+ All Categories
Home > Documents > KINEMATIC HYDROL06Y AND MODELLING

KINEMATIC HYDROL06Y AND MODELLING

Date post: 08-Dec-2016
Category:
Upload: trinhnhu
View: 231 times
Download: 8 times
Share this document with a friend
261
Transcript
Page 1: KINEMATIC HYDROL06Y AND MODELLING
Page 2: KINEMATIC HYDROL06Y AND MODELLING

KINEMATIC HYDROL06Y AND MODELLING

Page 3: KINEMATIC HYDROL06Y AND MODELLING

DEVELOPMENTS IN WATER SCIENCE. 26

OTHER TITLES IN THIS SERIES

7 COMPUTER SYSTEMS AND WATER RESOURCES

2 H.L. GOLTERMAN PHYSIOLOGICAL LIMNOLOGY

3

G. BUGLIARELLO AND F. GUNTER

V.V. HAIMES. W.A. HALL AND H.T. FREEDMAN MULTIOBJECTIVE OPTIMIZATION IN WATERRESOURCES SYSTEMS: THE SURROGATE WORTH TRADE-OFF-METHOD

4 J.J. FRIED GROUNDWATER POLLUTION

5 N. RAJARATNAM TURBULENT JETS

6 D. STEPHENSON PIPELINE DESIGN FOR WATER ENGINEERS

7 v. HALEK AND J. SVEC GROUNDWATER HYDRAULICS

8 J.BALEK HYDROLOGY AND WATER RESOURCES IN TROPICAL AFRICA

9 T.A. McMAHON AND R.G. MElN RESERVOIR CAPACITY AND YIELD

10 G. KOVACS SEEPAGE H Y DRAU LlCS

11 HYDRODYNAMICS OF LAKES: PROCEEDINGS OF A SYMPOSIUM 12-13 OCTOBER 1978, LAUSANNE, SWITZERLAND

12 CONTEMPORARY HYDROGEOLOGY: THE GEORGE BURKE MAXEY MEMORIAL VOLUME

SEEPAGE AND GROUNDWATER

14 D. STEPHENSON STORMWATER HYDROLOGY AND DRAINAGE

15 D. STEPHENSON PIPELINE DESIGN FOR WATER ENGINEERS (completely revised edition of Vol. 6 in the series)

SYMPOSIUM ON GEOCHEMISTRY OF GROUNDWATER

W.H. GRAF AND C.H. MORTIMER (EDITORS)

W. BACK AND D.A. STEPHENSON (EDITORS)

13 M.A. MARIK~O AND J.N. LUTHIN

16 w. BACK AND R. L ~ T O L L E (EDITORS)

17 TIME SERIES METHODS I N HYDROSCIENCES

A.H. ELSHAARAWI (EDITOR) I N COLLABORATION WITH S.R. ESTERBV

18 J.BALEK HYDROLOGY AND WATER RESOURCES I N TROPICAL REGIONS

19 D. STEPHENSON PIPEFLOW ANALYSIS

20 I. ZAVOIANU MORPHOMETRY OF DRAINAGE BASINS

21 M.M.A. SHAHIN HYDROLOGY OF THE NILE BASIN

22 H.C. RIGGS STREAMFLOW CHARACTERISTICS

23 M. NEGULESCU MUNICIPAL WASTEWATER TREATMENT 24 L.G. EVERETT GROUNDWATER MONITORING HANDBOOK FOR COAL AND OIL SHALE DEVELOPMENT

25 W. KINZELBACH GROUNDWATER MODELLING: AN INTRODUCTION WITH SAMPLE PROGRAMS I N BASIC

Page 4: KINEMATIC HYDROL06Y AND MODELLING

KINEMATIC HYDROLOGY AND MODELLING

DAVID STEPHENSON

Department of Civil Engineering, University of the Witwatersrand, I Jan Smuts Avenue, 2001 Johannesburg, South Africa

and

MICHAEL E. MEADOWS Department of Civil Engineering, University of South Carolina, Columbia, SC 29208, U.S.A.

ELSEVIE R

Amsterdam - Oxford - New York - Tokyo 1986

Page 5: KINEMATIC HYDROL06Y AND MODELLING

ELSEVIER SCIENCE PUBLISHERS B.V. Sara Burgerhartstraat 25 P.O. Box 21 1,1000 AE Amsterdam, The Netherlands

Distributors for the United States and Canada:

ELSEVIER SCIENCE PUBLISHING COMPANY INC. 52, Vanderbilt Avenue New York, N Y 10017, U.S.A.

Library of Congress Cataloging-in-Publication Data

Stephenson, Divid, 1943- Kinematic hydrology and modelling.

(Developments in water science ; 26) Bibliography: p. Includes indexes. 1. Runoff--Mathematical models. 2. Groundwater

flow--Mathematical models. I. Meadows. Michael E. 11. Title. 111. Series. GBg8O.S74 1986 551.48'8'0724 86-2175 ISBN 0-444-42616-7

ISBN 0444-42616-7 (Vol. 26) ISBN 044441669-2 (Series)

0 Elsevier Science Publishers B.V., 1986

All rights reserved. No part of th is publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or other- wise, without the prior written permission of the publisher, Elsevier Science Publishers B.V./Science & Technology Division, P.O. Box 330, 1000 AH Amsterdam, The Netherlands.

Special regulations for readers in the USA - This publication has been registed with the Copyright Clearance Center Inc. (CCC), Salem, Massachusetts. Information can be obtained from the CCC about conditions under which photocopies of parts o f this publication may be made in the USA. A l l other copyright questions, including photocopying outside of the USA, should be referred to the publisher, Elsevier Science Publishers B.V., unless otherwise specified.

Printed in The Netherlands

Page 6: KINEMATIC HYDROL06Y AND MODELLING

V

PREFACE

Many s t o r m w a t e r d e s i g n e n g i n e e r s and indeed h y d r o l o g i s t s w i I I b e

f r u s t r a t e d b y the l a c k o f h y d r a u l i c p r i n c i p l e s in some o f t h e c o n v e n t i o n a l

methods o f f l o o d c a l c u l a t i o n . The R a t i o n a l me thod and uni t h y d r o g r a p h

methods a r e easy t o a p p l y b u t l i m i t e d in a c c u r a c y and v e r s a t i l i t y .

K i n e m a t i c h y d r o l o g y i s t h e n e x t l o g i c a l s tep in s o p h i s t i c a t i o n b e f o r e the

f u l l h y d r o d y n a m i c e q u a t i o n s a r e r e s o r t e d to. The k i n e m a t i c e q u a t i o n s in

f a c t compr i se the c o n t i n u i t y e q u a t i o n and a h y d r a u l i c r e s i s t a n c e

e q u a t i o n . I n many cases s o l u t i o n of these e q u a t i o n s f o r f l o w r a t e s and

w a t e r dep ths i s s i m p l e a n d e x p l i c i t . I n more c o m p l i c a t e d p r o b l e m s the

e q u a t i o n s may b e u s e d to s i m u l a t e the r u n o f f p rocess .

U n f o r t u n a t e l y much o f t he l i t e r a t u r e o n the k i n e m a t i c method h a s been

h i g h l y ma themat i ca l a n d o f t e n o f an e x p e r i m e n t a l n a t u r e . The e q u a t i o n s ,

g r a p h s and mode ls p u b l i s h e d a r e t h e r e f o r e o f l i t t l e use to t h e p r a c t i c a l

e n g i n e e r , a n d may d i s c o u r a g e h i m f rom u s i n g t h i s method. In f a c t once

con f idence i s g a i n e d , t he method c a n b e a p p l i e d in s i m p l e fo rm t o a

v a r i e t y o f ca tchments . The te rm k i n e m a t i c r e f e r s to movement where

a c c e l e r a t i o n s a r e n e g l i g i b l e - w h i c h i s g e n e r a l l y a p p l i c a b l e t o o v e r l a n d

a n d s h a l l o w s t r e a m f l ow .

The book i s a i m e d a t b o t h t h e t h e o r e t i c i a n and the p r a c t i t i o n e r . Thus

the ma themat i ca l sec t i ons a r e u s e f u l i f m o d e l l i n g i s r e q u i r e d , b u t t h e

c h a p t e r s o n d e s i g n c h a r t s c o u l d b e r e a d w i t h v e r y l i t t l e ma themat i ca l

u n d e r s t a n d i n g o t h e r t h a n a b a s i c a p p r e c i a t i o n o f t he k i n e m a t i c method.

L i t t l e ma themat i ca l b a c k g r o u n d i s r e q u i r e d , a n d no compu te r k n o w l e d g e i s

necessa ry f o r those sec t ions . I t i s hoped t h a t t he p e a k f l o w c h a r t s w i l l

p r o v i d e a n a l t e r n a t i v e to the R a t i o n a l me thod a n d the SCS method f o r

e s t i m a t i n g r u n o f f . Simi l a r l y the d imens ion less h y d r o g r a p h s a r e

c o m p e t i t i v e w i t h u n i t h y d r o g r a p h methods. The u s e r w i l l g r a d u a l l y

become a w a r e o f t he f a c t t h a t t he k i n e m a t i c method i s f a i r l y easy to a p p l y

i f s i m p l e s o l u t i o n s a r e r e q u i r e d . I t a l s o p e r m i t s c o n s i d e r a t i o n of m a n y

more f a c t o r s t h a n some o t h e r methods o f f l o o d c a l c u l a t i o n , w h i c h in t u r n

c a n o n l y i m p r o v e a c c u r a c y a n d p r o v i d e f o r g r e a t e r u n d e r s t a n d i i g o f t he

r u n o f f process.

Of cou rse the k i n e m a t i c me thod i s n o t t he f i n a l a n s w e r in h y d r o l o g y .

There a r e many ques t i ons s t i l l to b e answered , a n d some degree o f

simp1 i f i c a t i o n i s s t i l l r e q u i r e d . A l t h o u g h the me thod p r o v i d e s a l o g i c a l

way of v i s u a l i z i n g r u n o f f , a c t u a l r u n o f f f rom m a n y ca tchmen ts compr i ses

Page 7: KINEMATIC HYDROL06Y AND MODELLING

v i

pa r t overland, subsurface and interface flow. The combined effect cannot

easi ly be modelled. Also water does not run off r u r a l catchments in a

sheet - i t frequently forms r i vu le t s and i s diverted by obstacles which can

be loosely termed roughness. Some of these factors can be accounted for by

adjust ing the hyd rau l i c factors used i n the equations, o r ca l i b ra t i ng

models.

Results of research and development a re now advanced and

experience in appl icat ion is required before general acceptance of the

kinematic method can be hoped for. I n pa r t i cu la r the a b i l i t y to select soi l

losses, roughnesses and catchment geometry to adequately describe the

hydrau l i cs of the system, can only be gained w i th experience.

The scope of the kinematic method is therefore unl imited from the

point of view of the researcher w i th an enqu i r ing mind. Some of the

theoretical considerations are taken fu r ther i n chapter 2 on kinematic

equations, 4 on assumptions and 5 on numerical theory for modelling.

On the other hand the pract i t ioner is probably more interested i n the

best answer ava i lab le . He may manage qu i te suf f ic ient ly reading only

chapter 3 on peak flows, chapter 6 w i th dimensionless hydrographs and

possibly chapter 7 on marginal effects and 9 w i th some examples of the

value of the techniques. Hopefully he w i l l be inspired to go into

modelling, which may b r i n g i n chapter 8 on flow i n conduits, and 10, 1 1

and 12 wi th examples of computer models of var ious catchments.

Much of the material i n th i s book i s der ived from notes for a course

presented by the authors. There is copious reference to previous

research in kinematic h'ydrology, as well as new material a r i s ing from

research by both authors. I n pa r t i cu la r the senior author was the

recipient of a research contract i n urban hydrology from the Water

Research Commission.

The manuscript was typed into i t s f i na l form by Janet Robertson, for

which the authors are most g ra te fu l .

Page 8: KINEMATIC HYDROL06Y AND MODELLING

v i i

CONTENTS

CHAPTER 1 . INTRODUCTION

H i s t o r i c a l r e v i e w

C l a s s i c a l h y d r o l o g y . H y d r o d y n a m i c e q u a t i o n s I nf i I t r a t i o n

So i l p h y s i c s mode ls Green and Ampt model H y d r o l o g i c i n f i l t r a t i o n

Def i n i t i ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mode I s . . . . . . . . . .

CHAPTER 2 . ANALYSIS OF RUNOFF

I n t r o d u c t i o n . . . . . . D y n a m i c e q u a t i o n s . . . . . .

C o n s e r v a t i o n o f mass . . . . . C o n s e r v a t i o n of momentum . . . .

S i m p l i f i e d e q u a t i o n s . . . . . . The k i n e m a t i c e q u a t i o n s . . . . . K i n e m a t i c f l o w o v e r impermeab le p l a n e s

R i s i n g h y d r o g r a p h . g e n e r a l s o l u t i o n T ime o f c o n c e n t r a t i o n . . . . . E q u i l i b r i u m d e p t h p r o f i l e . . . . The r e c e d i n g h y d r o g r a p h . . . .

F r i c t i o n e q u a t i o n . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

CHAPTER 3 . HYDROGRAPH SHAPE AND PEAK FLOWS

Des ign p a r a m e t e r s . . . . So lu t i on o f k i n e m a t i c e q u a t i o n s f o r H y d r o g r a p h s f o r p l a n e s . . . D e r i v a t i o n o f p e a k f l o w c h a r t s .

L o n g ca tchmen ts . . . . M o d i f i c a t i o n f o r p r a c t i c a l u n i t s

E f fec t o f c a n a l i z a t i o n . . . E s t i m a t i o n o f a b s t r a c t i o n s . .

. . . . . . . . . . f l o w o f f a p l a n e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

CHAPTER 4 . K I NEMAT I C ASSUMPT I ON5

N a t u r e o f k i n e m a t i c e q u a t i o n s . . . K i n e m a t i c a p p r o x i m a t i on to o v e r l a n d f l o w

G o v e r n i n g e q u a t i o n s . . . . . C o n d i t i o n s f o r t he k i n e m a t i c a p p r o x i m a t K i n e m a t i c f l o w n u m b e r . . . .

K i n e m a t i c a n d non-k inemat i c waves . Wave speed . k i n e m a t i c waves . . Cres t subs idence . . . . . . H y d r a u l i c geomet ry and r a t i n g c u r v e s

Non-k inemat i c waves . . . . . . Wave speed . . . . . . Cres t s u b s i d e n c e . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . . Ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 3 4 9

13 15 17 19

23 23 24 25 27 28 30 30 32 33 33 37

43 43 45 40 49 51 56 57

59 59 60 60 65 66 67 67 68 69 71 71

Page 9: KINEMATIC HYDROL06Y AND MODELLING

v i i i

Looped r a t i n g c u r v e s . . . . . . . . . . . . . 74 M u s k i n g u m r i v e r r o u t i n g . . . . . . . . . . . . . 76

K i n e m a t i c and d i f f u s i o n mode ls . . . . . . . . . . 78 E s t i m a t i o n o f mode l p a r a m e t e r s . . . . . . . . . . 77

CHAPTER 5. NUMERICAL SOLUTl ONS

Methods o f s o l u t i o n o f e q u a t i o n s of mo t ion . . . Method o f c h a r a c t e r i s t i c s . . . . . . . .

Numer i ca l i n t e g r a t i o n of c h a r a c t e r i s t i c e q u a t i o n s . F i n i t e d i f f e r e n c e methods . . . . . . . .

D i f f e r e n c e q u o t i e n t s . . . . . . . . . Numer i ca l s o l u t i o n . . . . . . . . . .

E x p l i c i t scheme . . . . . . . . . . I m p l i c i t scheme . . . . . . . . . .

Accuracy and s t a b i l i t y of n u m e r i c a l schemes . . . Ef fec t o f f r i c t i o n . . . . . . . . . . Choos ing an e x p l i c i t f i n i t e d i f f e r e n c e scheme f o r t h e

o f t he one-d imens iona l k i n e m a t i c e q u a t i o n s . . sol I

. . . 81

. . . 81

. . . 83

. . . 86

. . . 87

. . . 88

. . . 91

. . . 93

. . . 95

. . . 102

. . . 103 J t i o n

CHAPTER 6. D l MENSIONLESS HYDROGRAPHS

U n i t h y d r o g r a p h s . . . . L i s t of symbo ls . . . . K i n e m a t i c e q u a t i o n s . . .

Excess r a i n f a l I . . . . Dimens ion less e q u a t i o n s . . .

S l o p i n g p l a n e ca tchmen t . . C o n v e r g i n g s u r f a c e ca tchmen t V-shaped ca tchmen t w i t h s t ream

Use o f d imens ion less h y d r o g r a p h s P rob lem . . . . S o l u t i o n . . . .

Development and use o f g r a p h s . . . . . . . . . . . 105 . . . . . . . . . . 106 . . . . . . . . . . 107 . . . . . . . . . . 108 . . . . . . . . . . 108 . . . . . . . . . . 110 . . . . . . . . . . 110 . . . . . . . . . . 114 . . . . . . . . . . 115 . . . . . . . . . . 125 . . . . . . . . . . 125 . . . . . . . . . . 125

CHAPTER 7. STORM DYNAM I CS AND D I STR I BUT I ON

Des ign p r a c t i c e . . . . . . . . Storm p a t t e r n s . . . . . . . .

V a r i a t i o n in r a i n f a l l i n t e n s i t y d u r i n g a s to rm S p a t i a l d i s t r i b u t i o n . . . . . . . Storm movement . . . . . . . .

Numer i ca l mode ls . . . . . . . . K i n e m a t i c e q u a t i o n s . . . . . . . Numer i ca l scheme . . . . . . . .

So lu t i ons for d y n a m i c s to rms . . . . . T ime v a r y i n g s to rms . . . . . . . S p a t i a l v a r i a t i o n s . . . . . . . . M o v i n g s to rms . . . . . . . .

. . . . . . 130

. . . . . . 131 . . . . . 131

. . . . . . 132

. . . . . . 133

. . . . . . 134

. . . . . . 134

. . . . . . 135

. . . . . . 137

. . . . . . 137

. . . . . . 140

. . . . . . 142

Page 10: KINEMATIC HYDROL06Y AND MODELLING

i x

CHAPTER 8. CONDUIT FLOW

Kinemat i c e q u a t i o n s f o r n o n - r e c t a n g u l a r sec t i ons . . P a r t - f u l I c i r c u l a r p i p e s . . . . . . . . . . Computer p r o g r a m f o r d e s i g n o f s to rm d r a i n n e t w o r k .

