+ All Categories
Home > Documents > Key symmetries of superconductivity

Key symmetries of superconductivity

Date post: 05-Jan-2022
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
73
3 He A 1 phase Key symmetries of superconductivity Inversion and time reversal symmetry Sendai, March 2009 Manfred Sigrist, ETH Zürich CePt 3 Si ferromagnetic SC paramagnetic UGe 2 1 st GCOE International Symposium
Transcript
Page 1: Key symmetries of superconductivity

3He A1 phase

Key symmetries of superconductivity Inversion and time reversal symmetry

Sendai, March 2009 Manfred Sigrist, ETH Zürich

CePt3Si

ferromagnetic

SC

paramagnetic

UGe2

1st GCOE International Symposium

Page 2: Key symmetries of superconductivity

Key symmetries of superconductivity Inversion and time reversal symmetry

Sendai, March 2009 Manfred Sigrist, ETH Zürich

superconductivity: general introduction

Cooper pairing: symmetry aspects role of inversion and time reversal symmetry

superconductivity in the absence of inversion and time reversal sym.

lack of inversion symmetry: non-centrosymmetric superconductors and some of their physical properties

Page 3: Key symmetries of superconductivity

Superconductivity

Electrical resistance (1911)Field expulsion (1933)Meissner-Ochsenfeld effect

B=0

B

B

T>Tc T<Tc

Superconductivity as a thermodynamic phase

temperature

resistivity

Tc

London theory (1935)

!

" # $2r j = %

r B

!

" #r B =

4$

c

r j

!

"2r B = #$2

r B

B

xλLondon penetration depth

!

"#2 =4$e2n

s

mc2

density of superconducting electrons

Page 4: Key symmetries of superconductivity

Superconductivity

Electrical resistance (1911)Field expulsion (1933)Meissner-Ochsenfeld effect

B=0

B

B

T>Tc T<Tc

Superconductivity as a thermodynamic phase

temperature

resistivity

Tc

Ginzburg-Landau theory (1950)Superconductivity described by a complex macroscopic wave function

Phenomenology of superconductivity

order parameter

Page 5: Key symmetries of superconductivity

Superconductivity

Electrical resistance (1911)Field expulsion (1933)Meissner-Ochsenfeld effect

B=0

B

B

T>Tc T<Tc

Superconductivity as a thermodynamic phase

temperature

resistivity

Tc

Ginzburg-Landau theory (1950)Superconductivity described by a complex macroscopic wave function

Phenomenology of superconductivity

order parameterviolates U(1)-gauge symmetry

superconductivity

Anderson-Higgsmechanism

Page 6: Key symmetries of superconductivity

PhenomenologicalPhenomenologicalpoint of viewpoint of view

Spontaneous symmetry breakingSpontaneous symmetry breaking

Page 7: Key symmetries of superconductivity

Ginzburg-Landau theory2nd order phase transition from normal to superconducting state

spontaneous symmetry breaking

order parameter: macroscopic wave function

T>Tc

T<Tc

F

normal phase T > Tc

superconducting phase T < Tc

Free energy expansion at Tc

scalar under U(1)-gauge operation

supplement

Page 8: Key symmetries of superconductivity

Free energy expansion at Tc

scalar under U(1)-gauge operation

Ginzburg-Landau theory2nd order phase transition from normal to superconducting state

spontaneous symmetry breaking

order parameter: macroscopic wave function

T>Tc

T<Tc

F

normal phase T > Tc

superconducting phase T < Tc

determined

phase free

spontaneous breaking of U(1) symmetry

supplement

Page 9: Key symmetries of superconductivity

Ginzburg-Landau theory

Free energy functional

local U(1)-gauge invariance

gradient vector potential

variational equations

inhomogeneous oder parameter

structures

domain walls, vorticesetc

London equation

supercurrent

„massive photon“Anderson-Higgs

mechanism

supplement

Page 10: Key symmetries of superconductivity

Ginzburg-Landau theory

Free energy functional

local U(1)-gauge invariance

gradient vector potential

variational equations

inhomogeneous oder parameter

structures

domain walls, vorticesetc

London equation

supercurrent

„massive photon“Anderson-Higgs

mechanism

single-valued macroscopic wave function

flux quantization

persistent currentdissipation free

supplement

Page 11: Key symmetries of superconductivity

Microscopic Microscopic point of viewpoint of view

Cooper pairing of electronsCooper pairing of electrons

Page 12: Key symmetries of superconductivity

Microscopic theory of superconductivityBardeen-Cooper-Schrieffer (BCS) (1957)

