sp h er i ca l co l l o id a l p a r t i c l es i n e l ec t ro ly t e so lu t i o n .J. Phys . Chem. 68, 2407.

S c i o r t i n o F . an d F o rn i l i S . L . ( 1 9 8 9 ) Hy d ro g en b o n dco o p era t i v i t y i n s imu la t ed wa t e r : t ime d ep en d en ce an a ly -s i s o f p a i r i n t e r ac t i o n s . J. Chem. Phys . 90, 2786.

S c i o r t i n o F . , Ge ig er A . an d S t an l ey H . E . (1 9 9 0 ) I so ch o n i cd i f f e r en ti a l s ca t t e r i n g fu n c t i o n s i n l i q u id w a t e r : t h e f i f thn e ig h b o u r as a n e two rk d e fec t . P hys . R ev . Le f t . 65, 3452.

S c i o r t i n o F . , G e ig er A . an d S t an l ey H . E . (19 9 1) E f f ect s o fd e fec t s o n m o lecu l a r m o b i l i t y i n l i q u id wa t e r . N at ur e 3 5 4 ,218.

S c io r t i n o F ., Ge ig er A . an d S t an l ey H . E . (1 9 92 ) Ne tw o rkd efec t s an d mo l ecu l a r m o b i l i t y i n l iq u id wa t e r . J. Chem.

P hys . 96, 3857.S j6 b lo m J . , S k u r tv e i t R . , S ae t en J . O . an d Ges tb lo m B .

(1 9 9 1 ) S t ru c t u ra l ch an g es i n t h e mic ro emu l s io n sy s t emd i d o d e c y l d i m e t h y l a m m o n i u m b r o m i d e / w a t e r / d o d e c a n eas i n v es t i g a t ed b y mean s o f d i e l ec t r i c sp ec t ro sco p y .J . C o l l o i d I n t e r f ace S c i . 141, 329.

S tu m p er U . (19 7 3) A TE0~ c av i t y r eso n a to r meth o dto d e t e rm in e t h e co mp lex p e rm i t t i v it y o f l o w lo ssl i q u id s a t mi l l ime t e r wav e l en g th s . R ev . S c i en t . I n s t r um .44, 165.

S u ch er M . an d F o x J . ( 1 9 6 3 ) H a n d b o o k o f M i c ro w a v eM e a s u r e m e n t s , Vol . 2 , 3 rd edn . Po ly technic Press ,Bro o k ly .

Ta n ak a H. a n d O h m in e I . ( 19 8 7) Larg e l o ca l en e rg y f l u c tu -a t i o n s i n wa t e r . J. Chem. Phys . 87, 6128.

W ag n e r K . W . (1 91 4 ) E rk l / i r u n g d e r d i e l ek t r i sch en Nac h -wi rk u n g sv o rg ~ in g e au f Gru n d M ax wel l sch er Vo r s t e l l u n -gen . Ar ch . E l ek t r o t e chn . 2, 371.

Wal lu sch A. , P o t t e l R . an d Kaa t ze U . (1 9 9 5 ) . M eas . S c i .

Tech. su b mi t t ed .W e n W . - Y . a n d K a a t z e U . ( 1 97 7) A q u e o u s s o l u t i o ns o f

azo n i asp r io a lk an e h a l i d es . 3 . D ie l ec t r i c r e l ax a t i o n .

J. Phys . Chem. 81, 177.Wo l y n es P . G . (1 98 0 ) Dy n am ics o f e l ec t ro ly te so lu t i o n s .

Ann . R ev . P hys . C hem . 31, 345.