P r o g r a m d e s c r i p t i o n . . . . . . . . . . Computer p r o g r a m f o r s to rm n e t w o r k p i p e s i z i n g . . Sample i n p u t . . . . . . . . . . .

Trapezo i da I c h a n n e I s . . . . . . . . . . Compar i son of k i n e m a t i c and t ime-sh i f t r o u t i n g i n

c o n d u i t s . . . . . . . . . . . Sect ion geomet ry and e q u a t i o n s f o r c o n d u t t s . . . Computer s i m u l a t i o n . . . . . . . . . . C r i t e r i a f o r choos ing be tween t ime s h i f t and k i n e m a t i c r o u t i n g . . . . . . . . . . . L a g t ime f o r r o u t i n g h y d r o g r a p h s u s i n g t ime s h l f t methods . . . . . . . . . . . Compar i son o f methods f o r e v a l u a t i n g l a g t ime . . Time l a g f o r t r a p e z o i d s . . . . . . . . .

CHAPTER 9. URBAN CATCHMENT MANAGEMENT

E f f e c t s o f u r b a n i z a t i o n . . . . . . . . E f fec t o n r e c u r r e n c e i n t e r v a l . . . . .

Examp le : c a l c u l a t i o n o f p e a k r u n o f f f o r v a r i o u s c o n d i t i o n s . . . . . . . . . Virgin ca tchmen t . . . . . . . . . Reduc t ion in in f i I t r a t i o n . . . . . . . Ef fec t o f r e d u c e d r o u g h n e s s d u e to p a v i n g . . Ef fec t o f c a n a l i z a t i o n . . . . . . . . Combined r e d u c e d r o u g h n e s s a n d r e d u c e d losses

De ten t ion s t o r a g e . . . . . . . . .

. . . 145

. . . 145

. . . 147

. . . 148

. . . 151

. . . 152

. . . 152

. . . 153

. . . 154

. . . 161

. . . 162

. . . 165

. . . 165

. . . 166

. . . . . 172

. . . . . 172

. . . . . 173

. . . . . 174

. . . . . 175

. . . . . 176

. . . . . 176

. . . . . 177

. . . . . 179 Channe l s t o r a g e . . . . . . . , . . . . . . 180 K i n e m a t i c e q u a t i o n s f o r c losed c o n d u i t sys tems . . . . . . 184 Computer p r o g r a m t o s i m u l a t e r e s e r v o i r l eve l v a r i a t i o n s

in a p i p e n e t w o r k . . . . . . . . . . . . . . 186 D a t a input . . . . . . . . . . . . . . 188 L i s t of s y m b o l s in p r o g r a m . . . . . , . . . . . 189 P r o g r a m l i s t i n g . . . . . . . . . . . . . . 191

CHAPTER 10. K I NEMAT I C MODELL I NG

I n t roduc t i on Storrnwater mode l l i n g . . . . . Mathemat i ca l mode ls . . . . . System d e f i n i t i o n . . . . . . Term ino logy and d e f i n i t i o n s . . . . M o d e l l i n g a p p r o a c h e s . . . . . Examp les o f p a r a m e t r i c and d e t e r m i n i s t i c Two-d imens iona l o v e r l a n d f l o w mode l I ing

Two-d imens iona l k i n e m a t i c e q u a t i o n s B o u n d a r y c o n d i t i o n s . . . . . I n i t i a l c o n d i t i o n s . . . . .

. . . . . . . . . . . f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mode ls . . . . . . . . . . . . . . . . , . . . . . . . , . . . . . . . . . . . . .

194 194 195 197 198 200 20 1 204 204 206 206

Page 11: KINEMATIC HYDROL06Y AND MODELLING

X

CHAPTER 1 1 . APPLICATIONS OF K I NEMAT I C MODELL I NG

Approaches . . . . . . . A model f o r urban wa te rsheds . . . .

P a r a m e t r i c r a i n f a l I excess components . So i l m o i s t u r e a c c o u n t i n g . . . . . I n f i l t r a t i o n component . . . . . . I m p e r v i o u s a r e a r a i n f a l I excess component O p t i m i z a t i o n component . . . . . D e t e r m i n i s t i c r u n o f f r o u t i n g components . Channe l and o v e r l a n d f l o w segments . . R e s e r v o i r segments . . . . . . . E x a m p l e a p p l i c a t i o n . . . . . .

A model f o r r u r a l wa te rsheds . . . . P r e c i p i t a t i o n excess . . . . . . F low r o u t i n g . . . . . . . Model appl i c a t i o n . . . . . . .

O v e r l a n d f l o w and s t reamf low p r o g r a m . D a t a input . . . . . . . O v e r l a n d and s t reamf low p r o g r a m I i s t i n g I n f i l t r a t i o n and seepage . . . .

Rea l - t ime model I i n g . . . . . . .

. . . . . . . 209

. . . . . . . 209

. . . . . . . 209

. . . . . . . 210

. . . . . . . 210

. . . . . . . 214

. . . . . . . 214

. . . . . . . 215

. . . . . . . 215

. . . . . . . 217

. . . . . . . 219

. . . . . . . 222

. . . . . . . 222

. . . . . . . 223

. . . . . . . 224

. . . . . . . 229 . . . . . . . 231

. . . . . . . 232

. . . . . . . 234

. . . . . . . 235

CHAPTER 12 . GROUNDWATER FLOW

Genera l comments . . . . . . . . . . . . . . 237 F low in po rous m e d i a . . . . . . . . . . . . . 237 D i f f e r e n t i a l e q u a t i o n s in p o r o u s m e d i a . . . . . . . . 239 A n a l y s i s o f s u b s u r f a c e f l o w . . . . . . . . . . . 240 F low in u n s a t u r a t e d zone . . . . . . . . . . . . 241 F low in non-homogeneous s a t u r a t e d zone . . . . . . . . 242

AUTHOR INDEX . . . . . . . . . . . . . . 246

INDEX . . . . . . . . . . . . . . 248

Page 12: KINEMATIC HYDROL06Y AND MODELLING

1

CHAPTER 1

I NTRODUCT I ON

HISTORICAL REV1 EW

Kinemat i c hydrology provides a method for estimat ing stormwater

runoff rates and volumes. I t is pa r t i cu la r l y useful for flood calculat ion.

I t i s a re la t i ve ly new term embracing techniques which have been appl ied

for many decades. Kinematic hydrology is decidedly more hyd rau l i ca l l y

correct than some of the more common methods of f lood estimation such as

the rat ional method, t ime-area methods, the Soil Conservation Service (SCS)

method and u n i t hydrograph methods. The kinematic method i s based on

the cont inui ty equation and a flow resistance equation, both basic

hydraul ic equations.

I t was the American hydrologist , Horton, (general ly associated with

i n f i l t r a t i on ) who in 1934 car r ied out the ear l iest recorded scient i f ic studies

of over land f low. Later Keulegan (1945) appl ied the cont inui ty and

momentum equations conjunctively for over land flow analysis. He investi-

gated the magnitude of the various terms in the dynamic equation of St.

Venant and indicated that a s impl i f ied form of the equation, now, termed

the kinematic equation, would be adequate for over land flow.

An in-depth analysis of the d i f fe ren t ia l cont inui ty and resistance

equations was undertaken by L i g h t h i l l and Whitham (1955) to whom the

designation kinematic waves 'can be a t t r ibu ted . They also f i r s t studied the

phenomenon of kinematic shock which can be appl ied to discont inui t ies in

flow and water depth. Although they suggested the kinematic approach for

overland flow modelling, i t was Henderson and Wooding (1964) who

obtained ana ly t i ca l solutions to the kinematic wave equations for simple

plane and channel shapes. A general izat ion of the catchment stream model

was also described by Eagleson (1967).

The ful I dynamic equations for one-dimensional incompressible flow i n

open channels were set down by St. Venant i n 1871. These equations were

for g radua l ly var ied unsteady flow such as f lood waves. The idea of

graphical integrat ion using character ist ic I ines was f i r s t suggested by

Massau in 1889. On the other hand Greco and Panattoni (1977) indicate

that imp l ic i t solution by f i n i t e differences is the most ef f ic ient method by

computer, avoiding instabi I i ty and g i v ing r a p i d convergence. Various

numerical methods of solut ion of the kinematic equations were investigated

by Kibler and Woolhiser (1970). The step length in f i n i t e dif ference

schemes p lays an important role i n the s tab i l i t y of the solut ion (Singh,

Page 13: KINEMATIC HYDROL06Y AND MODELLING

2

1977). Non-convergence was investigated for plane cascades by Croley and

Hunt (1981 ) . Brakensiek (1966) used numerical solutions to the kinematic

wave equations for the ana lys is of surface runoff from r u r a l watersheds.

He probably d id not real ise the extent to which numerical modell ing would

advance in later years using the kinematic equation and square x-t gr ids.

The lat ter approach does not warrant appendage of the term 'wave' to

kinematic since discont inui t ies are lost i n the simp1 i f i ed numerical method.

Wooding (1965 and 1966) presented a comprehensive review of the

theory of kinematic waves and used numerical solutions to der ive equations

for the r i s i n g and f a l l i n g limbs of hydrographs for simple planes and

channel configurations. Dur ing the 1970's the equations were appl ied to

more complicated catchment shapes (Schaake, 1975), in pa r t i cu la r the

catchment-stream model, the converging catchment and cascades of planes.

Although ana ly t i ca l solutions are ava i lab le for some cases the major i ty of

solutions are numerical, and dimensionless hydrographs fac i l i t a te the use

o f the resul ts of the studies (Constantinides and Stephenson, 1982). Since

the studies by Henderson and Wooding (1964) and lwagaki (1955) the shock

wave phenomenon has not r e a l l y received much at tent ion and for th is

reason the use of the name kinematic theory i s now considered adequate as

i t implies a more general app l i cab i l i t y than to waves. I n fact Borah and

Prasad (1982) indicate shock waves may i n fact not exist i n some cases

where predicted using the kinematic equations. This is because the

kinematic equations may not apply where the spat ia l var ia t ion i n depth i s

large. Even the St. Venant equations may not suff ice to describe r a p i d

var ied f low, as vert ical 'accelerat ions are not considered.

Woolhiser and Liggett (1967) investigated the app l i cab i l i t y of the

kinematic equations and proposed a dimensionless parameter ind ica t ing

whether the equations are adequate for any pa r t i cu la r case w i th simple

geometry. More recent research (Morr is and Woolhiser, 1980) has

investigated in greater detai l the app l i cab i l i t y of the kinematic equations

to dif ferent conditions.

The appl icat ion of kinematic theory has more recently been extended

to problems such as dynamic storms (Stephenson, 1984a), detention storage

(Stephenson, 1984b), urban drainage networks (Green, 1984) and to the

effects of urbanizat ion and storm runoff (Stephenson, 1983).

There i s as yet l i t t l e general da ta ava i l ab le on surface water losses

( i n f i l t r a t i on , and retent ion) to be used w i th kinematic equations. Skaggs

(1982) reviewed in f i l t r a t i on mechanics including the popular Horton model

and more advanced Green-AmDt model.

Page 14: KINEMATIC HYDROL06Y AND MODELLING

3

The m a j o r i t y o f p a p e r s d i f f e r e n t i a t e be tween s u r f a c e and s u b s u r f a c e

f l ow , i.e, o v e r l a n d f l o w i s t r e a t e d i n d e p e n d e n t l y . Rovey e t at. (1977)

deve loped an i n t e r a c t i v e i n f i l t r a t i o n model to accoun t f o r n o n - u n i f o r m

so i l losses. A f u r t h e r deve lopment b y Freeze (1972) a l l o w s f o r c o n t r i -

b u t i o n s f rom r e - a p p e a r i n g s h a l l o w g r o u n d w a t e r f l o w in a s a t u r a t e d

a q u i f e r .

retent ion u

F i g . 1 . 1 S i m p l i f i e d ca tchmen t l o n g i t u d i n a l sec t i on

D e f i n i t i o n s

Some te rms used in t h i s t e x t a r e used in d i f f e r e n t c o n t e x t e l sewhere

so to a v o i d c o n f u s i o n p a r t i c u l a r l y w i t h respec t t o t imes, some d e f i n i t i o n s

a r e g i v e n be low.

T ime to e q u i l i b r i u m (t,) i s t h e t ime t a k e n f r o m t h e commencement o f

p r e c i p i t a t i o n u n t i l t he w a t e r p r o f i l e down t h e ca tchmen t i s in e q u i l i b r i u m

a n d i n f l o w e q u a l s o u t f l o w e v e r y w h e r e , i . e . r u n o f f r a t e i s e q u a l to excess

r a i n f a l I r a t e , a s s u m i n g s teady p r e c i p i t a t i o n a n d losses.

T ime o f c o n c e n t r a t i o n ( t c ) i s the t ime f rom the commencement of p r e c i p -

i t a t i o n u n t i l t he e f fec t o f excess p r e c i p i t a t i o n e v e r y w h e r e in t h e c a t c h -

ment h a s a p p e a r e d a t t he o u t l e t . I t i s e q u a l to t h e t ime to e q u i l i b r i u m

f o r s teady excess r a i n u s i n g k i n e m a t i c theo ry whereas i t i s e q u a l to

t r a v e l t ime w i t h t ime a rea - theo ry . I t i s demons t ra ted l a t e r t h a t f o r a

s i m p l e p l a n e , k i n e m a t i c theo ry y i e l d s

t = (L ie ’ -m/aj l ’m (1.1) m-1 c

where L i s the l e n g t h o f f l o w p a t h , a n d f l o w v e l o c i t y V = a y where

y i s w a t e r d e p t h a n d m and a a r e c o e f f i c i e n t s d e f i n e d b y the e q u a t i o n

q = a y where q i s the f l o w r a t e p e r u n i t w i d t h . m

Page 15: KINEMATIC HYDROL06Y AND MODELLING

4

0 t td

Fig . 1 .2 Catchment water balance

Travel time (t,) i s the time for a pa r t i c l e of water to proceed from the

most remote pa r t of the catchment to the discharge point. For a plane i t

i s not equal to time of concentration according to kinematic theory since

water moves slower than a hydrau l i c response which travels a t wave

speed. I t i s shown later that for a plane

tc = tt/m ( 1 . 2 )

tL = mtc/( l+m) (1.3)

Lag time ( t ) i s the time between 50% of p rec ip i ta t ion and 50% of runoff .

I t w i l l be shown that for a plane L

Storm durat ion td i s the time from commencement of precipi tat ion u n t i l i t

ceases. Frequently when storm records are analyzed for intensi ty-durat ion

relat ionships storm durat ion i s defined as the time dur ing which average

storm intensity i s a specified f igure , so that storms w i th in storms can

occur.

T i m e of excess runoff ( t ) i s the time measured from the commencement of

runoff. I t is therefore less than the t i m e t from the commencement of

precipi tat ion by tu = u / i where u i s i n i t i a l abstraction and i i s the

precipi tat ion ra te (see Fig. 3.3 on page 4 9 ) .

Units of time are general ly seconds i f the System Internat ional ( S . I . ) un i t s

of metres, seconds and ki lograms, or the old Engl ish system of foot,

seconds and pounds are adopted. Later herein modifications for more

___

pract ical un i ts e.g. r a i n f a l l in mm/h or inches per hour, a re introduced.

CLASSICAL HYDROLOGY

For various reasons f lood hydrology has been a f a i r l y s ta t i c subject

for many decades. The ra t iona l method which was invented over 100 years

ago, and hydrograph theory, developed over 50 years ago, are s t i l l used

extensively. I f we reconsider the assumptions and l imi tat ions behind these

methods we may be prepared to consider developing new techniques more

Page 16: KINEMATIC HYDROL06Y AND MODELLING

5

appropriate to our technology and more accurate.

The simple l inear hydrology methods were probably developed for ease

of manual calculat ion, and as many hydrologists do not have a strong

mathematical background. I t i s t rue that some of the standard methods

have been programmed for computers. This fac i l i ta tes the subdiv is ion of

catchments but does not el iminate the l imi tat ions of many of the

assumptions behind the methods.

The current ava i l ab i l i t i es of computers to a l l should considerably ease

the next step - breaking away from simple input-output methods and

introducing more sophisticated hyd rau l i c equations i n the i r stead. I t i s

possible to simulate water flow and water surface prof i les w i th

considerable accuracy wi th the a i d of computers, even micro computers.

There are various levels of sophist icat ion which can be adopted to su i t the

problem and the machine avai lable.

These methods are based on solut ion of f i n i t e difference versions of

the d i f fe ren t ia l equations of flow. Computations proceed in increments of

time at selected in te rva ls i n space. There hsve been numerous advances i n

numerical methods i n mathematics in para l le l w i th the developments i n

computers. On the other hand the approximation of d i f fe ren t ia ls by f i n i t e

increments can lead to in'accuracins unless cer ta in rules a re complied

with. Some of the common problems are i ns tab i l i t y , numerical d i f fusion or

accumulating errors. The correct f i n i t e increments can be selected to

approximate the d i f fe ren t ia ls to a f i r s t order, second order or greater

order i f necessary. There a re also methods fo r solv ing imp l ic i t equations

such as by gradient convergence o r successive approximation. Where a-

number of simultaneous equations have to be solved over a g r i d there are

matr ix methods and re laxa t ion methods avai lable.

One of the greatest a ids to the engineer nowadays may be the desk

top micro computer. Whereas pract i t ioners tend to shy away from main

frame computers ( i f they can access one a t a l l ) the problems of job control

language, queing batch jobs, formal programming and debugging and r i s k

of runaway costs are no longer of concern. The kinematic method i s

intermediate level technology app l icab le to micro computer solutions,

whether ana ly t i ca l solutions o r numerical model I ing is contemplated.

The basis fo r much of our hydrology probably or ig inated with an

I r i sh engineer, Mulvaney, in 1851. He proposed an equation for runoff , €I

= KA. K al lows for a r a i n f a l l intensi ty but t h i s was not a s igni f icant

var iab le in B r i t a in . The method was taken a step fu r ther by introducing

an equation for excess r a i n f a l I intensi ty, e.g. the Birmingham formula,

Page 17: KINEMATIC HYDROL06Y AND MODELLING

6

( 1 . 4 )

where i i s in inches p e r h o u r and t i s t h e s to rm d u r a t i o n in m inu tes .