Superconducting state as a coherent state of electron Cooper pairs

with

0 electron

1 electronin each single-electron state

!

r k "

!

"r k #

Fermi sea

Cooper pairs

total momentum

free adding / removingof Cooper pairs

superconductorcoherent state

number of pairs not fixed

Page 13: Key symmetries of superconductivity

Microscopic theory of superconductivityBardeen-Cooper-Schrieffer (BCS) (1957)

Superconducting state as a coherent state of electron Cooper pairs

with

free adding / removingof Cooper pairs

superconductorcoherent state

number of pairs not fixed

pair wave function

U(1) - gauge operation

order parametermacroscopicwavefunction

phase 2α conjugate to pair number

Page 14: Key symmetries of superconductivity

Pairing interaction - electron phonon (BCS)Cooper pair formation (bound state of 2 electrons) needs attractive interaction

electron phonon interaction:

k

-k

k’

-k’

k

-k

k’

-k’

scattering between electron stateswith degenerate energy

attractive interaction

Page 15: Key symmetries of superconductivity

Alternative mechanism for Cooper pairing

Pairing by magnetic fluctuations: Berk & Schrieffer (1966)

easily spin polarizable medium

pairing for higherangular momentum

longer ranged interaction

AF SC

Quantum CriticalPointT

CeIn3

Page 16: Key symmetries of superconductivity

Symmetry of pairs of identical electrons:

orbital spin

Pauli principle:wave function totally antisymmetric under particle exchange

'sskk !"#rr

!

r k s

!

"r k s'

Cooper pair symmetry

Ptot=0

even parity:

odd parity:

L =0,2,4,… , S=0 spin singlet

L = 1,3,5,… , S=1 spin triplet

even

even

odd

odd

angular angular momentummomentum spinspin

FermiFermiseasea

!

r k s

!

"r k s'

Page 17: Key symmetries of superconductivity

Symmetry of pairs of identical electrons:

Pauli principle:wave function totally antisymmetric under particle exchange

'sskk !"#rr

!

r k s

!

"r k s'

Cooper pair symmetry

Ptot=0

even parity:

odd parity:

L =0,2,4,… , S=0 spin singlet

L = 1,3,5,… , S=1 spin triplet

even

even

odd

odd

angular angular momentummomentum spinspin

FermiFermiseasea

!

r k s

!

"r k s'

L = 0, S = 0: most symmetric „conventional pairing“

Classification

L > 0 : lower symmetry „unconventional pairing“

Page 18: Key symmetries of superconductivity

Symmetry of pairs of identical electrons:

Pauli principle:wave function totally antisymmetric under particle exchange

'sskk !"#rr

!

r k s

!

"r k s'

Cooper pair symmetry

Ptot=0

even parity:

odd parity:

L =0,2,4,… , S=0 spin singlet

L = 1,3,5,… , S=1 spin triplet

even

even

odd

odd

angular angular momentummomentum spinspin

FermiFermiseasea

!

r k s

!

"r k s'

key symmetries for this classification

time reversal & inversion

Page 19: Key symmetries of superconductivity

Anderson’s Theorems (1959,1984)

Cooper pairs with total momentum Ptot=0 form from degenerate quasiparticle states.

