Date post: | 03-Oct-2015 |
Category: | Documents |
View: | 7 times |
Download: | 1 times |
THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE
DEPARTMENT OF ENGINEERING SCIENCE AND MECHANICS
EVALUATION OF THE CRITERIA FOR CRACK PROPAGATION
IN THE PRESENCE OF HIGH SURFACE STRESSES
KATELYN J. SMITH
Spring 2010
A thesis
submitted in partial fulfillment
of the requirements
for a baccalaureate degree
in Engineering Science
with honors in Engineering Science
Reviewed and approved* by the following:
Albert E. Segall
Professor of Engineering Science and Mechanics
Thesis Supervisor
Christine B. Masters
Assistant Professor and Undergraduate Program
Coordinator of Engineering Science and Mechanics
Honors Adviser
Judith A. Todd
P. B. Breneman Department Head Chair
Professor, Department of Engineering Science and Mechanics
* Signatures are on file in the Schreyer Honors College and Engineering Science
and Mechanics Office.
i
ABSTRACT
The petrochemical industry is largely dependent on the continuous operation of
equipment to turn the maximum profit. Thus, there exists an intricate balance between the
financial gains of the business and the structural integrity of the equipment. Numerous standards
are therefore used to establish an appropriate degree of conservatism in the design process to
ensure safe and reliable long-term operation.
The standard under evaluation in this thesis research is the API 579-1/ASME FFS-1. The
present methods for determining critical crack dimensions in this standard compare a calculated
stress intensity value from the surface and depth locations with the material fracture toughness. In
cases where high, residual stresses exist on the surface, this treatment may result in an overly
conservative estimation of the likelihood of crack propagation due to the rapidly diminishing
stresses as the crack face moves away from any high surface stresses. Since over-conservatism
can be problematic, the goal of this project is to evaluate the critical crack assessment in the
presence of a stress field that diminishes rapidly in the through-thickness direction.
Through the use of finite element analysis and other analytical tools, the depth and
surface locations of a semi-elliptical surface crack were examined in terms of stress intensity
solutions. A comparison between the standard and the finite element analysis confirmed that the
critical crack-like flaw assessment provides an additional degree of conservatism at the depth
location of the flaw; this inherent conservatism is equivalent to a safety factor of approximately
1.375 or higher for the cases reviewed. The surface location was unable to be properly assessed
due to inconsistencies in the mesh applied at this location. Thus, further modeling work is
necessary to accurately evaluate the level of conservatism at the surface location of the semi-
elliptical crack.
ii
TABLE OF CONTENTS
LIST OF FIGURES ............................................................................................................... vi
LIST OF TABLES ................................................................................................................. vii
ACKNOWLEDGEMENTS ................................................................................................... viii
Chapter 1 Introduction .......................................................................................................... 1
1.1Equitment Evaluation ................................................................................................ 1 1.2 Objectives................................................................................................................. 2
Chapter 2 Background .......................................................................................................... 3
2.1 Pressure Vessel Stress Assessment ........................................................................... 3 2.1.1 Characterization of Stress .............................................................................. 3
2.1.2 Origin of Stresses in Pressure Vessels ........................................................... 5 2.1.3 Stress Intensity Factor.................................................................................... 5
2.2 API 579-1/ASME FFS-1Standard ............................................................................ 7 2.2.1 Backgound of the API 579-1/ASME FFS-1Standard..................................... 8
2.2.2 Critcal Crack Calculation in the API 579-1/ASME FFS-1Standard .............. 9 2.3 Weight Function Application ................................................................................... 14
Chapter 3 Modeling .............................................................................................................. 17
3.1 Finite Element Analysis ........................................................................................... 17 3.2 Model Design ........................................................................................................... 18
3.2.1 Crack Construction ........................................................................................ 20
3.2.2 Loading Specifications .................................................................................. 21
3.2.3 Material Selection .......................................................................................... 21 3.2.4 Additional Model Construction Parameters ................................................... 22
Chapter 4 Results .................................................................................................................. 23
4.1 Finite Element Analysis Results ............................................................................... 23 4.2 Analytical Work ....................................................................................................... 26
4.2.1 API 579-1/ ASME FFS-1Analysis ................................................................. 26
4.2.2 Weight Function Comparison ........................................................................ 29
Chapter 5 Summary and Dicussions ..................................................................................... 31
5.1 Dicussions ................................................................................................................ 31 5.1.1 Depth Stress Intensity Factor ......................................................................... 32
5.1.2 Surface Stress Intensity Factor ....................................................................... 33
iii
5.2 Summary .................................................................................................................. 34
Chapter 6 Conclusions .......................................................................................................... 36
Chapter 7 Future Work ......................................................................................................... 38
7.1 Modeling Work ........................................................................................................ 38 7.2 Analytical Work ....................................................................................................... 39
References.............................................................................................................................. 40
Appendix A Overview of the Assessment Procedure ............................................................ 42
Appendix B Stress Distributions ............................................................................................ 43
Appendix C Weight Function Calculations ............................................................................ 45
iv
LIST OF FIGURES
Figure 2-1: A three-dimensional semi-elliptical external crack ............................................ 6
Figure 2-2: Geometry with an external axial crack of semi-elliptical shape ........................... 7
Figure 2-3: Failure Regions on the Failure Assessment Diagram. ......................................... 9
Figure 2-4: Schematic Overview of the FAD Procedure ........................................................ 13
Figure 3-1: Cut-Away View of Modeled Crack and Boundary Conditions. .......................... 22
Figure 4-1: View of Model 2 Undeformed Stressed State .................................................... 24
Figure 4-2: View of Model 1 Deformed Stressed State ......................................................... 25
Figure 4-3: ABAQUS/CAE Stress Linearization Through-Thickness for Load 1 .................. 27
Figure 4-4: ABAQUS/CAE Stress Linearization Through-Thickness for Load 2 .................. 27
Figure 4-5: Polynomial Fit to Stress Normal to Crack for Load 1 .......................................... 28
Figure 4-6: Polynomial Fit to Stress Normal to Crack for Load 2 .......................................... 28
v
LIST OF TABLES
Table 3-1: Dimensions of ABAQUS/CAE Model for Semi-elliptical Crack Growth. ........... 18
Table 4-1: Stress Intensity Values for ABAQUS/CAE Model. ............................................. 24
Table 4-2: Linear Approximation of Stress Intensity Values for ABAQUS/CAE Model ...... 26
Table 4-3: Stress Intensity Values from API 579-1/ASME FFS-1Standard. ..............