No a l l o w a n c e i s made f o r ex t reme s to rms and t h i s e q u a t i o n i s f o r a 1

to 2 y e a r f r e q u e n c y s to rm. The 20 was accep ted b y some as r e p r e s e n t i n g

a t ime o f e n t r y i n m i n u t e s ( e q u i v a l e n t t o t h e d e f i n e d c o n c e n t r a t i o n t ime

o f o v e r l a n d f l o w ) .

I t was assumed t h a t 100% r u n o f f o c c u r r e d f r o m impermeab le a r e a s

and none f rom p e r v i o u s a r e a s . T h i s assumpt ion was no t a c c e p t a b l e in

a r e a s o f high r a i n f a l l i n t e n s i t y and in the U n i t e d S ta tes where K u i c h l i n g

in 1889 m o d i f i e d the r u n o f f e q u a t i o n t o Q = C iA where the c o e f f i c i e n t

C i s a f u n c t i o n o f t h e ca tchment .

The coe f f i c i en t C i s most s t r o n g l y assoc ia ted w i t h the a v e r a g e

p e r m e a b i l i t y o f t h e ca tchment - t h u s 100% r u n o f f w o u l d o c c u r i f C i s u n i t y

a n d no r u n o f f f o r a comp le te l y p e r m e a b l e ca tchmen t . M o d i f i c a t i o n s to C a r e

made to accoun t f o r ca tchment s lope, v e g e t a t i o n cove r a n d so on b y

v a r i o u s peop le . I t h a s a l s o been r e a l i z e d t h a t dn tecedent m o i s t u r e

c o n d i t i o n s and s e v e r i t y of t he s to rm ( r e p r e s e n t e d b y the r e c u r r e n c e

i n t e r v a l ) c a n a f fec t C. F o r i n s t a n c e Rossmi l l e r (1980) p roposed t h e

f o l l o w i n g e m p i r i c a l e q u a t i o n f o r C :

( 1 3) 1.48(.15-1) ~ + l e 7 . 2

C = 7 . 7 ~ 1 0 - ~ C ~ ' R ~ ~ ( . 0 1 C ~ ) - ~ ~ ( .001 CN) (T)

where R i s the r e c u r r e n c e i n t e r v a l , S i s b e d s lope in pe rcen t , I i s

r a i n f a l l i n t e n s i t y i n inches p e r h o u r , M i s the f r a c t i o n o f wa te rshed w h i c h

i s i m p e r v i o u s and CN the So i l C o n s e r v a t i o n S e r v i c e (SCS) c u r v e number .

The assumpt ion o f a u n i q u e ' C ' f o r a n y ca tchmen t c a n l e a d to

s i g n i f i c a n t e r r o r s and u n d e r e s t i m a t i o n o f f l o o d r u n o f f . T h i s i s demons t ra ted

b y F i g u r e 1.3. The r u n o f f r a t e p e r u n i t a r e a f o r case ' a ' i s C i l . I f t h e

same C i s used f o r case b, where a h i g h e r r a i n f a l l i n t e n s i t y occu rs , t h e

loss w i l l b e g r e a t e r and the r u n o f f p r o p o r t i o n a l . A loss w h i c h i s

i ndependen t of r a i n f a l l i n t e n s i t y however w o u l d p r o d u c e a r u n o f f a s f o r

case c , w h i c h i s p r o p o r t i o n a l l y g r e a t e r t h a n f o r case b . The assumpt ion

f o r case b t h u s r e s u l t s in a n u n d e r e s t i m a t e o f f l o o d r u n o f f .

I n g e n e r a l t hen , i t i s i m p l i e d i n the R a t i o n a l method t h a t r u n o f f

i n t e n s i t y i s I i n e a r l y p r o p o r t i o n a l to r a i n f a l l i n t e n s i t y . T h i s a l s o assumes

t h a t t he ca tchmen t h a s r e a c h e d a n e q u i l i b r i u m , so i t became necessa ry to

es t ima te t h e ' c o n c e n t r a t i o n t i m e ' of ca tchments . L loyd -Dav ies deve loped

t h i s i d e a in 1905 and p roposed t h a t t he max imum p e a k r u n o f f f rom a

ca tchmen t o c c u r r e d f o r a s to rm w i t h a d u r a t i o n e q u a l to the c o n c e n t r a t i o n

t ime o f t he ca tchmen t . A common e q u a t i o n used f o r c o n c e n t r a t i o n t ime i s

Page 18: KINEMATIC HYDROL06Y AND MODELLING

7

0.385 (1.6) t c = (0.87L3/H)

where t is in hours, L i s the length of catchment i n km and H the drop

in metres, or

t = (11 .6L3/H)0.385 ( 1 - 7 )

where L is i n miles and H i n f t .

The ra t iona l method does not produce a complete hydrograph capable

of rout ing and so un i t hydrograph theory was developed. The theory was

based on the assumption that two un i ts of excess r a i n produce a

hydrograph w i th ordinates twice those of a hydrograph produced by one

un i t of excess r a i n in the same time. The term l inear hydrology i s often

appl ied to th is theory. The time scale i s also incremented l inear ly . Two

successive un i t s of r a i n are assumed to produce two u n i t hydrographs i n

succession which can be added together a t a l l points in time. We thus

have the S-curve hydrograph which i s caused b y an i n f i n i t e l y long storm.

Unit hydrographs do not account for the non-l inear response of a

catchment to excess ra in . Neither i s the concentration time of any

catchment area a unique time, i t depends on the flow rate, as seen fo r

instance, i n the Manning equation ( 2 . 4 7 ) . I n any case the travel time i s

not the same as the reaction time which i s also a function of flow ra te .

Non l inear hydrograph theory on the other hand has met wi th l imi ted

response.

To some extent the error in assuming the travel time is the

concentration time is nu l l i f i ed by assuming a f u l l conduit for computation

of t ravel time. The upstream conduits flow a t a lower r a t e than those

downstream. When the design storm is occurr ing for a downstream conduit,

upstream conduits w i l l be f lowing at less than design capaci ty as the

storm durat ion w i l l be greater than the design storm fo r the upper

conduits. Thus the assumption of a higher flow and velocity than w i l l

occur makes the resu l t ing ra te of concentration more near ly that of the

true hydrodynamic system.

Another misconception i s that the fu l I catchment must contr ibute for

the maximum runoff rate. Besides odd shaped catchments which can by

analysed using the tangent method (Watkins, 1962) a t rue ana lys is would

show many catchments do not contr ibute from the farthest extremity a t

peak flow. This i s not shown up by the ra t iona l method which i nva r iab l y

assumes the en t i re catchment contr ibutes. I t can be demonstrated only i f

soi I-dependent losses are assumed, not rain-dependent losses (e.g. 'C'). I t

is shown in chapter 3 that i f loss i s independent of r a i n f a l l then a

shorter durat ion storm in many cases produce a greater runoff ra te than

one which is of durat ion equal to the time to equ i l ib r ium.

Page 19: KINEMATIC HYDROL06Y AND MODELLING

a

rainfall and runof f r a t e s per u n i t a r e a of c a t c h m e n t

rainfal l ra te i l

runoff C i ,

loss = ( I - C ) i l = f 1 I

t ime t

(a) Medium storm

rainfal l runof rate i ra in fa l l r a t e i,

runof f = C i 2

t

( b ) Intense storm assuming same C as in (a) above

rainfall runoff r a t e

I

I 1 loss. f

t

( c ) Intense storm with same loss as (a)

Fig . 1 . 3 Effect of c o n s t a n t C on r u n o f f

Page 20: KINEMATIC HYDROL06Y AND MODELLING

9

HYDRODYNAMIC EQUATIONS

The Navier -Stokes e q u a t i o n s f o r i ncompress ib le f l u i d f l o w in t h r e e

d imensions a r e

o(-+U-+V-+W-) au a u au au = x - 32 + I-’(-+-+-) 3 ’ ~ a2u azu

a t ax a y a z ax ax2 ay2 az2

a v av av a~ a z v a z v a z v

ax2 ay2 az2 a t ax a y a~

a 2 w a 2 w a 2 w

p (4u -+v -+w- ) = Y - 3 + p(-+-+-)

o(a”+ua”+va”+wa”) = z - - ap + I-’(--- ~ --)

aY

a t ax ay az az axz ay2 a z 2

(1.9)

(1.10)

where p i s the mass d e n s i t y o f the f l u i d , u , v , w , a r e the v e l o c i t y

components in the x , y , z d i r e c t i o n s r e s p e c t i v e l y , X , Y , Z , a r e the b o d y

forces p e r u n i t vo lume, p i s the p r e s s u r e a n d p i s v i s c o s i t y . I n a d d i t i o n

to these th ree d y n a m i c e q u a t i o n s we h a v e the c o n t i n u i t y e q u a t i o n

= o au + + LW

ax a Y az __ ( 1 . 1 1 )

A l t hough these f o u r e q u a t i o n s t h e o r e t i c a l l y desc r ibe f l ow in a n y s i t u a t i o n ,

f rom the p o i n t o f v i e w o f c i v i l a n d h y d r a u l i c engineers they s u f f e r a

number of d r a w b a c k s . Fo r i n s t a n c e v i scous forces s h o u l d b e r e p l a c e d b y

t u r b u l e n t momentum t r a n s f e r o r e v e n by a sern i -empir ica l f r i c t i o n d r a g

equa t ion , e .g. b y M a n n i n g o r D a r c y .

I t i s g e n e r a l l y p o s s i b l e to work in one d imens ion in c i v i l e n g i n -

e e r i n g h y d r a u l i c s . Then the Navier -Stokes e q u a t i o n s c a n b e r e p l a c e d b y

the St. Venant e q u a t i o n s , w h i c h a l s o compr i se a d y n a m i c e q u a t i o n a n d a

c o n t i n u i t y e q u a t i o n , namely

f - s o = o (1.12) _ - l a v + v a v + a v + s g at g ax a x

(1.13)

where S i s the b e d s lope ( p o s i t i v e down in the x d i r e c t i o n ) , Sf i s t he

energy g r a d i e n t , Q i s the f l ow r a t e , B the s u r f a c e w i d t h , A the cross

sect ional a r e a a n d P the wet ted Der imeter . I t w i l l be seen on c lose

i nspec t i on t h a t t he St. Venant e q u a t i o n s a r e s i m i l a r in m a n y te rms to the

Navier-Stokes eaua t ions.

Page 21: KINEMATIC HYDROL06Y AND MODELLING

10

The so lu t i on of the St. Venant equa t ion i s , however, a d i f f i c u l t

enough task f o r the hyd ro log i s t o r c i v i l engineer . The c lass i ca l so lu t i on

i s b y the method of c h a r a c t e r i s t i c s which can e a s i l y be p o r t r a y e d

g r a p h i c a l l y . Computer so lut ion of the equa t ion in v a r i o u s forms is now

more common. Rap id so lu t i on of a f i n i t e d i f f e rence form o f the St. Venant

equat ions i n a s i m p l i f i e d form can e a s i l y be under taken on, f o r instance,

micro computers.

For the m a j o r i t y of o v e r l a n d f low cases and i n many channel a n d

condui t f low s i t u a t i o n s the St. Venant equat ions can be rep laced b y the

fol lowing two equat ions (see chap te r 2 ) .

Con t inu i t y a a + , a v = i ax at e

( 1 . 1 4 )

Dynamics S = Sf ( 1 . 1 5 )

where i i s the i n p u t p e r u n i t a rea of su r face (e.g. excess r a i n f a l l

i n t e n s i t y ) .

These equat ions a r e termed the k inemat i c equat ions. Equat ion (1.15)

merely s ta tes tha t the bed slope can be subs t i t u ted f o r the energy

g rad ien t in a f r i c t i o n equat ion.

For ove r land sheet f low q pe r u n i t w i d t h these equat ions become

( 1 . 1 6 )

( 1 . 1 7 ) m

4 = aY

where i is the excess r a i n f a l l r a t e .

I t i s f u r t h e r a s imple ma t te r to t ransform the k inemat i c equat ions (1.14)

a n d (1.15) i n t o equat ions a p p l i c a b l e to s torage rese rvo i r s w i t h i n t e r l i n k i n g

condui ts :

( 1 . 1 8 ) ah A Q + A- = q at

and A H / L = KQm ( 1 . 1 9 )

Here A i s the r e s e r v o i r su r face area, Q i s the net i n f l ow from

connect ing p ipes a n d q i s the d rawo f f from a r e s e r v o i r w i t h water leve l h .

The second equa t ion i s a p p l i c a b l e to closed condu i t s and i n fact i s s imp le r

t han the open channel k inemat i c equa t ion s ince the v a r i a b l e f low dep th i s

el iminated.

When the common node between condu i t s i s an open r e s e r v o i r the

c o n t i n u i t y equa t ion w i l l p r e d i c t the r a t e o f change i n water l eve l . I f the

condu i t s o r p i p e s connect a t a closed node i t i s necessary to solve

s imul taneously f o r head a t the node a n d f low i n the connect ing p ipes.

Page 22: KINEMATIC HYDROL06Y AND MODELLING

1 1

Many methods are ava i l ab le for th is, but the l inear method (Stephenson,

1984b) is pa r t i cu la r l y suitable. That procedure requires minimal data

preparation and solut ion i s faster than the manual node i te ra t i ve

correction procedure of Hardy Cross because i t i s impl ic i t , that is heads

of a l l nodes are solved for simultaneously. The kinematic method of

continuous simulat ion is a versat i le technique for ana lys is of u rban storm

drainage and water supply pipe networks pa r t i cu la r l y w h e n operation of

storage reservoirs i s involved.

The I imi t ing assumptions behind the kinematic method should however

be recal led. Although the assumption that the x-di f ferent ia l terms i n the

dynamic equation i s zero i s cer ta in ly va l i d , the time d i f fe ren t ia l terms

may i n some cases not be zero. This effect i s magnif ied by introducing

closed conduits wi th unvary ing cross-sectional area. Pressure r ises due to

change in flow ra te can be large, g i v i n g r i s e to water hammer.

I n such situations, i.e. when rap id f luctuat ions in flow are

possible, an a l te rna t ive method of analysis, namely elast ic analysis, must

be employed. To analyse a network using the water hammer equations

involves simultaneously solv ing the character ist ics and cont inui ty equation

at each node. Aspects of f r i c t i on damping requ i re pa r t i cu la r attention wi th

th is method. I n pa r t i cu la r the ra t i o of f r i c t ion head loss to water hammer

head can have an important effect on the speed of solution. When the

analyst i s only concerned w i th steady state heads and flows he can

a r t i f i c i a l l y speed convergence by suppressing the wave speed i.e. reducing

the numerical value used i n the computations.

The analyst i s thus a l te r ing the f i t of the mathematical model to the

real system. There are approximations and consequently scope for

adjustment at a number of stages i n the modelling. The fol lowing stages

are related by the ana lys t :

Real system (conduits and reservoirs)

Imagined system (what can be visual ized)

Mathemat ical model (d i f fe ren t ia l equations)

Numerical model ( f i n i t e differences)

Computer model (successive equations)

By adjust ing the imagined system one i s able to speed convergence of

the solution. The f i n i t e differences have to be l imi ted according to the

Courant c r i te r ion (1956) and pa r t i cu la r l y when f r i c t i on i s involved,

another c r i te r ion proposed by Wiley (1970)

At < : A x / c ) ( l - S g A t / 2 v ) ” ‘ ( 1 . 2 0 )

Page 23: KINEMATIC HYDROL06Y AND MODELLING

12

Equation (1.20) indicates that f r i c t ion affects the stabi I i t y of

numerical solutions. This is however due to the numerical approximation i n

solv ing the equations exp l i c i t l y ra ther than an i ns tab i l i t y caused by

f r i c t ion . Fr ic t ion has general ly an important role in kinematic theory. I t

relates water depth to flow ra te i.e. i t provides the l i nk between the

cont inui ty equation and the hydrograph. Although f r i c t ion energy loss

relat ionships are well known for stream flow which i s f u l l y turbulent and

sub-surface flow which is laminar, the process of over land flow is not

f u l l y appreciated. Flow depths are small and the dimensions of

roughness are comparable w i th the flow depth. There are complicating

influences such as tortuous flow paths around and over boulders,

vegetation, structures and other surface disturbances. Rain drops are

reported to cause turbulence at lower Reynolds numbers than for conduit

flow. Overton and Meadows (1976) indicate turbulent flow persists for sheet

flow i f the Reynolds number i n terms of p rec ip i ta t ion rate, i L / " = 20 to

2000 where i is the precipi tat ion ra te (m/s), L i s the over land flow path

length and L) i s the kinematic viscosity of the l i q u i d (water ) . This would

indicate that the energy gradient i s proport ional to flow ra te to the power

of m = 5/3 i f the Manning equation (2.47) i s assumed together wi th the

1/6 power law for velocity d is t r ibu t ion . Horton (1938) on the other hand

found m was approximately 2 on na tura l surfaces implying near ly laminar

conditions for uniform flow (constant depth i n the direct ion of f low) .

Actual ly m = 3 for pure laminar flow.

TENSION CONTROLS

\ GRAVITY

_. TIME

Fig. 1.4 Typical f i e ld i n f i l t r a t i on curve

Page 24: KINEMATIC HYDROL06Y AND MODELLING

13

I NF I LTRAT I ON

A major component of a stormwater model i s the rout ine to determine

the r a i n f a l l excess. Abstractions or losses are subtracted from input

r a i n f a l l resu l t ing i n the r a i n f a l l excess which must be routed to the basin

out let .

The losses which must be abstracted from r a i n f a l l are:

1

2.

3.

4.

Intercept ion-rainfal I caught by vegetation p r io r to reaching the

ground. The amount caught i s a function of ( a ) the species, age,

and density of vegetation, ( b ) character of the storm, and (c ) the

season of the year. I t has been estimated that i n a r u r a l watershed

as much as 10 to 20 percent of the r a i n f a l l du r ing the growing

season i s intercepted and returned to the atmosphere by evaporation.

Depression storage-water caught in smal I surface pockets and voids

held there u n t i l i t in f i l t ra tes or evaporates.

Evaporation-water returned to the atmosphere through vapor izat ion.

Evaporation is most important when i t i s not r a i n i n g ; i t i s neg l ig ib le

dur ing r a i n f a l l events when a representative ra te i s 0.05 mrn/hr

(0.002 i n /h r ) (Overton and Meadows, 1976).