Spin singlet pairing: time reversal symmetry

harmful: magnetic impurities, ferromagnetism, Zeemann fields (paramagnetic limiting)

Spin triplet pairing: inversion symmetry

harmful: crystal structure without inversion center

How to guarantee existence of degenerate partners?

with

Page 20: Key symmetries of superconductivity

Basic ModelBasic Modelof systems withoutof systems without

inversion centerinversion center

Page 21: Key symmetries of superconductivity

Key symmetries and band structure

Electron state:

time reversal:

inversion:

orbital and spin part distinctly treatedElectron spectrum:

conserved time reversal

inversion

charge density spin density

Page 22: Key symmetries of superconductivity

Lack of time reversal symmetry

M, H

Electrons in a ferromagnet / magnetic field:

UGe2

C4v

ferromagnetic

SC

paramagnetic

and Zeeman field

superconductivityin a ferromagnet

Page 23: Key symmetries of superconductivity

Band structure - band splitting

Spin split energy spectrum:

k

E

k

Espin

polarization

Page 24: Key symmetries of superconductivity

Band structure - band splitting

Spin split energy spectrum:

k

E

kx

ky

Fermi surfacesplitting

majority

minority

Page 25: Key symmetries of superconductivity

Lack of inversion symmetry - non-centrosymmetric

EA

A

B

B

C

C A

A

B

B

C

CCePt3Si

C4v

motion of electron in electric field:

and special relativity

spin-orbit coupling:

Rashba-like spin-orbit coupling

Page 26: Key symmetries of superconductivity

Band structure - band splitting

Spin split energy spectrum:

k

E

k

Espin-orbitcouping

Page 27: Key symmetries of superconductivity

Band structure - band splitting

Spin split energy spectrum:

k

E

kx

ky

Fermi surfacesplitting

Page 28: Key symmetries of superconductivity

Superconducting phaseSuperconducting phase

Page 29: Key symmetries of superconductivity

Superconducting phases

spin singlet, even parity spin triplet, odd parity

1 configuration 3 configurations

pair wave function

Page 30: Key symmetries of superconductivity

Superconducting phases

spin singlet, even parity spin triplet, odd parity

1 configuration 3 configurations

pair wave function

Page 31: Key symmetries of superconductivity

Anderson theorem for small perturbation

superconducting phase: bare Tc = Tc0 and

singlet pairing

no inversion no time reversal

supplement

Page 32: Key symmetries of superconductivity

Anderson theorem for small perturbation

superconducting phase: bare Tc = Tc0 and

triplet pairing

no inversion no time reversal

spin structure adapted to perturbation

otherwise

supplement

Page 33: Key symmetries of superconductivity

Anderson theorem for small perturbation

superconducting phase: bare Tc = Tc0 and

triplet pairing

no inversion no time reversal

spin structure adapted to perturbation

otherwise

H

equal spin pairingparallel tomagnetic field

supplement

Page 34: Key symmetries of superconductivity

Anderson theorem for small perturbation

superconducting phase: bare Tc = Tc0 and

triplet pairing

no inversion no time reversal

spin structure adapted to perturbation

otherwise

supplement

Page 35: Key symmetries of superconductivity

Anderson theorem for perturbations

time reversal symmetry breaking inversion symmetry breaking

Zeeman coupling Rashba spin-orbit coupling

spin-singlet even-parity pairing

time reversal breaking

Tc

inversion breaking

Tc

Page 36: Key symmetries of superconductivity

Anderson theorem for perturbations

time reversal symmetry breaking inversion symmetry breaking

Zeeman coupling Rashba spin-orbit coupling

spin-triplet odd-parity pairing

time reversal breaking

Tc

inversion breaking

Tc

Page 37: Key symmetries of superconductivity

Anderson theorem for perturbations

time reversal symmetry breaking inversion symmetry breaking

Zeeman coupling Rashba spin-orbit coupling

time reversal breaking

Tc

inversion breaking

Tc

spin-triplet odd-parity pairing

Page 38: Key symmetries of superconductivity

Structure of pairing state Structure of pairing state

Page 39: Key symmetries of superconductivity

spin singleteven parity

time reversal breaking

Tc

inversion breaking

Tc

spin triplet odd parity

inversion breaking

Tc

time reversal breaking

Tc

time reversal breaking

Tc

inversion breaking

Tc

Anderson theorem for perturbations - summary

Page 40: Key symmetries of superconductivity

spin singleteven parity

spin triplet odd parity

time reversal breaking

Tc

inversion breaking

Tc

inversion breaking

Tc

time reversal breaking

Tc

time reversal breaking

Tc

inversion breaking

Tc

broken time reversal symmetry

Anderson theorem for perturbations - summary

Page 41: Key symmetries of superconductivity

time reversal breaking

Tc

inversion breaking

Tc

inversion breaking

Tc

time reversal breaking

Tc

time reversal breaking

Tc

inversion breaking

Tc

broken inversion symmetry

combinationparity-mixing

Anderson theorem for perturbations - summary

spin singleteven parity

spin triplet odd parity

Page 42: Key symmetries of superconductivity

Structure of pairing statestime reversal symmetry broken (e.g. magnetic field)

spin triplet state:

Cooper pair spin expectation value

with spin parallel to field

inversion symmetry broken (e.g. non-centrosymmetric crystal)

combination of spin singlet and spin triplet state: mixed parity state

with

Page 43: Key symmetries of superconductivity

Mixed parity states are non-unitaryunitary superconducting states: 2x2 unit matrix

inversion symmetryviolated

time reversal symmetry violated

3He A1 phase

CePt3Si

UGe2

Page 44: Key symmetries of superconductivity

Non-centrosymmetricNon-centrosymmetricsuperconductorssuperconductors

Page 45: Key symmetries of superconductivity

CeRhSi3

Kimura et al. (2005)

Ce-based heavy Fermion superconductorsCeIrSi3

Onuki et al. (2005)

CePt3Si

TN

AF Tc

SC

coexistence ofcoexistence ofAF and SC !AF and SC !

pressurepressurete

mpe

ratu

rete

mpe

ratu

re

Bauer et al (2004)

Rashba-type Rashba-type of of spin-orbit couplingspin-orbit coupling

quantum critical pointtetragonal crystal lattice

ambient pressure

Page 46: Key symmetries of superconductivity

Upper critical fieldHow to destroy Cooper pairs by a magnetic field?

Two types Two types of of depairingdepairing

orbital orbital depairingdepairingLorentz forceLorentz force

coherence lengthcoherence length::

paramagnetic depairingparamagnetic depairingBB

BB

spin polarizationspin polarizationmagneticmagneticenergyenergy

condensationcondensationenergyenergy

Heavy Fermion superconductors:

effective electron mass:

„very slow Fermions“

orbital depairing mechanism weak

strong magnetic correlations/order

unconventional pairing likely

paramagnetic limiting important !?

Page 47: Key symmetries of superconductivity

Spin polarization - spin susceptibility

spin singlet pairing Yosida behavior of spin susceptibility

TTc

χ

χppair breakingby spin polarization

spin triplet pairing

χ = const. for

!

r d (

r k ) "

r H =0

TTc

χ

χpno pair breaking for equal-spin pairing

note: with

Page 48: Key symmetries of superconductivity

Paramagnetic limiting fielddestruction of superconductivity due to Zeeman splitting of electron spins

Compare the two energies at T=0K

superconducting condensation energy

paramagnetic energy

Pauli susceptibility

paramagnetic limiting field

thermodynamic critical field

spin susceptibility at T=0K

Page 49: Key symmetries of superconductivity

Paramagnetic limiting fielddestruction of superconductivity due to Zeeman splitting of electron spin states

Compare the two energies at T=0K

superconducting condensation energy

paramagnetic energy

Pauli susceptibility

paramagnetic limiting field

thermodynamic critical field

spin susceptibility at T=0K

TTc

χ

χp

spin singlet pairing

Page 50: Key symmetries of superconductivity

Paramagnetic limiting fielddestruction of superconductivity due to Zeeman splitting of electron spin states

Compare the two energies at T=0K

superconducting condensation energy

paramagnetic energy

Pauli susceptibility

paramagnetic limiting field

thermodynamic critical field

spin susceptibility at T=0K

TTc

χ

χp

spin triplet pairing

Page 51: Key symmetries of superconductivity

Paramagnetic limiting field - mixed parity state

paramagnetic limiting field

!

r H " ˆ z

!

r H || ˆ z

χ/χp

1

00 1T/Tc

0.5

Yosida

spin susceptibility of non-centrosymmetric SC

paramagnetic limiting

no paramagn. limiting

as in CePt3Si, CeRhSi3, CeIrSi3

Page 52: Key symmetries of superconductivity

Paramagnetic limiting field - mixed parity state

!

r H " ˆ z

!

r H || ˆ z

χ/χp

1

00 1T/Tc

0.5

Yosida

spin susceptibility of non-centrosymmetric SC

paramagnetic limiting

no paramagn. limiting

CePt3Si

T. Yasuda et al.

as in CePt3Si, CeRhSi3, CeIrSi3

does not follow the expectations !

Page 53: Key symmetries of superconductivity

Upper critical field and paramagnetic limiting

CeIrSi3

Onuki et al.

fits very well to theoreticalexpectations of paramagnetic limiting

CeRhSi3

no limiting

limited

Pc ~ 25 - 30 kbar

Kimura et al.

no limiting

limited

Page 54: Key symmetries of superconductivity

Upper critical field and paramagnetic limiting

CeIrSi3CeRhSi3

no limiting

limited

Pc ~ 25 - 30 kbar

Kimura et al.

no limiting

limited

Comparison with non-heavy Fermion SC

LaIrSi3

Onuki et al.

fits very well to theoreticalexpectations of paramagnetic limiting

Page 55: Key symmetries of superconductivity

Special features ofSpecial features ofmixed-parity statesmixed-parity states

•• intrinsic intrinsic multi-band aspectmulti-band aspect•• twin boundaries twin boundaries•• surface states surface states

Page 56: Key symmetries of superconductivity

Structure of the pair wave function

2 Fermi surfaces

2 different pairwave functions:

kx

ky

Page 57: Key symmetries of superconductivity

States at twin boundariesnon-centrosymmetric crystals can be twinned

inversion

Twin boundaries: Fermi surfaces exchange role

Page 58: Key symmetries of superconductivity

States at twin boundariesnon-centrosymmetric crystals can be twinned

inversion

Twin boundaries: Fermi surfaces exchange role

Page 59: Key symmetries of superconductivity

States at twin boundariesnon-centrosymmetric crystals can be twinned

inversion

Twin boundaries: Fermi surfaces exchange role

Page 60: Key symmetries of superconductivity

States at twin boundariesnon-centrosymmetric crystals can be twinned

inversion

Twin boundaries: Fermi surfaces exchange role

φ = π

φ = 0

0 < φ < π

Iniotakis et al

broken time reversal symmetryon twin boundary

Page 61: Key symmetries of superconductivity

States at twin boundariesnon-centrosymmetric crystals can be twinned

inversion

Twin boundaries: Fermi surfaces exchange role

φ = π

φ = 0

0 < φ < π

broken time reversal symmetryline defects of phase φ on twin boundary

fractional vortices strongly pinned on twin boundary

impediment for flux flow

CePt3Si

PrOs4Sb12

UBe13

Miclea, Mota et al.(2008)hi

gh b

arrie

r

Iniotakis, Fujimoto, Savary & MS

broken time reversal symmetryon twin boundary

Page 62: Key symmetries of superconductivity

cond

ucta

nce

Quasiparticle tunneling multigap features and zero-bias anomalies

dominant odd-parity

dominant even-parity

ratio s- vs p-waveeven vs odd

x

y

non-centrosym SC

normal metaltunneling

NS-tunneling spectroscopy

+ -max

Page 63: Key symmetries of superconductivity

cond

ucta

nce

dominant even-parity

dominant odd-parity

Quasiparticle tunneling multigap features and zero-bias anomalies

surface bound states for dominantly

odd-parity pairing state

C. Iniotakis et al. (2007)

ratio s- vs p-waveeven vs odd

+ -max

Page 64: Key symmetries of superconductivity

cond

ucta

nce

dominant even-parity

dominant odd-parity

Quasiparticle tunneling multigap features and zero-bias anomalies

surface bound states for dominantly

odd-parity pairing state

C. Iniotakis et al. (2007)

ratio s- vs p-waveeven vs odd

+ -max

spin currents carried bysurface states Vorontsov et al.