Inf i l t rat ion-water lost to the soi l . Typ ica l l y , i n f i l t r a t i on i s the

major abstract ion du r ing a r a i n f a l I event. Three d is t inc t processes

are involved: ( a ) the movement of water into the soi l across the

a i r -so i l interface ( i n f i l t r a t i o n ) ; ( b ) the movement of water through

the soi l under the inf luence of g rav i t y and soi l suction (percol-

a t i on ) ; and ( c ) the depletion of the ava i l ab le volume wi th in the

soi l (storage deplet ion).

There are two basic approaches to modell ing r a i n f a l l excess. Each

loss can be modelled separately and the models l inked together, or a

single model can be developed that lumps the important losses together,

usual ly into i n f i l t r a t i on . This la t te r approach i s often followed i n event

Simulation models. Kinematic stormwater models a re mostly event models;

therefore, we a re mostly concerned w i th i n f i l t r a t i on models fo r the ra in -

fall abstract ion model.

A typical f i e ld i n f i l t r a t i o n curve i s shown i n F igure 1.4. I n f i l t r a t i on

begins at an i n i t i a l h igh ra te and decreases w i th time to a steady f i na l

rate. The forces inf luencing the movement of water into and through the

Page 25: KINEMATIC HYDROL06Y AND MODELLING

14

soi l are suction and g rav i t y . Dur ing the ear ly stages, the upper soi l

layer i s " th i rs ty " and in f i l t r a t i on is dominated by suction. With time, the

upper centimetre, more o r less, of the soi l surface becomes saturated and

the i n f i l t r a t i on ra te reduces to that ra te a t which water moves through

the saturated soi l . At t h i s point , g rav i t y dominates. As long as the

r a i n f a l l rate exceeds the instantaneous in f i l t r a t i on rate, or water i s

ponded on the surface, i n f i l t r a t i on w i l l continue a t the maximum possible

rate, defined by Horton (1933) as the capacity i n f i l t r a t i on rate. The effect

of r a i n f a l l r a t e on the i n f i l t r a t i on curve i s next examined. Three general

cases for i n f i l t r a t i on dur ing a steady r a i n f a l l were proposed by Mein and

Larson (1973):

Case A : i < k . (The ra in fa l I rate, i, i s less than the saturated soi l

hyd rau l i c conduct iv i ty, k . ) Under th i s condit ion, runoff w i l l not

occur, regardless of r a i n f a l l durat ion, because a l l r a i n f a l l w i l l

i n f i I trate.

Case B: ks < i < f . (The r a i n f a l l r a te i s less than the capaci ty

i n f i l t r a t ion rate, fp, but i s greater than the saturated hyd rau l i c

conduct iv i ty.) For a short durat ion r a i n f a l l , where i remains less

than f a l l the r a i n in f i l t ra tes . But for a r a i n f a l l of long

durat ion, the i n f i l t r a t i on capacity w i l l decrease u n t i l i t equals i ,

and surface ponding occurs.

P

P'

Case C : k < f <i: (The r a i n f a l l r a te i s greater than the i n f i l t r a t i on -__ s p capaci ty.) Under th i s condit ion, runof f occurs.

Cases 0 and C can be considered as two d is t inc t cases; however,

i n f i l t r a t i on often occurs as a two-phase process combining the two cases.

Bodman and Colman (1943) evaluated soi I water d is t r ibu t ion du r ing

i n f i I t ra t ion into a uniform, re la t i ve ly d ry soi I under surface ponding

conditions and establ ished that the typical p ro f i l e can be d iv ided into

four zones as shown in F igure 1.5. The uppermost zone i s the saturat ion

zone and var ies l i t t l e i n thickness, regardless of the total depth of

i n f i l t r a t i on . Immediately below th i s zone, there i s a zone of r a p i d

decrease in the water content, which Bodman and Colman ca l led the

t rans i t ion zone; and below i t , there occurs a zone of near ly constant

moisture ca l led the t ransmit t ing zone. This zone increases i n length in

direct proport ion to the volume of i n f i l t r a ted water. Next, there is the

wett ing zone which moves downward w i th a constant shape as i n f i l t r a t i on

continues. The wett ing zone ends at the wett ing f ront, which i s the

Page 26: KINEMATIC HYDROL06Y AND MODELLING

15

boundary between water penetrat ion and soi l at the i n i t i a l moisture

content.

Soil Physics Models

There are two approaches to modell ing the i n f i l t r a t i on process, soi l

physics models and hydrologic models. Soil physics models a re deter-

minist ic models based on the physics of soi l moisture movement, whi le

hydrologic models a re conceptual and are based on a die-away ra te u n t i l

the f i na l steady r a t e i s reached. The advantage of soi l physics models

i s that the parameters are understood and are measurable; the dis-

advantage i s that soil physics models typ ica l l y requ i re a large amount

of data, inc lud ing s i te measures of soi l porosi ty, hyd rau l i c conduct iv i ty,

soi I layer ing, etc. I n comparison, hydrologic models general ly have fewer

parameters, requ i re less da ta and are easier to solve; however, the

parameters are not a l way phys ica l l y interpretable and cannot be

measured, hence they must be establ ished by ca l ib ra t ion . A fu r ther

cr i t ic ism of hydrologic models i s that they oversimpl i fy the i n f i l t r a t i on

process, pa r t i cu la r l y du r ing periods of unsteady r a i n and r a i n f a l I less

than the soi I saturated hydrau l ic conduct iv i ty.

The governing equations for i n f i l t r a t i on are the conservation of mass

and an equation of motion.

r a n

I- W

MOISTURE CONTENT

I I I TRANSMITTING I ZONE I I 3 I WElTINGZONE

I

BODMAN AND COLMAN

I I-

W a n

MOISTURE CONTENT

8; 8, - I I I I I I SATURATED I ZONE I I I I

I GREEN AND AMPT

Fig. 1.5 Comparison of Green and Ampt soi l moisture p ro f i l e w i th Bodman-Colman p ro f i l e

Page 27: KINEMATIC HYDROL06Y AND MODELLING

16

The conservation of mass equation i s

a v + a o = o a z at

(1 .21 )

where v i s the specif ic discharge (ve loc i ty ) ver t i ca l l y , 0 i s the vol-

umetric moisture content.

The equation of motion i s based on Darcy 's law for a saturated,

homogeneous soi I ,

dh dz

v = - k - (1 .22 )

where v i s velocity as defined previously, k i s hydrau l i c conduct iv i ty,

h i s the hyd rau l i c head, dh i s the change i n head i n the direct ion of

flow over the length dz. The negative s ign indicates flow i s i n the

direct ion of decreasing head.

Darcy 's law can be generalized to unsaturated flow by expressing

the hyd rau l i c head as a function of soi l tension o r suction, and g rav i t y .

Dur ing the i n i t i a l stages of i n f i l t r a t i on when the water content i s low,

the tension force i s much la rger than the g rav i t y force and the flow

process i s control led by tension. As the pores f i l l , tension i s reduced

and g rav i t y becomes important. The hyd rau l i c head i s then equal to

tension $ p lus g r a v i t y , z .

h = $ + z (1 .23 )

and Darcy's law as appl ied to unsaturated flow i s

( 1 . 24 )

By combining Eqs. 1.23 and 1.24 , we get the governing equation

for one-dimensional, ver t i ca l , unsaturated f low, known as R ichard 's

equation.

( 1 . 2 5 )

where k and $ are both functions of 0 . Due to the nonlinear relat ionship

between hyd rau l i c conduct iv i ty, suction and soi l moisture, there i s no

general ana ly t i ca l solut ion to Eq. 1.25.

The problem is fu r ther complicated by hysteresis in that the

relat ionship between suction and moisture content i s not unique and

s ing le valued. The relat ionship depends on whether the soi l i s wett ing

( i n f i l t r a t i o n i s occurr ing) or d ry ing (d ra inage i s occur r ing) . These

relat ionships are shown i n F igure 1.6. General ly, for a given water

content, suction i s lower dur ing wett ing than dur ing drainage and

minor hysteret ic loops can occur between the main hysteretic loops. The

hysteretic effect i s a t t r ibu ted to ( 1 ) geometric nonuniformity of ind iv idua l

pores, ( 2 ) var ia t ions in contact angle i n wett ing and drainage,

Page 28: KINEMATIC HYDROL06Y AND MODELLING

17

( 3 ) en t rapped a i r , a n d ( 4 ) s w e l l i n g ( H i l l e l , 1971). Conduc t i v i t y l i kew ise

e x h i b i t s a h y s t e r e t i c effect.

MOISTURE CONTENT

Fig. 1.6 Typ ica l so i l suct ion - moisture r e l a t i o n

Green and Ampt Model

A conceptual model u t i l i z i n g D a r c y ' s law was proposed b y Green

and Ampt (1911). Many s tud ies, i n c l u d i n g those b y Mein a n d La rson (1973),

have demonstrated the usefulness of the Green a n d Ampt model f o r

model l i n g i n f i l t r a t i o n . As methods fo r measur ing the model parameters

a r e made eas ier , i t can be expected the model w i l l be more w ide ly

app l i ed .

D a r c y ' s law can be w r i t t e n as

v = f = k ( h + L + $ f ) / L f (1.26)

where f i s the i n f i l t r a t i o n r a t e a n d v i s equal to the v e r t i c a l v e l o c i t y ,

h i s the su r face pond ing depth, Lf i s the depth to the we t t i ng f r o n t ,

and qf i s suc t i on at the we t t i ng f r o n t .

f - n

Several assumptions were necessary to w r i t e D a r c y ' s law in the form

of E q . 1.26, namely:

1 . There e x i s t s a d i s t i n c t a n d p rec i se l y d e f i n a b l e we t t i ng f r o n t .

2. Suction at the wet t ing f ron t , ii, f , remains essen t ia l l y constant ,

rega rd less of t ime a n d depth.

Page 29: KINEMATIC HYDROL06Y AND MODELLING

18

3. Above ( b e h i n d ) the w e t t i n g f r o n t , t he s o i l i s u n i f o r m l y wet and of

cons tan t h y d r a u l i c c o n d u c t i v i t y k .

4 . Below ( i n f r o n t o f ) the w e t t i n g f r o n t , t he s o i l m o i s t u r e con ten t i s

r e l a t i v e l y u n c h a n g e d f r o m i t s i n i t i a l m o i s t u r e con ten t , 0 _.

These assumpt ions , when checked a g a i n s t t h e a c t u a l soi I m o i s t u r e p r o f i l e

of Bodman and Colman i l l u s t r a t e t h e a p p r o x i m a t e n a t u r e of t h e Green

a n d Ampt model. T h i s i s shown in F i g u r e 1.5.

The a c c u m u l a t e d i n f i l t r a t i o n d e p t h , F, c a n b e o b t a i n e d b y i n t e g r a t -

i n g E q . 1.26.

f = dF /d t = k ( h + Lf + $ f ) / L f

o r more d i r e c t l y f r o m

F = (0 - O i ) L f = A O L f (1.28)

where 9 i s t he s a t u r a t e d m o i s t u r e con ten t and 0 i s t he i n i t i a l m o i s t u r e

con ten t . The measure o f m o i s t u r e con ten t , 0 , i s a v o l u m e t r i c measure ,

t h e r e f o r e A0 i s c a l c u l a t e d w i t h t h e r e l a t i o n s h i p

A0 = (0 - 0.) = r$ ( l - Si ) (1.29)

where 4 i s t he soil p o r o s i t y and S. i s t he i n i t i a l deg ree o f s a t u r a t i o n .

A p p l y i n g the r e l a t i o n s h i p s i n Eqs . 1.28 and 1.29 to Eq. 1.27 and

(1.27)

I

i n t e g r a t i n g t o o b t a i n F g i v e s

= F - ( $ A O ) I n [ I + F / ( I ~ ~ A O + h A 0 ) l k t f

(1.30)

w h i c h i s a n o n l i n e a r e q u a t i o n i m p l i c i t in F and t. An e x p l i c i t f o rmu-

l a t i o n to s o l v e f o r , t he i nc remen ta l i n f i l t r a t i o n vo lume d u r i n g an

inc remen ta l t ime i n t e r v a l , A t , i s o b t a i n e d b y r e w r i t i n g Eq. 1.30.

T h i s g i v e s

k A t - 2Ft 1 2 F - k A t (1.31) t

t / ( ) + 2 k A t ( h t A 0 + J, A 0 + F ) 2 f t AF =

where A F i s the i nc remen t i n t o t a l i n f i l t r a t i o n f r o m t ime t t o t ime

t + A t , a n d F and ht a r e the i n f i l t r a t i o n and p o n d e d dep th , r e s p e c t i v e l y ,

a t t ime t. The re fo re , t he t o t a l i n f i l t r a t i o n a f t e r t h e t ime inc remen t i s

Ft+At t o r

F t+ At

where i i s t he r a i n f a l l i n t e n s i t y . I f A F < i A t f o r a t ime s tep t h e n excess

i n t e n s i t y , ie, occu rs .

t

= F + AF; i f AF < i A t + h t (1 .32a)

= F t + iA t + h t ; i f AF > iA t + ht (1 .32b)

The inc remen ta l c u m u l a t i v e i n f i l t r a t i o n e q u a t i o n , E q . 1.32, was deve loped

assuming u n i f o r m s o i l p r o p e r t i e s . However , i t c a n b e a p p l i e d to l a y e r e d

Page 30: KINEMATIC HYDROL06Y AND MODELLING

19

so i ls , assuming each l a y e r has un i fo rm p roper t i es . The r e q u i r e d so i l

p rope r t i es , i .e . K,, if, 4, a n d S i , a n d the th ickness, d, must be known

for each laye r . A f te r computing the i n f i l t r a t i o n d u r i n g each t ime

i n t e r v a l , the cumu la t i ve i n f i l t r a t i o n volume, F, i s compared w i t h the

s torage capac i t y of uppermost l a y e r not yet sa tu ra ted . Once a l a y e r

becomes sa tu ra ted , the i n f i l t r a t i o n r a t e i s cont ro l led b y the condi t ions

in tha t l a y e r o r the nex t lower l a y e r , whichever g i ves the sma l le r ra te .

Bouwer (1966) de f i ned the Green a n d Ampt parameter k to be " the

ac tua l h y d r a u l i c c o n d u c t i v i t y in the wetted zone," wh ich i s less than

the sa tu ra ted h y d r a u l i c c o n d u c t i v i t y , ks . He concluded, based on

p rev ious work, t ha t k may be taken as about 0.5kS. The sa tu ra ted

h y d r a u l ic c o n d u c t i v i t y can be determined b y severa l s t a n d a r d l abo ra to ry

tests.

E f fec t i ve s a t u r a t i o n i s de f i ned as 0 - 0

r (1.34)

where Er i s the r e s i d u a l mois ture content, Brooks a n d Corey (1966)

observed a s t r a i g h t I ine r e l a t i o n s h i p

se = (vJ / J I ) ' " ; f o r J, > jib (1.35)

where J, i s c a p i l l a r y pressure head (suc t i on ) a t a g i v e n so i l mois ture

content, 0 ; $ i s termed b u b b l i n g pressure a n d i s de f i ned a t the i n t e r -

cept of a s t r a i g h t l i n e p l o t of e f fec t i ve s a t u r a t i o n a n d c a p i l l a r y pressure

head; a n d B i s an index of the po re size d i s t r i b u t i o n . Porous media

composed of s i n g l e g r a i n , ma te r ia l have p r i m a r y po ros i t y (po ros i t y

cons is t ing o n l y of spaces between the g r a i n s ) a n d tend to h a v e smal l

va lues of 8. Media h a v i n g secondary po ros i t y (po re spaces a l so a v a i l a b l e

fo r f low w i t h aggregates) have l a r g e va lues (>1.0) .

b c

b

The we t t i ng f ron t suct ion i s est imated u s i n g the fo l l ow ing r e l a t i o n s h i p

11 'b f = __ - r l - 1 2

(1.36)

where rl = 2+3/B

Hydro log ic I n f i l t r a t i o n Models

Horton (1939) proposed an i n f i l t r a t i o n equa t ion to represent the

t yp i ca l i n f i l t r a t i o n cu rves observed i n doub le - r i ng i n f i l t rometer tests.

I n these experiments, the water i s cont inuously ponded above the so i l ;

therefore, the supp ly i s not l i m i t i n g a n d i n f i l t r a t i o n proceeds a t the

maximum po ten t i a l ra te. He observed tha t the i n f i l t r a t i o n r a t e was

i n i t i a l l y h i g h a n d decreased in t ime to a steady f i n a l ra te . The die-away

fol lowed a nega t i ve exponent ia l v e r y c losely . H is equa t ion i s

Page 31: KINEMATIC HYDROL06Y AND MODELLING

20

(1.37) -k t f = f + ( f o - f c ) e

where f i s the c a p a c i t y i n f i l t r a t i o n r a t e a t t ime t , fo a n d f a r e the

i n i t i a l a n d f i n a l i n f i l t r a t i o n r a t e s , a n d k i s the i n f i l t r a t i o n cons tan t

w h i c h i s a l l e g e d l y a f u n c t i o n of s o i l and vege ta t i on . I n theo ry t h i s

e q u a t i o n assumes the a i r - s o i l i n t e r f a c e i s s a t u r a t e d a t a l l t imes. I n

p r a c t i c a l terms t h i s means t h a t i t i s assumed the r a i n f a l l r a t e i s a l w a y s

g r e a t e r t h a n i n f i l t r a t i o n c a p a c i t y r a t e s , a n d hence some p o n d i n g w i l l

a l w a y s r e s u l t . T h i s i s a m a j o r d i s a d v a n t a g e i n the use of H o r t o n ' s model

s i n c e n a t u r a l r a i n f a l I r a t e s a r e h i g h l y v a r i a b l e a n d the re fo re f r e q u e n t l y

f a l l below the c a p a c i t y r a t e s . T h i s may n o t be a p rob lem w i t h h i g h

i n t e n s i t y d e s i g n r a i n f a l l s o r r a i n f a l l s d i s t r i b u t e d in t ime to a l w a y s

exceed the c a p a c i t y i n f i l t r a t i o n r a t e s .