different spin structure for two branches

Page 65: Key symmetries of superconductivity

LiLi22PdPd33BB & & LiLi22PtPt33BB

Unequal twinsUnequal twins

Page 66: Key symmetries of superconductivity

Li2Pd3B, Li2Pt3B Li2Pd3B

Li2Pt3B

Tc= 6 K

Tc= 2.5 K

full gap

nodes

London penetration depth

Yuan et al. (2005)

Space group:

P4332 cubic

alloy interpolation:

Li2(PdxPt1-x)3B

Togano et al. (2004)

Nuclear magnetic resonance

Li2Pd3B

Li2Pt3B

conventional

unconventional

Zheng et al. (2007)

Page 67: Key symmetries of superconductivity

LaAlOLaAlO33 / SrTiO / SrTiO33

HeterostructureHeterostructure

Environment for Environment for non-centrosymmetricnon-centrosymmetricsuperconductivitysuperconductivity

Page 68: Key symmetries of superconductivity

LaAlO3 / SrTiO3 heterostructure

polar band insulator

non-polar band insulator

+

+

+

0

0

0

0

0

0

Page 69: Key symmetries of superconductivity

LaAlO3 / SrTiO3 heterostructure

polar band insulator

non-polar band insulator

+

+

+

0

0

0

0

0

0

electronic reconstructionmetallic layer

Page 70: Key symmetries of superconductivity

LaAlO3 / SrTiO3 heterostructure

polar band insulator

non-polar band insulator

+

+

+

0

0

0

0

0

0

interface superconductivity

Reyren, Triscone, Mannhart et al. (2008)

Tcsheetresistance

superconductivity

electric field / gate voltage

E

Page 71: Key symmetries of superconductivity

LaAlO3 / SrTiO3 heterostructure

polar band insulator

non-polar band insulator

+

+

+

0

0

0

0

0

0

interface superconductivity

Reyren, Triscone, Mannhart et al. (2008)

Tcsheetresistance

superconductivity

electric field / gate voltage

E

non-centrosymmetric superconductivity

with variable electric field

induced spin-orbit couplig

Page 72: Key symmetries of superconductivity

ConclusionsCooper Pairing involves two key symmetries

time reversal

inversion

non-unitary states: spin polarized pairing lack of time reversal mixed-parity pairing lack of inversion

non-centrosymmetric superconductors with unconventional pairing

rich in phenomena with a complex phenomenology

magnetoelectric phenomena connection to spintronics and multiferroics Edelstein, Mineev, Samokhin, Eschrig, …

Josephson effect phase sensitive probesHayashi, Linder, Subdo, Borkje, …

Coexistence of magnetism and superconductivity at quantum critical points Yanase, Fujimoto, …

Page 73: Key symmetries of superconductivity

ETH Zurich: P.A. Frigeri, N. Hayashi, K. Wakabayashi, I. Milat, Y. Yanase C. Iniotakis, D. Perez, L. Savary, T. Neupert, …Uni Wisconsin: D.F. Agterberg, R.P. KaurJapan: A. Koga, Y. Tanaka, S. Fujimoto, ….

Collaborators:

Funding:

Theory

ExperimentTU Wien: E. Bauer and teamJapan: T. Shibauchi, Y. Matsuda, N. Kimura, Y. Onuki, Z. Hiroi, …. IBM Watson Lab: L. Kruzin-Elbaum Uni Illinois UC: H. Yuan, M. Salamon and team Venecuela: I. BonaldeGeneva & Augsburg: J.M. Triscone, J. Mannhart and teams


Recommended