C

Hol ton (1961) proposed a conceptual model of i n f i l t r a t i o n b a c k e d b y

s u b s t a n t i a l f i e l d exper imen ta t i on . He recogn ized f r o m soi I p h y s i c s a s

the po res f i l l , the i n f i l t r a t i o n r a t e d i e s a w a y a n d approaches a s t e a d y

f i n a l r a t e . The f i n a l r a t e of i n f i l t r a t i o n f c was assoc ia ted w i t h the

g r a v i t y f o rce a t f i e l d c a p a c i t y ( a n d i s assumed to e q u a l the s o i l

s a t u r a t e d h y d r a u l i c c o n d u c t i v i t y , k s ) . He then f o r m u l a t e d a model to

r e l a t e c a p a c i t y i n f i l t r a t i o n r a t e to the a v a i l a b l e s o i l mo is tu re s t o r a g e

volume r e m a i n i n g a t a n y t ime, F a s P '

f = aF" (1.38) P + f c

The pa ramete rs a a n d n were de te rm ined e x p e r i m e n t a l l y f rom i n f i l t r omete r

p l o t d a t a . The exponent was f o u n d to be abou t 1.4 f o r a l l p l o t s s t u d i e d

a n d the c o e f f i c i e n t s v a r i e d f rom 0.2 to 0.8 f o r the so i l - cove r complexes

s t u d i ed.

REFERENCES

Beven, K . , Dec. 1982. O n s u b s u r f a c e s tormf low. P r e d i c t i o n s w i t h s i m p l e k i n e m a t i c theo ry f o r s a t u r a t e d a n d u n s a t u r a t e d f lows. Water Resources Res. 18 ( 6 ) p p 1627-33.

Bodman, G.B. a n d Colman, E.A. 1943. M o i s t u r e a n d energy c o n d i t i o n s d u r i n g d o w n w a r d e n t r y of wa te r i n t o so i l s . Proc. Soi l Science SOC. of Amer ica, Vol. 7, pp 116-122.

Bo rah , D.K. a n d P r a s a d , S.N., 1982. Shock s t r u c t u r e in k i n e m a t i c wave r o u t i n g . I n Ra in fa l l -Runo f f Re la t i onsh ips , Ed t . S ingh, V.P., Water Resources Pub1 i ca t ions, Co lo rado , 582 pp.

Bouwer, H. 1966. R a p i d f i e l d measurement of a i r e n t r y v a l u e a n d h y d r a u l i c c o n d u c t i v i t y of soi I as s i g n i f i c a n t pa ramete rs in f l ow system a n a l y s i s . Water Resources Research, Vol. 2, No. 4 , pp 729-738.

B r a k e n s i e k , D.L. , 1966. H y d r o d y n a m i c s of o v e r l a n d f l ow a n d n o n - p r i s m a t i c channe ls . T r a n s . ASAE 9 ( 1 1 , pp 119-122.

Brooks, R.H. a n d Coley, A.T. 1966. P r o p e r t i e s of po rous med ia a f f e c t i n g f l u i d f l o w . Jou rna l of the I r r i g a t i o n a n d D r a i n a g e D i v i s i o n , ASCE, V o l . 92, No. I R 2 , pp 61-88.

Page 32: KINEMATIC HYDROL06Y AND MODELLING

21

Constan t i n i d e s , C.A. and Stephenson, D., 1982. D imens ion less h y d r o g r a p h s u s i n g k i n e m a t i c t h e o r y , Repor t 5/1982. Water Systems Research Pro- gramme, U n i v e r s i t y o f t h e W i t w a t e r s r a n d , Johannesburg .

Couran t , R., F r i e d r i c h s , K. and Lewy , H., 1956. On the p a r t i a l d i f f e r - ence e q u a t i o n s o f ma themat i ca l p h y s i c s . N.Y. U n i v . I n s t . Ma ths .

C ro ley , T.E. and Hun t , B . , 1981. M u l t i p l e v a l u e d and non-convergen t s o l u t i o n s in k i n e m a t i c cascade mode ls , J. H y d r o l . , 49, pp 121-138.

Dunne, T . , 1978. F i e l d s t u d i e s of h i l l s l o p e f l o w processes. Ch. 7, H i l l - s lope H y d r o l o g y , Ed. K i r k b y , M.J., John Wi ley , N.Y.

Eag leson, P., 1967. A d i s t r i b u t e d l i n e a r model for p e a k ca tchmen t d i s - charge. I n t l . H y d r o l . Symp., Co lo rado S t a t e U n i v . , F o r t C o l l i n s , pp 1-18.

Freeze, R.A., 1972. Ro le o f s u b s u r f a c e f l o w in g e n e r a t i n g s u r f a c e r u n o f f . 2, Ups t ream source a reas . Water Resources Research , 8 ( 5 ) , pp 1272- 1283.

G a l l a t i , M. and Maione, U., 1977. P e r s p e c t i v e o n m a t h e m a t i c a l mode ls o f f l ood r o u t i n g , in M a t h e m a t i c a l Mode ls f o r Su r face Water H y d r o l o g y , E d t . C i r ian i , T.A., Ma ione, U. and W a l l i s , J.R., W i ley In te rsc ience , 423 pp.

Greco, F. and P a n a t t a n i , L., 1977. Numer i ca l s o l u t i o n methods o f t h e St. Venant e q u a t i o n s . I n Mathemat i c a l Mode ls f o r S u r f a c e Water H y d r o l o g y , Ed t . C i r i an i , T.A., Ma ione, U. and W a l l i s , J.R., W i ley In te rsc ience , 423

PP . Green, I .R.A., 1984. WITWAT s t o r m w a t e r d r a i n a g e p r o g r a m . Repor t 1/1984,

Water Systems Research Programme, U n i v e r s i t y o f t h e W i t w a t e r s r a n d , Johannesburg .

Green, W.H. and Ampt, G.A. 1911. S t u d i e s o f s o i l p h y s i c s , 1 . The f l o w o f a i r and w a t e r t h r o u g h so i l s . J. o f A g r i c u l t u r e Science, V o l . 4, No. 1 , pp 1-24

Henderson, F.M. and Wooding, R.A., 1964. O v e r l a n d f l o w and g r o u n d - w a t e r f l o w f r o m s t e a d y r a i n f a l l of f i n i t e d u r a t i o n . J. Geophys. Res. 69 ( 8 ) pp 1531-1539.

H i l l e l , D. 1971. Soi I and w a t e r - p h y s i c a l p r i n c i p l e s and processes, Academic Press

Holton, H.N. 1961. A concept of i n f i l t r a t i o n es t ima tes in wa te rshed e n g i n e e r i n g , U.S. Dept. o f A g r i c u l t u r e , A g r i c . Research Serv i ce , No. 41-51, Wash ing ton , D.C.

Hor ton , R.E. 1933. The r o l e o f i n f i l t r a t i o n in t h e h y d r o l o g i c cyc le . T r a n s . o f the Amer i can Geophys ica l Un ion , H y d r o l o g y Papers , pp 446-460

Hor ton , R.E., 1938. The i n t e r p r e t a t i o n and a p p l i c a t i o n o f r u n o f f p l o t exper imen ts w i t h re fe rence to s o i l e ros ion p rob lems . Proc . So i l Sci . SOC. Am. 3, pp 340-349.

Hor ton , R.E. 1939. A p p r o a c h t o w a r d a p h y s i c a l i n t e r p r e t a t i o n o f i n f i l t a t i o n c a p a c i t y . Proc . So i l Science SOC. o f Amer ica , Vol . 5, pp 399-417.

Hor ton , R.E., Leach , H.R., and Van V I i e t , R . , 1934, L a m i n a r sheet f l o w . Amer. Geophys. Un ion , T rans . , P a r t I I , pp 393-404.

I w a g a k i , Y . , 1955. F u n d a m e n t a l s t u d i e s o n t h e r u n o f f a n a l y s i s by c h a r a c t e r i s t i c s . D i s a s t e r P r e v e n t i o n Research I n s t i t u t e , B u l l e t i n 10, Kyo to U n i v . 25 pp.

Keu legan, G.H., 1945. S p a t i a l l y v a r i e d d i s c h a r g e o v e r a s l o p i n g p l a n e . Amer. Geophys. Un ion T r a n s . P a r t 6, pp 956-959.

K i b l e r , D.F. a n d Woolh iser , D.A., 1970. The k i n e m a t i c cascade a s a h y d r o l o g i c a l model. Co lo rado S ta te U n i v . p a p e r 39, F o r t C o l l i n s , 25 pp.

Kouwen, N., L i , R.M. and Simons, D.B., 1980. F low r e s i s t a n c e i n vege- ta ted w a t e r w a y s . M a n u s c r i p t , Co lo rado Sta te U n i v e r s i t y , F o r t C o l l i n s .

L i g h t h i l l , F.R.S. and Whi tham, G . B . , 1955. On k i n e m a t i c waves , I , F l o o d measurements i n l o n g r i v e r s . Proc . Roya l SOC. o f London , A, 229, pp 281-31 6.

Page 33: KINEMATIC HYDROL06Y AND MODELLING

22

L loyd -Dav ies , D.E., 1905. The e l i m i n a t i o n o f s to rm w a t e r f rom sewerage

Massau, J., 1889. L ' i n t C g r a t i o n g r a p h i q u e . Assoc. l n g e n i e u r s S o r t i s des Ecoles SpCciales des G a r d , Anna les . 435 pp.

Me in , R.G. and L a r s o n , C . L . 1973. M o d e l i n g i n f i l t r a t i o n d u r i n g a s t e a d y r a i n . Water Resources Research , Vol . 9, No. 2, pp 384-394.

M o r r i s , E.M. and Woolh iser , D.A., 1980. Uns teady one-d imens iona l f l o w o v e r a p l a n e : P a r t i a l e q u i l i b r i u m and recess ion h y d r o g r a p h s . Water Resources Research , 16 ( 2 ) , pp 355-360.

Over ton , D.E. and Meadows, M.E., 1976. S to rmwate r m o d e l l i n g , Academic Press, 358 pp.

Rossmi l l e r , R.L. , 1980. The R a t i o n a l f o r m u l a r e v i s i t e d . Proc . I n t l . Symp. Storm Runo f f , U n i v . of K e n t u c k y , L e x i n g t o n .

Rovey, E.W., Woo lh iser , D.A. and Smi th , R.E., 1977. A d i s t r i b u t e d k i n e m a t i c model o f u p l a n d watersheds . H y d r o l o g y P a p e r 93, Co lo rado S ta te U n i v . , F o r t Col t i ns , 52 pp.

Schaake, J.C., 1975. Su r face wa te rs . Rev iew o f g e o p h y s i c s and space p h y s i c s 13 (13 ) pp 445-451.

S i n g h , V.P., 1977. C r i t e r i o n t o choose s tep l e n g t h f o r some n u m e r i c a l methods used in h y d r o l o g y . J. H y d r o l . , 33, p p 287-299.

Skaggs, R.W., 1982. I n f i l t r a t i o n . Ch. 4, H y d r o l o g i c a l M o d e l l i n g o f Sma l l Watersheds, Ed t . Haan , C.T., Johnson, H.P. and B r a k e n s i e k , D.L., ASAE Monog. 5.

scs ( s o i l Conserva t i on S e r v i c e ) 1972. N a t i o n a l E n g i n e e r i n g Handbook , Secn. 4. H y d r o l o g y , Wash ing ton , D.C.

Stephenson, D. , 1983. The e f f e c t s of u r b a n i z a t i o n . Course on Modern S to rmwate r D r a i n a g e P r a c t i c e , SAICE, Cape Town.

Stephenson, D. , 1984a. K i n e m a t i c s t u d y o f e f f e c t s of s to rm d y n a m i c s of r u n o f f h y d r o g r a p h s . Water S.A. Vol . 10, No.4, Oct. 1984. p p 189-196.

Stephenson, D. , 1984b. K inemat i c a n a l y s i s f o r d e t e n t i o n s to rage . EPA/Users g r o u p mee t ing . D e t r o i t .

Wa tk ins , L.H., 1962. The Des ign of U r b a n Sewer Systems, Road Research Techn. p a p e r 55, HMSO, London .

Wooding, R.A., 1965a. A h y d r a u l i c model f o r t h e ca tchment -s t ream p r o b l e m 1 , K i n e m a t i c wave theo ry . J. H y d r o l o g y , 3. pp 254-267.

Wooding, R.A., 1965.b. A h y d r a u l i c model f o r t he ca tchmen t -s t ream p rob lem, I I , Numer i ca l so lu t i ons , J. H y d r o l . 3. pp 268-282.

Wooding, R.A., 1966. A h y d r a u l i c model f o r t h e ca tchment -s t ream p r o b l e m I I I , Compar i son w i t h r u n o f f o b s e r v a t i o n s , J. H y d r o l o g y , 4, p p 21-37.

Woolhiser, D.A. and L i g g e t , J.A. 1967. Uns teady one-d imens iona l f l o w o v e r a p l a n e - The r i s i n g h y d r o g r a p h . Water Resources Research , 3 ( 3 ) , pp 753-771.

Wy l i e , E.B., 1980. Uns teady f r e e s u r f a c e f l o w compu ta t i ons . Proc . ASCE, 96 (HY 1 1 ) pp 2241-2251.

systems. M i n . Proc. I n s t n . C i v i l Engnrs . , 164 (2 ) pp 41-67.

Page 34: KINEMATIC HYDROL06Y AND MODELLING

23

CHAPTER 2

ANALYSIS OF RUNOFF

INTRODUCTION

In th is chapter a s impl i f ied descript ion of the r a i n f a l l - runof f

mechanism is presented, i.e. one which can be described i n equation form.

The concept of mass balance whereby input equals outflow p lus change i n

storage, is appl ied to simple catchments. The bui ld-up of water depth

over the catchment when a storm occurs i s described as well as the

mechanism whereby runoff occurs. The relat ionship between water depth

and flow ra te forms an important p a r t in the predict ion of flow so the

equation of motion ( i n fact only a simple flow resistance equation i n the

case of kinematic f low) i s introduced.

This simple ana lys is i s confined to a rectangular plane catchment

s loping uni formly down i n the direct ion of flow, and flow is assumed

overland. The equations of con t inu i ty and flow are thus p a r t i c u l a r l y

simple. Nevertheless the o r ig in of and the assumptions behind the

simpli f icat ions are presented. A simple demonstration of the app l i cab i l i t y

of the kinematic equations is also given. Later other components of flow

e.g. sub-surface flow (Beven, 1982) and a more prac t ica l assessment of the

contr ibut ion to streamflow are introduced w i th model I ing. The di f ferent-

iat ion of surface and subsurface flow i s often more complicated than

assumed here (Dunne, 1978).

DYNAM I C EQUAT I ON5

The equations governing unsteady, one-dimensional over land and open

channel flow are der ived by app ly ing the pr inc ip les of conservation of

mass and momentum to elemental f l u i d control volumes. One-dimensional

equations ac tua l l y describe the change i n streamflow i n two dimensions:

vert ical and longi tudinal . They are c lassi f ied as one-dimensional since

only one spat ia l va r iab le occurs as an independent var iable.

The important assumptions are:

1 . The water surface p ro f i l e var ies g radua l l y , which i s equivalent to

s ta t ing the pressure d is t r ibu t ion is hydrostat ic, i .e. , ver t i ca l

accelerations are smal I ;

2. Resistance to flow can be approximated by steady flow formulae;

Page 35: KINEMATIC HYDROL06Y AND MODELLING

3. The veloci ty d is t r ibu t ion across the wetted area can be represented

with the cross-sectional average veloci ty;

4 . Momentum car r ied to the strearnflow from la te ra l inf low is neg l ig ib le ;

and

5. The s1oDe of the channel i s small.

I n addi t ion, for t h i s der ivat ion, the channel i s assumed rectangular.

This s impl i f ies the mathematics involved and has l i t t l e effect on the f i na l

form of the governing equations.

Conservation of Mass

The cont inui ty p r i nc ip le states that the net mass inf low to a control

volume must equal the ra te of change of mass stored w i th in the control

volume. Consider the elemental f l u i d volume shown in Figure 2.1, where Q

i s the volumetric f lowrate in m3/s or cfs, q. is the lateral inf low r a t e i n

rn3/s per rn or cfs per foot length of channel, y and A are depth and cross

sectional area of flow in metres and square metres (feet and square

feet), respectively, 0 i s the slope of the channel w i th respect to the

Fig. 2.1 Der ivat ion of cont inui ty equation

horizontal measured as an angle, and x and t a re the space and time

coordinates in metres ( feet) and seconds. The total inf low to the section is

Inf low = Q + qiAX (2.1 1 and the total outflow is

(2.2) Outflow = Q + 22 A X ax

Page 36: KINEMATIC HYDROL06Y AND MODELLING

25

The change i n volume stored in the section i s equal to the change i n

cross-sectional area of flow mul t ip l ied by the length of the section.

( 2 . 3 ) aA =Ax

Change i n volume stored =

Combining these quant i t ies according to the above stated pr inc ip le ,

d i v id ing by Ax, and rear rang ing , y ie lds the cont inui ty equation

(2.4) ax a t

Conservation of Momentum

This second equation i s given by Newton's second law of motion

which states that the ra te of change of momentum is equal to the app l ied

forces. The app l ied forces, as seen i n Figure 2.2, are ( 1 ) pressure, ( 2 )

g rav i t y , and (3) resist ive f r i c t iona l forces.

w t Fig. 2.2 Der ivat ion of momentum equation

Consider forces i n the downstream direct ion as posit ive. The pressure

downslope acts opposite to the pressure upslope and upon summing, the net

pressure force becomes

-pgA(aY/ax) A X

where p i s the mass density of water and g i s the grav i ta t iona l acceler-

a t ion.

S imi la r ly , i t can be shown that the g r a v i t y or weight force ac t ing on

the volume of water in the section i s g iven by pgAAx tan0

Page 37: KINEMATIC HYDROL06Y AND MODELLING

26

where, for gradual ly var ied f low, tan !! closely corresponds to the channel

slope, S o , and may be expressed as such. This i s ca l led the small slope

approxi mat ion.

F ina l l y , the f r i c t i on force act ing to re ta rd the flow i s expressed i n

terms of an average shear stress

- TPAX

where T i s shear stress and P i s wetted perimeter. From the relat ionship

formed by equat ing head (energy) loss to the work done by the shear

force we know that T = YRSf, where Sf i s the f r i c t ion slope and Y i s the

un i t weight of l i qu id . Subst i tut ing for T , and reca l l ing that R=A/P, the

fol lowing expression for the f r i c t i on force i s obtained.

- VRS PAX = - YS AAx (2 .5) f f The resul tant force on the f l u i d volume i n the direct ion of flow is the

summat ion of the three appl ied external forces.

PgAAx [ - (ay /ax) + so - s f l The change in momentum consists of two par ts , the local or temporal

momentum change and the spat ia l or convective momentum change. The

local momentum of the f l u i d i s pAAx v , and the local change i s jus t the

time der iva t ive

The spat ia l change i n momentum i s the ra te of momentum change across the

control surface. The momentum f l u x through the control surface i s p v Z A ,

and the spat ia l change i s the x-der ivat ive

- (Pv’A) L x = ( 2 Av .E + v z 2 ) A x p (2 .7) a ax ax ax

The total momentum change i s the sum of the temporal and spat ia l

momentum changes.

A X P ( A .LY + v z),+ V A X P ( V - aA + ZA 2) at at a x ax

Subst i tut ing the fol lowing equivalence from cont inui ty * a v + v - aA 5 q , - - aA

ax ax I a t ( 2 . 8 )

allows the r a t e of momentum change to be wri t ten as

Equating th i s expression with the summation of external forces gives

the fol lowing famil i a r form for the conservation of momentum equation.

- ax g ( S o - S ) - Vqi at ax f A

(2 .9) a v + v - a v + g & =

where 5 i s bed slope, S i s f r i c t i on slope and R i s hyd rau l i c rad ius and

is equal to A/P. f

Page 38: KINEMATIC HYDROL06Y AND MODELLING

27

Eqs. 2.4 a n d 2.9 c a n b e made a p p l i c a b l e t o a n y c ross sec t i on f o r

b o t h o v e r l a n d and open c h a n n e l f l o w , t h o u g h s t r i c t l y they a p p l y to

r e c t a n g u l a r c h a n n e l s o n l y in t h e p r e s e n t fo rm.

These e q u a t i o n s a r e n o n l i n e a r , h y p e r b o l i c , p a r t i a l d i f f e r e n t i a l

e q u a t i o n s a n d r e p r e s e n t a n o n l i n e a r , d e t e r m i n i s t i c , d i s t r i b u t e d , t ime

v a r i a n t system. They a r e sometimes r e f e r r e d to as the St. Venan t

eaua t ions.

S l M P L l F I ED EQUATIONS

E q u a t i o n s 2 . 4 and 2 . 9 a r e accep ted as f u l l y d e s c r i p t i v e o f one d imen-

s i o n a l o v e r l a n d a n d open c h a n n e l f l ow r o u t i n g . These e q u a t i o n s d e s c r i b e

b o t h t h e f o r w a r d or downs t ream w a v e p r o p a g a t i o n c h a r a c t e r i s t i c s as we1 I

as the b a c k w a r d o r u p s t r e a m c h a r a c t e r i s t i c s . I t i s assumed t h a t f l o o d

waves in s t reams move downs t ream and s i n c e h i l l s l o p e r u n o f f i s a l w a y s

downh i I I , t he b a c k w a r d c h a r a c t e r i s t i c s a r e s i m p l y b a c k w a t e r e f fec ts , and

in some f l o w r o u t i n g i ns tances , t hey c a n h a v e s u b s t a n t i a l impac t a n d

c o n t r o l o n t h e f l o w . As such, these e q u a t i o n s a r e k n o w n g e n e r a l l y a s t h e

dynamic w a v e e q u a t i o n s . As a r u n o f f h y d r o g r a p h passes t h r o u g h a c h a n n e l

r e a c h , t he comb ined e f fec ts o f c h a n n e l i r r e g u l a r i t y , poo l a n d r i f f l e

p a t t e r n s , n a t u r a l and manmade r o u g h n e s s a n d g r a v i t y f o rces a c t to r e d u c e

the h y d r o g r a p h p e a k a s s u m i n g l a t e r a l i n f l o w i s i n s i g n i f i c a n t w h i l e

l e n g t h e n i n g the t ime base. T h a t i s , t h e peak o f t he h y d r o g r a p h i s

a t t e n u a t e d w h i l e the shape i s d i s p e r s e d in t ime ( a l s o in s p a c e ) . T h e

d y n a m i c w a v e e q u a t i o n s accoun t we1 I f o r h y d r o g r a p h a t t e n u a t i o n . However ,

two d r a w b a c k s to the who lesa le g e n e r a l use o f these e q u a t i o n s a r e the

l a r g e data r e q u i r e m e n t s and the necess i t y f o r n u m e r i c a l i n t e g r a t i o n . Ve ry

o f ten , b a s e d on channe l geomet ry a n d a l i g n m e n t and f l o o d wave

c h a r a c t e r i s t i c s , i t i s p o s s i b l e to make v a l i d s i m p l i f y i n g assumpt ions t h a t

a l l o w one to u t i l i z e app r -ox ima t ions to the d y n a m i c w a v e e q u a t i o n s . When

t h i s i s p o s s i b l e , a d v a n t a g e s in te rms o f ease o f s o l u t i o n and d a t a

r e q u i r e m e n t s arc? o f t e n r e a l i z e d .

Two a p p r o x i m a t i o n s t h a t h a v e f o u n d w i d e a p p l i c a t i o n i n e n g i n e e r i n g

p r a c t i c e a r e t h e diffusion and kinematic wave mode ls . The d i f f u s i o n w a v e

model assumes t h a t t he i n e r t i a te rms in t h e e q u a t i o n o f mo t ion , Eq . 2 . 9 ,

a r e n e g l i g i b l e compared w i t h t h e p r e s s u r e , f r i c t i o n , a n d g r a v i t y terms.

Thus , t h e d i f f u s i o n model e q u a t i o n s a r e c o n t i n u i t y , Eq. 2 . 4 , and the

f o l l o w i n g s i m p l i f i e d f o r m o f t he c o n s e r v a t i o n of momentum e q u a t i o n .

( 2 . 1 0 )

Page 39: KINEMATIC HYDROL06Y AND MODELLING

28

For pr ismat ic channels, Eqs. 2.4 and 2.10 are often combined into the

s ingle equation

aQ a 2 Q - a Q + c - = at ax DaxZ ( 2 . 1 1 )

where c i s the wave celer i ty i n m/s ( fps ) and D i s a hydrograph

dispersion coefficient i n m’/sec ( f t * /sec) . Because Eq. 2.11 i s of the form

of the classical advection-dif fusion equation, i t i s commonly ca l led the

di f fusion wave model.

The kinematic model fu r ther assumes the pressure term i s neg l ig ib le ,

reducing Eq. 2.10 to

so = Sf (2 .12)

which means the equation of motion can be approximated by a uniform flow

formula of the general form

Q = ay (2 .13)

where a,b a re constants.

b

Although approximat ions, both the di f fusion and kinemat ic models have

been shown to be f a i r l y good descript ions of the physical phenomemona i n

a var ie ty of open channel and over land flow rou t ing cases. The kinematic

model has been successfully appl ied to over land f low, to small streams

dra in ing up land watersheds, and to slow-rising f lood waves. This la t te r

case occurs both in major streams such as the Mississippi River when long

durat ion f lood hydrographs resu l t ing from, as an example, spr ing snowmelt

in the U.S. Midwest and Canada, and i n small streams where the

streamflow hydrograph nesul ts p r i nc ipa l l y from lateral stormwater inf low.

THE KINEMATIC EQUATIONS

For over land flow and in many channel flow situations, some of the

terms in the dynamic equation (2 .9) are ins ign i f i can t . Neglecting the qi

component one can wr i te the equation as

(2 .14)

The order of magnitude of each of the f i ve terms i s evaluated below

for a shallow stream. I f the bed slope ( 2 ) is 0.01, the longi tudinal ra te

of change of water depth ( 3 ) i s un l i ke l y to exceed O.lm/lOOm = 0.001. The

longi tudinal velocity gradient term ( 4 ) w i l l also be less than

(lm/s/lOm/s‘)(lm/s/lOOm) = 0.001, and the time ra te of change i n

velocity term ( 5 ) w i l l i n a l l p robab i l i t y be less than ( l / l O ~ ( l / l O O s ~ =

0.001.

Page 40: KINEMATIC HYDROL06Y AND MODELLING

29

Terms ( 3 ) , ( 4 ) and ( 5 ) a re therefore at least an order of magnitude

less than (2 ) for depths up to lm, and fo r flow depths less than O.lm

they w i l l be two orders of magnitude less. Those terms can therefore be

neglected for the major i ty of over land flow problems. The inaccuracy i n

solutions orni t t ing these terms for runoff hydrographs was evaluated by

various researchers:

Woolhiser and Liggett (1967) investigated the accuracy of the

kinematic approximation and found i t to be very good i f the dimensionless

parameter for planes SoL/yLFL’ i s greater than 20 and reasonable i f

greater than 10. yL i s the depth at the lower end of the plane of length

L and slope So and FL is the Froude number VL/ (gyL)? . i.e. gSoL/VL2

> 10. Morr is and Woolhiser (1980) and Woolhiser (1981) later found the

addi t ional c r i te r ion S L/y > 5 i s also required.

1

O L The resu l t ing s impl i f ied dynamic equation omit t ing terms ( 3 ) , (4) and

(5 ) simply states that the f r i c t ion gradient i s equal to the bed gradient.

The f r i c t ion gradient can be evaluated using any sui table f r i c t ion

equation, e.g. that of Manning. The two equations referred to as the

kinematic equations are thus the cont inui ty equation which per un i t width

of over land flow becomes

(2.15)

and a f r i c t i on equation of the form q = a ym

where m is a coefficient and a is a function of the water propert ies,

surface roughness, bed slope and g rav i t y . Equations (2.15) and (2.16)

apply to a wide f l a t bottom channel o r over land flow. The flow q is per

un i t width and flow depth i s y .

(2.16)

The quasi-steady flow approximation was o r ig ina l l y termed the

kinematic wave approximation since waves can only t rave l downstream and

are represented en t i re ly by the cont inui ty equation. Since the dynamic

forces are omitted, the Froude number F = v / J ( g y ) is i r re levant , and i n

fact that the wave speed c i s not given by C = but may be derived

by f ind ing dx/dt for which dy/dt = ie

rn- 1 From the f r i c t i on equation (2.16) aq = dy = mcly a Y ax -TT z a2

Substi tut ing into the cont inui ty equation y ie lds

(2.17)

(2.18)

(2.19)

but Since ie = dy/dt , the left hand side of t h i s equation must also equal

dy/dt.

Page 41: KINEMATIC HYDROL06Y AND MODELLING

30

(2.20) m- 1 There fo re

w h i c h i s t h e speed a t w h i c h a w a v e o f u n v a r y i n g a m p l i t u d e ( i f i = 0 )

t r a v e l s down the p l a n e .

S ince v = a y , i t m a y b e deduced t h a t t h e w a v e speed i s r e l a t e d t o

dx = c = m a y dt

m- 1

w a t e r v e l o c i t y v b y t h e e q u a t i o n ; c = mv. (2.21)

K I NEMATl C FLOW OVER IMPERMEABLE PLANES

The k i n e m a t i c w a v e e q u a t i o n s h a v e an i m p o r t a n t a d v a n t a g e o v e r t h e

d y n a m i c and d i f f u s i o n wave e q u a t i o n s ; a n a l y t i c s o l u t i o n s a r e p o s s i b l e f o r

s i m p l e w a t e r s h e d geomet r ies . I n t h i s sec t i on , t h e k i n e m a t i c s o l u t i o n s a r e

deve loped f o r r u n o f f f r o m an impermeab le r e c t a n g u l a r p l a n e . U n d e r these

c o n d i t i o n s , we a r e n o t conce rned w i t h e s t i m a t i n g r a i n f a l l loss d u e to

i n f i l t r a t i o n , n o r w i t h r o u t i n g f l o w s f i r s t o v e r l a n d and then t h r o u g h a

complex s t o r m w a t e r d r a i n a g e system. Numer i ca l mode ls g e n e r a l l y a r e

r e q u i r e d when i n f i l t r a t i o n i s i m p o r t a n t or mu1 t i p l e r o u t i n g s a r e i n v o l v e d .

R i s i n g H y d r o g r a p h - G e n e r a l Solution

For the c a s e of a l o n g impermeab le p l a n e , A = b y , Q = bq and R =

y , where q i s the f l o w p e r u n i t w i d t h , hence Eqs. 2.4 and 2.13 c a n b e

w r i t t e n

(2.15)

and

m q = aY

where ie i s the r a i n f a l I excess i n t e n s i t y . S u b s t i t u t i n g E q

2.16 and p e r f o r m i n g the d i f f e r e n t i a t i o n y i e l d s

Eq. 2.22 s t a t e s t h a t t o an o b s e r v e r m o v i n g a t t h e speed

dx m-1 d t am’ - - the d e p t h o f f l o w c h a n g e s w i t h the r a i n f a l I r a t e

a = . d t ‘ e

(2.16)

2.15 i n t o Eq.

(2.22)

(2.23

(2.24

Eqs. 2.23 and 2.24 p r o v i d e the b a s i s f o r a me thod o f c h a r a c t e r i s t i c s

s o l u t i o n to s u r f a c e r u n o f f . F o r s t e a d y r a i n f a l l excess i n t e n s i t y , Eq. 2.24

c a n b e i n t e g r a t e d t o o b t a i n

y = yo + i e t (2.25)

w h e r e Y o i s t h e i n i t i a l w a t e r d e p t h when r a i n f a l l b e g i n s . Eq . 2.25 i s t h e

Page 42: KINEMATIC HYDROL06Y AND MODELLING

31

equation for depth along each character ist ic as that character ist ic moves

from some i n i t i a l posit ion toward the downstream end of the plane. The

posit ion on the character ist ic at any instant i n time i s determined w i th Eq

2.23. For an i n i t i a l l y d ry surface y = 0, hence y = iet. Subst i tut ing th i s

relat ionship into E q . 2.23 gives

- - dx - am( ie t lm- ’ dt

which integrates to

x = x + n i t m-1 m

(2.26)

(2.27)

or more simply m- 1

x = x + a y t

which specifies the downslope posi t ion of the depth y a f te r time t. x i s

the point from which the forward character ist ics emanate, i.e., the o r ig in

of the character ist ics at t = 0, and i s measured from the upslope end of

the plane.

(2.28)

The discharge at any point a long a character ist ic i s given by the

re la t ionsh i p m

q = a ( i t ) (2.29)

Two character ist ic paths are shown in F igure 2.3. The f i r s t emanates

at a point in te r io r to the plane and t rave ls the distance L-x dur ing the

time to. The depth and discharge at each point ( x , t ) along th i s

character ist ic i s determined from Eqs. 2.25, 2.28 and 2.29. The second

character ist ic begins at the upslope end of the plane and t rave ls the

length of the plane durin.g the time tC. I n th i s case, the depth a t the

upstream end i s zero, yo = 0, for a l l t. Therefore, as long as the

ra in fa l I intensi ty remains constant, once this i n i t i a l character ist ic has

reached the downstream end of the plane, the depth p ro f i l e along the

plane w i l l remain constant regardless of how long the r a i n f a l l persists,

i . e . , an equ i l ib r ium depth p ro f i l e w i l l be establ ished. The time required

for th is to happen is the concentration time tC. At equ i l ib r ium no

addi t ional r a i n f a l l i s being added to surface detention storage, and the

rate of outflow equals the r a i n f a l l rate.

Recognizing that general ly what is required i s the runoff hydrograph

at the end of the plane catchment, the concept of an equ i l ib r ium time and

f lowrate suggests a way to s imp l i f y the use of Eqs. 2.25, 2.28 and 2.29.

In the fo l lowing sections, solutions and examples are given for the time to

equi l ibr ium, equi l ib r ium depth p ro f i l e and r i s i n g outf low hydrograph.

Page 43: KINEMATIC HYDROL06Y AND MODELLING

32

0 i

Fig. 2.3 Kinematic solut ion domain for p lane catchment

Time of Concentration

One can solve for the time of concentration from Eq. 2.27 using the

condit ions that at t =. tc, x - x = L. Subst i tut ing and rear rang ing to

solve for concentration time tc which is equal to time to equ i l ib r ium t m'

tC = ( L/cc iem-l ) 1 /m

For Manning-kinematic f l o w , time of concentration in minutes i s

t = (6.9/ ie0'4)(nL/So0*5) O e 6

for i i n mm/hr and L i n metres and

t = (0 .928 / i~O.~ ) ( ~ L / S ~ O * ' ) O e 6

for i i n in /h r and L i n feet

EXAMPLE 1 . Estimate the time of concentration for a r a i n f a l l r a te of

25 mm/hr on an asphalt pa rk ing lot 50 metres long and sloped a t 1%.

Assume n = 0.023.

Using Eq. 2.31, we f i n d

(2.30)

(2.31 )

(2.32)

Oe60 = 8.2 minutes

Page 44: KINEMATIC HYDROL06Y AND MODELLING

33

Hence, a r a i n i n t e n s i t y o f 25 mm/hr w i l l b r ing t h e p a r k i n g l o t t o

e q u i l i b r i u m in 8.2 m inu tes .

Equi l ib r ium D e p t h P r o f i l e

An e x p r e s s i o n f o r t h e e q u i l i b r i u m d e p t h p r o f i l e i s f o u n d b y s o l v i n g

Eqs. 2.25 a n d 2.28 s i m u l t a n e o u s l y , and r e c a l l i n g t h a t a t x o = 0 ,

yo = 0.

The r e s u l t i n g e x p r e s s i o n i s

y ( x ) = ( i e x / a ) 1 /m

w h i c h f o r M a n n i n g - k i n e m a t i c f l o w in S I u n i t s becomes

(2.33)

EXAMPLE 2. E s t i m a t e t h e e q u i l i b r i u m d e p t h a t t h e e n d o f t h e a s p h a l t

p a r k i n g l o t i n E x a m p l e 1 .

We need t o b e c a r e f u l w i t h u n i t s . The r a i n f a l l r a t e i s i n mm/hr ; b u t

the u n i t s i m p l i c i t in the M a n n i n g e q u a t i o n a r e met res and seconds.

There fore , we need to d i v i d e t h e r a i n f a l l r a t e b y 3 . 6 ~ 1 0 .

i

From Eq. 2.34

6

= 25/(3.6xlO 6 ) = 6 . 9 ~ 1 0 - ~ m / s e c

0.6 0.023( 6 . 9 ~ 1 0-6 ) ( 5 0 )

] = 0.0034 met res (0.01

[ Y ( L ) =

o r y ( L ) = 3.4 mm

The Reced ing H y d r o g r a p h

Henderson and Wooding (1964) d e r i v e d t h e k i n e m a t i c e q u a t i o n s f o r t h e

f a l l i n g h y d r o g r a p h . There a r e two cases i n v o l v e d : I . when t h e r i s i n g

h y d r o g r a p h i s at e q u i l i b r i u m , and I I , when t h e r i s i n g h y d r o g r a p h i s a t a

f low less t h a n e q u i l i b r i u m , i.e., p a r t i a l e q u i l i b r i u m .

Case I . D u r a t i o n o f r a i n f a l I, t > = t . A f t e r t h e r a i n f a l l s tops , f r o m d

2.24, i t c a n b e seen that on a c h a r a c t e r i s t i c

d y / d t = 0 (2.35)

w h i c h i n t e g r a t e s to y = c, where c i s some c o n s t a n t . S u b s t i t u t i n g t h i s

r e l a t i o n s h i p i n t o Eq. 2.23 r e v e a l s that t h e c o r r e s p o n d i n g c h a r a c t e r i s t i c

t r a j e c t o r i e s a r e l i n e s p a r a l l e l to the p l a n e and that t h e d e p t h , d i s c h a r g e

a n d wave speed d x / d t , r e m a i n cons tan t a l o n g a c h a r a c t e r i s t i c . T h i s

means t h a t b e g i n n i n g w i t h a p o i n t o n t h e e q u i l i b r i u m p r o f i l e and r e a l i z i n g

t h a t t he f u t u r e c o o r d i n a t e s o f t h a t d e p t h w i l l l i e o n a s i n g l e

c h a r a c t e r i s t i c , Eq. 2.23 c a n b e u s e d to l oca te t h e p o i n t in space a t a n y

f u t u r e t ime. T h i s p r i n c i p l e i s i l l u s t r a t e d in F i g u r e 2.4.

Page 45: KINEMATIC HYDROL06Y AND MODELLING

34

The equ i l ib r ium depth p ro f i l e a t the cessation of r a i n f a l l is indicated as

the l ine A-B -C3. After some time A t the depth p ro f i l e i s A-B2-C2. T h e

depth at point B l , y l , has moved along a constant character ist ic pa th to

the point B

1

2'

A L

Fig. 2 . 4 Water depth pro f i le

The distance moved is given by

Ax = a m y At

The new x co-ordinate i s

x = x + A x 1

1

m-1

m-1 = x + a m y l ( t - t d )

( 2 . 3 6 )

( 2 . 3 7 )

( 2 . 3 8 )

where x 1 was the posit ion for point B1. Note that i f the storm durat ion

t l > tc the time to equ i l ib r ium, then x = x That is, once the equi-

l i b r i um depth pro f i le i s establ ished i t w i l l remaln constant as long as

the r a i n f a l l continues a t a steady rate. From Eq. 2.33 , the equ i l ib r ium

depth can be expressed as

Y , = i i e X 1 / " 1 1 / m

Subst i tut ing th is relat ionship into Eq. 2.38 gives

l e-

( 2 . 3 9 )

(m-1 ) / m ( t - t ) ( 2 . 4 0 ) 1 + amIi,xl/a] d

x = x

A t the downstream end of the piane x = L and q = ay

A f t e r subst i tut ing these ident i t ies into Eq. 2 . 4 0 , w e obtain the fo l lowing

relat ionship between discharge and time for the recession hydrograph

= ieL. 1

( t - t ) = 0 (2 .41 ) d

Page 46: KINEMATIC HYDROL06Y AND MODELLING

35

Case I I . D u r a t i o n o f r a i n f a l l , t d < tc.

r e a c h i n g e q u i l i b r i u m , t h e n the d e p t h p r o f i l e a t

one s i m i l a r to A-B1-Cl in F i g u r e 2.4. T h a t

p r o f i l e w i l l b e deve loped f r o m t h e u p s l o p e e n d

p o i n t x 1 g i v e n b y

f t h e r a i n s tops p r i o r to

t = t d w o u l d c o r r e s p o n d t o

i s , an e q u i l i b r i u m d e p t h

f t h e p l a n e a t x = O to some

(2.42)

The d e p t h a t p o i n t B1

of the p l a n e a t t ime t,. T h i s t ime i s e v a l u a t e d a s

w i l l move a t a c o n s t a n t r a t e and w i l l r e a c h t h e e n d

L - x,

dx/dt t:; = td t

I n c o r p o r a t i n g Eqs. 2.26, 2.27, and 2.30, Eq. 2.43 becomes

o1 im- l m aim-l m e t c - e t d

t, = td t .m-1 m e td

a m i

(2.43)

(2.44)

w h i c h c a n b e s i m p l i f i e d to

(2.45) 1 m

t, = t d 1 + - [ ( t c / t d I m - 1 }

The d i s c h a r g e at t h e e n d o f t h e p l a n e will r e m a i n c o n s t a n t be tween

t d 5 t S t, and w i l l b e

q = a ( i t

A f t e r t,, t he recess ion proceeds a c c o r d i n g to Case I and Eq. 2.41 a p p l i e s

(2.46) mi

e d

EXAMPLE 3. Determine t h e r u n o f f h y d r o g r a p h f r o m the p a r k i n g l o t i n

Examp le 1 f o r t h e same r a i n f a l l r a t e b u t o f 10 m i n u t e s d u r a t i o n . Use t h e

M a n n i n g k i n e m a t i c s o l u t i o n .

The s o l u t i o n r e q u i r e s t h a t we f i r s t de te rm ine the t ime to e q u i l i b r i u m

w h i c h was done i n E x a m p l e 1 . The n e x t s t e p i s to g e n e r a t e t h e r i s i n g

h y d r o g r a p h . I f t d t c t he r i s i n g h y d r o g r a p h w i l l b e an e q u i l i b r i u m

h y d r o g r a p h . F i n a l l y , we mus t d e t e r m i n e w h i c h case f o r recess ion a p p l i e s

a n d then de te rm ine the recess ion graph a c c o r d i n g l y .

F rom E x a m p l e 1 we know t = 8.2 m inu tes , t h e r e f o r e t h i s even t

s a t i s f i e s t h e c o n d i t i o n s f o r an e q u i l i b r i u m r i s i n g h y d r o g r a p h a n d Case 1

recession. Because t d >= t an e q u i l i b r i u m p r o f i l e w i l l e x i s t o n t h e p l a n e

during the t i m e i n t e r v a l f rom t=8.2 m i n u t e s u n t i l t=10 m inu tes . D u r i n g t h a t

t ime r u n o f f f rom the p l a n e w i l l b e cons tan t and e q u a l to the p e a k r a t e .

The r i s i n g graph i s g i v e n b y Eq. 2.29 and t h e recess ion graph b y Eq.

2.41.

C ’

Page 47: KINEMATIC HYDROL06Y AND MODELLING

36

F i r s t de te rm ine the e q u a t i o n f o r t he r i s i n g graph. The c o e f f i c i e n t

in Eq. 2.29 i s

c1

The d e p t h i n met res i s de te rm ined b y

= S o e 5 / n = (0.01)0.5/0.023 = 4.35

y = i e t / (6x10 4 )

3 where t i s in m i n u t e s ; and t h e d i s c h a r g e i n m /sec /m-wid th o f p l a n e i s

q = 4.35 [( iet ) / ( 6 x 1 0 ) ] Nex t , d e t e r m i n e t h e e q u a t i o n f o r t h e recess ion h y d r o g r a p h . A f t e r

t he a p p r o p r i a t e s u b s t i t u t i o n s and u n i t s c o n v e r s i o n , Eq. 2.41 becomes

q --

6 5/3

(5 /3 ) ( 4 . 3 5 ) 0 * 6 ( q ) 0 ‘ 4 ( 6 ~ ) ( t - l o ) = o 25(50) 25

3 . 6 ~ 1 0

TABLE 2.1 Runo f f H y d r o g r a p h O r d i n a t e s

D i s c h a r g e , m 3 /sec Time, M i n u t e s Depth , mm

5 0.0 x 10 0.0 0.0

1 .o 0.42 1 .o 2.0 0.83 3.2 3.0 1.25 6.3 4.0 1.67 10.2 5.0 2.08 14.8 6.0 2.50 20.0 7.0 2.92 25.9 8 .0 3.33 32.4 9.0 3.42 33.7

10.0 3.42 33.7

F i g . 2.5 K i n e m a t i c h y d r o g r a p h shape f o r s i m p l e p l a n e w i t h td = tC

Page 48: KINEMATIC HYDROL06Y AND MODELLING

37

FR I C T I ON EQUAT I ON

One of the kinematic equations i s a f r i c t ion energy loss equation.

There are many f r i c t i on equations in use i n hyd rau l i c engineering and a

generalized comparison i s made below. The most popular equation re la t i ng

flow ra te to f r i c t i on energy gradient i s perhaps that of Manning, which

may be wri t ten as

(2.47)

where Kl i s 1 in 5. I. un i t s (metre-kilogram-seconds) and 1.486 i n

English un i ts (foot-pounds-seconds), n i s the Manning roughness, A i s the

cross sectional area, R the hyd rau l i c rad ius A/P, P the wetted perimeter

and S the energy slope. The 5. I. system of un i ts i s adopted below but i t

should be noted that the equation i s not dimensionless, and the roughness

factor n is a function of g rav i t y . Written i n terms of flow per un i t w id th

of a wide rectangular channel, (as for an over land flow plane)

q = JS 5/3 n Y

(2.48)

1

since hyd rau l i c rad ius R yb/b = y and area yb = y. Hence ~1 = S'/n

and m = 5/3. The Manning roughness coefficient n is reputedly a constant

for any surface roughness. Th is holds for la rge Reynolds numbers and

f u l l y developed turbulent flow, but comparison w i th the Darcy Weisbach

equation indicates that n ac tua l l y increases for low Reynolds numbers ( y v /

v<lOOO where v

Manning equation may be compared w i th the Darcy equation employing

St r i ck le r ' s equation for roughness, n = 0.13K k'/6/gi where k i s a l inear

measure of roughness analogous t o the Nikuradse roughness for pipes ( i n

metres i f K, = 1 ) . Subst i tut ing into Manning's equation yields

i s the kinematic viscosity of water, about 10-6mz/s). The

1

Q = 7.7(R/k)'/6A(SRg

I f t h i s equation

1 1

Q = (8/ f ) ' A(SRg)'

i t w i l l be seen Str i

1 2 -

i s compared with Darcy 's equation i n

< l e r i n effect used a Darcy f r i c t ion

0.135(k/R)'/3. (Note B r i t i sh pract ice is to use h i n place of

fo r a di f ferent factor.) According to Colebrook and White,

(2.49)

the form

(2.50)

actor equal to

as they use f

2.5

14.8R Re f 1 = -2 log ( - + 7 - 1 __ Ji

(2.51 )

Page 49: KINEMATIC HYDROL06Y AND MODELLING

38

where Re i s the Reynolds number, fo r pipes VD/v, or 4VR/V fo r non

c i r cu la r cross sections. Whereas the Colebrook-Whi te equation predicts

higher values of the Darcy f r i c t ion coefficient f fo r low Reynolds number

and any re la t i ve roughness k/R, the St r i ck le r equation assumes f depends

only on the re la t i ve roughness k/R. The St r i ck le r and Manning equations

can therefore be expected to underpredict roughness for low Reynolds

numbers. Higher values of n should therefore be used fo r over land flow

than for channel flows.

I n general, the value of n and hence flow depth has to be deter-

mined by t r i a l (assuming the Colebrook-White equation to app ly and not

S t r i ck le r ' s ) . I t i s therefore probably easier to use the Darcy equation for

th is purpose but since an exp l i c i t equation is required for ana ly t i ca l

solutions to the kinematic equations and the var ia t ion i n n i s less than

the var ia t ion in f w i th y , the Manning equation is preferred.

Table 2.2 indicates values of n and f wi th va ry ing water depths i n a

wide channel w i th a slope of 0.0025 and absolute roughness k = 0.0125 m.

The values of f a re calculated from the Colebrook-White equation using a

f i r s t estimate of Re from Manning's equation, and then n is re-calculated

from n = (f/8g)'R'/6 i.e. as for S t r i ck le r ' s equation.

TABLE 2.2 - Var iat ion of f and n wi th depth

Water Depth, m Reynolds No. Darcy f Manning n

1 .o 0.1

0.01

2 x lo6 50 000

1 000

0.03

0.09

0.60

0.02

0.023

0.04

The Chezy equation is often used i n preference to the Manning equation

i n American practice. This equation is

v = K,CJ(RS) (2.52)

where C i s known as the Chezy coefficient and K, i s 1 i n f t - second

un i ts and 0.552 i n S . I . uni ts. I n fact the Chezy equation i s very s imi la r

to the Darcy equation in the form

V = J (8g / f ) J ( R S ) (2.53)

and i t w i l l be seen that C = J m / K 2 ,

also for turbulent flow from (2.51) l/df'2 log (14.8R/k) (2.54)

Page 50: KINEMATIC HYDROL06Y AND MODELLING

39

Hence C = ( 2 / K 2 ) flg log (14.8/k)

or v J3gRs' log (14.8/k)

(2.55)

(2.56)

This equation stems from the log velocity d is t r ibu t ion across a section

whereas the St r i ck le r equation follows from a 1/6 power law f i t to the

ve loc i ty d i st ri but ion.

Resistance to r a i n f a l l induced over land flow over na tura l and man-

made surfaces is influenced by several factors inc lud ing surface rough-

ness, raindrop impact, vegetation, wind and i n f i I t ra t ion . Although there

have been many laboratory and f i e ld investigations to determine the

re la t i ve importance of these factors, the appropr iate resistance formula,

and methods fo r parameter estimation, i n pract ice the convention has been

to use either the Darcy-Weisbach equation modif ied for ra indrop impact, o r

the t rad i t iona l forms of the Manning or Chezy equations.

I n laminar flow studies of over land flow the approach has been to

assume the Darcy-Weisbach resistance law is appropr iate, i .e.

v = J(+ Sy)

and to estimate the f r i c t i on factor, f , from the theoretical re lat ionship

between f and Reynolds number Re,

f = K/Re (2.57)

where K is a parameter related to the surface roughness character ist ics

and ra indrop impact. The parameter K i s approximated by

K = K + A i

where KO i s the parameter for surface roughness and A and b a re

empir ical parameters. When. i i s i n inches per hour, the coefficient A i s of

the order of 10 and the exponent b i s approximately un i t y . Typical values

for K O , Manning's n, and Chezy's C are given i n Table 2.3. These

values are ranges found i n the l i te ra tu re and were obtained u t i l i z i n g data

from control led experiments or from smal I experimental watersheds.

(2.58) b

TABLE 2.3 Overland Flow Resistance Parameters

Surface Laminar Flow

KO

Concrete o r Asphalt 24 - 108 Bare Sand 30 - 120 Gravel led Surface 90 - 400 Bare Clay to 100 - 500

Sparse Vegetation 1000 - 4000 Short Grass 3000 - 10000

Loam Soil

Bluegrass Sod 7000 - 40000

Turbulent Flow Manning n Chezy C

0.01 - 0.013 73-38 0.01 - 0.016 65-33 0.012 - 0.03 38-1 8 0.012 - 0.03 36-1 6

0.053 - 0.13 11-5 0.10 - 0.20 6.5-3.6 0.17 - 0.48 4.2-1.8

Page 51: KINEMATIC HYDROL06Y AND MODELLING

40

I n the case of turbulent f low, ei ther the Manning or Chezy equation

is used. The Manning equation is probably the more popu lar equation and

i s used more often i n watershed simulat ion studies. The reasons for t h i s

are obviously i t s wide-spread acceptance in open channel hydrau l i cs and

the a v a i l a b i l i t y of extensive tables of n-values for most channel types and

conditions.

Reported research indicates that low flows are laminar and that h igh

flows are turbulent; bu t the location of the t rans i t iona l Reynolds number

i s indeterminate which makes i t d i f f i c u l t to app ly the Darcy-Weisbach

resistance formulation throughout the ent i re hydrograph. Transi t ion from

laminar to turbulent flow has been reported a t Reynolds numbers rang ing

from 20 to 2,000; w i th the range 300<Rer500 being the most f requent ly

reported . Overton (1972) analyzed 214 equ i l ib r ium hydrographs from an ea r l i e r

study of a i r f i e l d drainage conducted by the U.S. Army Corps of Engineers

(1954). He noted that these hydrographs supported the argument for low

flows being laminar and h igh flows being turbulent. I n almost every case,

the r i s i ng hydrograph i n i t i a l l y rose very slowly ind ica t ing viscous laminar

f low, and then became turbulent as the flow increased. Overton analyzed

the r i s i n g port ion of a l l 214 hydrographs i n dimensionless form. He

normalized the discharge by the r a i n rate, and time by a lag time

parameter, which he defined as the time from the occurrence of 50% of

the r a i n f a l l to 50% of the runoff volume. The normalized (dimensionless)

hydrographs were plotted on transparent paper and superimposed. I t was

apparent, that w i th in a small e r ro r , a s ing le dimensionless r i s i n g

hydrograph could represent a l I 214 hydrographs. The average dimensionless

r i s i n g hydrograph was then plotted against the laminar, Manning and

Chezy dimensionless r i s i n g hydrographs as shown i n F igure 2.6. Flows

appear to be laminar du r ing the f i r s t ha l f of the per iod of r i se and

turbulent du r ing the second ha l f . A n e r ro r ana lys is indicated a 15%

standard er ro r i n f i t t i n g the en t i re r i s i n g hydrograph for the Manning

kinematic solut ion, and 19% for both the laminar and Chezy solutions.

tL,

To i l l us t ra te the effect of using only the Manning equation to

represent the flow equation hence the flow resistance, throughout the

ent i re hydrograph, consider Izzard 's (1946) laboratory experimental r u n

Nos. 136 and 138. Run No. 136 consisted of two burs ts wi th r a i n f a l l

intensity of 3.56 in/hr interrupted by a two minute l u l l . The f i r s t burst

lasted for 10 minutes and the second, 1 1 minutes. The r a i n f a l l event

produced a maximum Froude number of 0.55 and a minimum kinematic flow

number of 156. Run No. 138 consisted of two bursts: the f i r s t was 1.83

in/hr for 8 minutes and the second was 3.55 in/hr for 8 minutes. This

Page 52: KINEMATIC HYDROL06Y AND MODELLING

41

1. I

KINEMATIC WAVE MODELS

~ i ~ . 2.6 Compar i son o f T u r b u l e n t and L a m i n a r K i n e m a t i c Wave I

Solu

even t p r o d u c e d

m in imum k i n e m a

i o n s w i t h Observed R i s i n g H y d r o g r a p h s

a p p r o x i m a t e l y t h e same max imum F r o u d e n u m b e r a n d

i c f l o w n u m b e r a s R u n No. 136. The r u n o f f s u r f a c e was

a n a s p h a l t p l a n e w i t h t h e f o l l o w i n g p h y s i c a l c h a r a c t e r i s t i c s :

L = 72 f t ; M a n n i n g n - v a l u e = 0.024; and So = 0.01.

B l a n d f o r d and Meadows (1983) a n a l y z e d these e v e n t s w i t h a f i n i t e

element f o r m u l a t i o n o f t h e k i n e m a t i c o v e r l a n d f l o w model a n d o b t a i n e d

the r e s u l t s shown in F i g u r e 2.7. F o r Run No. 136, t h e p r e d i c t e d r i s i n g

and f a l l i n g l i m b s o f t h e h y d r o g r a p h l a g t h e o b s e r v e d l i g h t l y , w h i l e t h e r e

i s n e a r p e r f e c t agreement a t t h e h i g h e r f l ows . F rom Run No. 138, o n l y

the s i m u l a t e d f a l l i n g l i m b l a g s t h e obse rved ; t he r e s t o f t h e h y d r o g r a p h

matches the o b s e r v e d v e r y we l l .

REFERENCES

Beven, K., Dec. 1982. On s u b s u r f a c e s to rmf low , P r e d i c t i o n s w i t h s i m p l e k i n e m a t i c t h e o r y f o r s a t u r a t e d and u n s a t u r a t e d f l ows . Water Resources Res. 18 ( 6 ) p p 1627-33.

B l a n d f o r d , G.E. and Meadows, M.E. 1983, F i n i t e E lement S i m u l a t i o n o f K inemat i c S u r f a c e Runo f f , P roceed ings , F i f t h I n t e r n a t i o n a l Sympos ium on F i n i t e E lements in Water Resources, U n i v e r s i t y o f Vermont, B e n n i n g - ton , Vermont .

Dunne, T. 1978. F i e l d s t u d i e s o f h i l l s l o p e f l o w processes. Ch. 7, H i l l s l o p e H y d r o l o g y , Ed. K i r k b y , M.J. John Wi ley , N.Y.

Henderson, F.M. and Wooding, R.A. 1964 , O v e r l a n d F l o w and Ground- w a t e r f r o m a Steady R a i n f a l l o f F i n i t e D u r a t i o n , J o u r n a l o f Geo- p h y s i c a l Research , 69 ( a ) , pp. 1531-1540.

Page 53: KINEMATIC HYDROL06Y AND MODELLING

42

I z z a r d , C.F., 1946. H y d r a u l i c s o f Runof f f rom Developed Sur faces, H igh - way Research Board , P roceed ings o f t he 26th A n n u a l Mee t ing pp. 1 29-1 50.

M o r r i s , E.M., a n d Woolhiser, D.A., A p r i l 1980. Uns teady one-d imensional f l o w o v e r a p l a n e : p a r t i a l e q u i l i b r i u m a n d recess ion h y d r o g r a p h s . Water Resources Research, 16(2) pp 355-366.

Over ton , D.E., 1972. A V a r i a b l e Response O v e r l a n d F low Model, Ph.D. Disse r ta t i on . Dept. o f C i v i l E n g i n e e r i n g , U n i v . o f M a r y l a n d .

Over ton, D.E. a n d Meadows, M.E., 1976 Stormwater M o d e l l i n g , Academic Press, New York .

St. Venant , A.J.C. B a r r e de, 1848. Etudes Theor iques e t P r a t i q u e s s u r l e Mouvement de E a u x Courantes. ( T h e o r e t i c a l and P r a c t i c a l S tud ies o f Stream F l o w ) , P a r i s .

U.S. Army Corps of Eng ineers 1954. D a t a Repor t , A i r f i e l d D r a i n a g e I n v e s t - i g a t i o n s , Los Angeles D i s t r i c t , O f f i ce o f t he Ch ie f of Eng ineers , A i r f i e l d s B r a n c h E n g i n e e r i n g D i v i s i o n , M i l i t a r y Cons t ruc t i on .

Woolhiser, D.A. 1981. P h y s i c a l I l y based models of wa te rshed r u n o f f , p p . 189-202 in S ingh , V.P., (Ed . ) R a i n f a l l Runof f Re la t i onsh ips . Water Resources P u b l i c a t i o n s , Colorado, 582 pp.

Woolhiser, D.A. a n d L i g g e t t , J.A., 1967. Uns teady one-d imensional f l o w o v e r a p l a n e . The r i s i n g h y d r o g r a p h . Water Resources Research, 3 ( 3 ) pp 753-771.

-OBSERVED 4r L c \ e

w (3

0 4 8 12 16 20 24 28 32

TIME( m i n 1

F i g . 2.7 Ou t f l ow H y d r o g r a p h f o r I z z a r d ' s R u n No. 136

Page 54: KINEMATIC HYDROL06Y AND MODELLING

43

CHAPTER 3

HYDROGRAPH SHAPE AND PEAK FLOWS

DESIGN PARAMETERS

Knowledge of the runof f process enables flow rates and volumes

to be predicted. Hydrograph character ist ics are of interest to researchers,

planners, designers and managers of drainage systems. The drainage

engineer w i l l be most concerned with peak flows for design purposes.

I t i s also frequently useful to have the hydrograph shape especial ly

i f detention storage or rou t ing can reduce the peak flow. Expressions

for hydrograph shape and peak flows as a function of excess r a i n f a l l

intensi ty can be der ived as follows for over land flow of f simple planes.

The kinematic equations summarized below are used for th is purpose.

Continuity

( 3 . 2 ) m

Energy 9 = CLY

where x i s the direct ion of f low, t i s time, i i s the excess r a i n f a l l

r a te i - f , f i s the loss r a t e and q i s the discharge r a t e per u n i t

catchment width. For the present a l l un i t s must be assumed consistent.

Later un i ts w i l l be introduced i n order to render the numerical values

more meaningful. I t w i l l be assumed in the fo l lowing analysis that i

d‘ and f are uniform in time’ and space for the durat ion of the storm t

q i s the flow ra te per u n i t width of plane, y i s flow depth, CL i s a

coefficient and m i s an exponent.

SOLUTION OF KINEMATIC EQUATIONS FOR FLOW OFF A PLANE

The kinematic equations can be solved ana ly t i ca l l y for some simple

cases. . I n pa r t i cu la r the runoff from a rectangular plane catchment

subject to uni form excess r a i n can be studied i n de ta i l and expressions

for the time to equ i l ib r ium and hydrograph shape can be derived.

The fol lowing ana lys is demonstrates the simp1 i c i t y of a r r i v i n g at

an equation for runof f for the catchment from a simple p lane catchment

sloping in the direct ion of flow. The analysis i s handled more r igorously

in chapter 2.

One s ta r t s wi th the general ized (one-dimensional) kinematic

equations for over land flow namely 3.1 and 3.2.

Page 55: KINEMATIC HYDROL06Y AND MODELLING

44

I f the Manning equation i s assumed to hold then Q = K S $/n and m

= 5/3 where So i s the slope of the plane i n the direct ion of f low, and n

is the Manning roughness. K i s 1 .O i n 5.1. (metre) un i ts and 1.486 i n f t -

sec units.

l o

After ra in fa l I commences, the water depth near the downstream end of

the catchment w i l l increase at a r a t e i the excess r a i n f a l l rate. The

water surface pro f i le then w i l l be para l le l to the plane a t the

downstream end before equ i l ib r ium i s reached, which i s assumed to occur

before the r a i n stops, i.e. t < tc 5 td, where t i s the time to equ i l ib -

r ium, usual ly referred to as the concentration time of the catchment.

e’

Start ing at the top or upstream end of the catchment where water

depth and discharge ra te w i l l be zero, a negative surge due to a non-

zero dy/dx w i l l t rave l down the catchment over land increasing i n depth as

r a i n continues to fa l l . Then a t any point in time downstream of the surge

the water surface i s increasing in depth at a r a t e i but upstream the

water depth i s at equ i l ib r ium since aq/ax = ie(see F ig . 2.4 l ine ABIC1).

Eventual ly the whole catchment w i l l reach an equ i l ib r ium wi th input

i L p e r u n i t width equal to discharge qL. At the instant the catchment

reaches equ i l ib r ium

(3.3)

t i s the concentrat ion time of the catchment, which i s a function of the

catchment length L, slope So, roughness n and excess r a i n f a l l r a te i The

la t te r effect (i,) ra re l y appears in time of concentration formulae

associated w i th the ra t iona l method.

e‘

Dur ing the time of flow bu i ld -up the water depth a t the ex i t i s i t,

and the corresponding discharge r a t e q L = a ( i e t ) m (3.4)

The speed a t which the reaction from upstream travels down the

catchment before equi l ibr ium, i s obtained from the cont inui ty equation. At

the wave front the ra te of increase i n flow depth is

(3.5)

where dx/dt i s the ra te of t rave l of the wave front.

dy/dt = ie a t the wave front point (and downstream of i t ) . One also

has from the cont inu i ty equation by expanding the aq/ax term

- 3 Y + 3 dy = i at ay dx e

dx By comparing w i th av + - * - i

one must have - dx = at the wave front

at dt ax e

dt a y

Page 56: KINEMATIC HYDROL06Y AND MODELLING

45

(3.7) m- 1

and from 3.2, dx/dt = may

Since y = iet,

dt

which is the speed of the wave front at any time t 5 tC. Also du r ing

equ i l ib r ium the discharge r a t e at any point x from the upstream water-

shed i s q = i x

(3.8) m-1 - dx = mcr(iet)

( l i n e ABlC3 i n Fig. 2.4). Hence from 3.2 e

x = aym/i (3.9)

An expression for the discharge ra te a f te r the storm stops, which

i s assumed to be a f te r the time to equ i l ib r ium ( t 2 t z t ) , i s obtained

by considering the water depth p ro f i l e along the catchment again. After

the r a i n stops the effect of a l l upstream depths travels down to the ex i t

at a speed dx/dt g iven by 3.7. To predict when the depth a t the ex i t

i s ' y ' , imagine a series of waves t rave l l i ng from the water p ro f i l e curve

in a downstream direct ion a t a constant speed dx/dt = aq/ay = mayrn-'

Integrat ing, x = x + maym-'(t- td) (3.10)

(3.11) = q/ ie i mq

since y = (q/a)l/m. (3.12)

I n pa r t i cu la r at the ex i t ,

L = q/ ie + mq 1-1 /mat /m b t d )

which i s an imp1 i c i t expression for the f a l l i n g l imb of the hydrograph.

The f u l l hydrograph shape i s thus as i n Fig. 3.1.

d - c

l-I/m l / m a ( t - t 1 d

(3.13)

HYDROGRAPHS FOR PLANES

Expressions for the r i s i n g and f a l l i n g l imbs of the hydrograph

off a simple rectangular catchment were der ived previously. The

discharge a t the mouth before time t o r td i s reached, .is g iven by

q = a ( ie t ) " ' (3.14)

I f r a i n continues af ter t = tc i .e. td > tc, then the hydrograph top i s

horizontal as indicated i n Fig. 3.1 case I l l .

I f on the other hand r a i n stops a t t = t then the hydrograph

fa l l s immediately af ter t (case 1 1 ) . I n e i ther case i t may be shown

that the f a l l i n g limb of the hydrograph i s obtained from the imp l ic i t

(3.13)

The total depth of excess r a i n has been kept constant i n each case

i n Fig. 3.1 so that i = p/ td where P i s the depth of precipi tat ion.

Page 57: KINEMATIC HYDROL06Y AND MODELLING

46

c-

Flow I n u d q

+ Time 1

F i g . 3.1 Outf low h y d r o g r a p h shape f o r d i f fe ren t storm dura t ions b u t s i m i l a r to ta l excess r a i n .

A l so i l l u s t r a t e d in F ig . 3.1 i s the case of the h y d r o g r a p h f o r a

shor t storm ( t < t ) (case I ) . Af te r t ime td the downstream depth ( a n d

hence f lowrate) remains constant u n t i l the in f luence of the upstream end

reaches the e x i t .

The upstream l i m i t of y = i t i s a t

d c

e d m-1 m

t e d

x = q / ie = aym/ ie = a i

I f t h i s po in t t r a v e l s a d is tance L - x a t a speed

dx /d t = maym-'

(3.15)

(3.16)

rn-l i t w i l l reach the e x i t in time

At = Ax/ma(ietd) m-1- - (L-a iern- l tdm)/maie m-1 td m-1 L / a ( ie td) - td

- (3.17) m

C' Assume i i s the excess r a i n f a l l r a t e f o r a storm d u r a t i o n equal to t

Since ie td = iectC f o r equal volume of r a i n , a n d ec

At = (tc-td)/m (3.18)

This i s the d u r a t i o n of the f l a t top of the h y d r o g r a p h I in F ig . 3.1.

I t should be noted tha t the f a l l i n g l imbs of the h y d r o g r a p h in F ig . 3.1

omit losses a f t e r r a i n stops. I f i n f i l t r a t i o n ( f ) continues the h y d r o g r a p h

w i l l look l i k e those in F ig . 3.2. I t i s genera l l y necessary to model such

system numer ica l l y to get the h y d r o g r a p h shape (see Wooding, 1965).

Page 58: KINEMATIC HYDROL06Y AND MODELLING

47

I D

9 i L -

0 . 5

0 I I J 1 5

t / f ,

F i g . 3.2 Effects of i n f i l t r a t i o n on catchment d ischarge

Page 59: KINEMATIC HYDROL06Y AND MODELLING

48

DERIVATION OF PEAK FLOW CHARTS

I f i t can be assumed that the r a i n f a l l intensi ty-durat ion relat ion-

ship for a specif ied frequency of exceedance can be approximated by a

formula of the form

a I =

(C+td)P (3.19)

where i is the r a i n f a l l ra te i n mm/h o r inches per hour and td i s the

storm durat ion i n hours, then a simple estimate of peak flow can be

d derived. I t I S assumed that i i s constant du r ing the storm durat ion t

and uniform over the catchment. The storm i s also assumed stat ionary.

c i s a time constant unique for a pa r t i cu la r r a i n f a l l region and p is

an exponent, also a unique function of the region. Thus for temperate

regions i n South Afr ica i t was found that c = 0.24h and p = 0.89 whi le

for coastal regions c = 0.20h and p = 0.75 (Op ten Noort and Stephenson,

1982).

a i s a function of r a i n f a l l region, mean annual precipi tat ion, MAP,

i n mm and recurrence in te rva l T i n years e.g. a = (b+e.MAP)Toe3 where

b and e are regional constants. a i s not dimensionless and i f c and

td are i n hours, then i i s i n mm/h or inches per hour. An areal

reduction factor i s also necessary for la rge catchments (e.g. Stephenson,

1981).

Losses are subdiv ided into two components, an i n i t i a l loss u i n

mm o r inches and a uniform in f i l t r a t i on loss ra te f i n mm/h o r inches

per hour. A typical r a i n f a l I I D F ( intensi ty-durat ion-frequency)

relat ionship and the corresponding hyetograph with losses and excess

runoff indicated i s presented i n Fig. 3.3.

The ra te of excess r a i n f a l l i s :

i = i - f (3.20)

where f i s the i n f i l t r a t i on ra te and the durat ion of excess r a i n i s :

te = td - tu = td - u / i

where u i s the i n i t i a l abstract ion (measured i n terms of a depth of

r a i n ) .

(3.21)

For small catchments the maximum peak runoff ra te occurs when

the durat ion of excess r a i n equals the concentration time, t . For p l a i n

rectangular catchments the concentration time is a function of excess

r a i n f a l l r a te

where t = te (both i n hours here) (3.23)

a = r S / n (S.1 un i ts ) o r 1.486 &/n ( fps un i t s ) (3.24)

Page 60: KINEMATIC HYDROL06Y AND MODELLING

49

hyetogroph

{ I \>( I

ntial abstrac-

tion

t 4 ~-t+----4

Fig. 3.3 Excess flow hyetograph derived from IDF curve

i i s excess r a i n f a l l intensi ty, L i s catchment length, 5 i s the

downstream slope, m i s an exponent, 5/3 i n Manning equation, n i s the

Manning roughness, q i s the discharge ra te per un i t width.

The fol lowing expression may then be der ived for ie/a from

equations (3.19) to (3.22):

(3.25)

Thus the maximum runoff ra te per un i t width of catchment

q = i L (3.26)

may be obtained i n terms of a. Equation (3.25) may be solved i te ra t i ve ly

e.g. using the Newton Raphson procedure, for ie/a, or solut ion may be

obtained w i th the a i d of graphs of ie/a plotted against ( L / a am-').

The storm durat ion td corresponding to the peak runoff may be obtained

from (3.21) and (3.22).

Long Catchments

For very long catchments the theoretical concentration time tc i s

high. I n such cases the corresponding excess r a i n f a l l r a te for a durat ion

equal to tc i s low and i n fact could conceivably be less than the

i n f i l t r a t i on ra te f. I t is thus apparent that i n such cases the maximum

runoff ra te may coincide w i th a storm of shorter durat ion than the

concentration time of the catchment. The en t i re catchment w i l I thus not

Page 61: KINEMATIC HYDROL06Y AND MODELLING

50

be contr ibut ing at the time of the peak i n the ( r i s i n g ) hydrograph.

I f a local, intense storm turns out to be the design storm, the areal

reduction factor appl ied to point r a i n f a l l intensi ty relat ionships may

be less s igni f icant. The factor is general ly closer to un i ty the smaller

the lateral extent of the storm, but on the other hand shorter durat ion

storms have a more s ign i f i can t reduction factor ( less than long storms).

These facts w i l l not b e revealed using the Rational method with r a i n f a l l

propor t iona I losses.

Before equ i l ib r ium is reached the runoff p e r un i t width a t the

mouth of the catchment at any time t af ter the commencement of excess

r a i n or runoff i s m

q = a ( ie te )

where t - - td - u/ i m-1 l / m

<tc = (L /a ie )

( 3 . 2 7 )

( 3 . 2 8 )

( 3 . 2 9 )

( 3 . 3 0 )

( 3 . 3 1 )

( 3 . 3 2 )

q / a a m i s plotted against td i n Figs. 3 .4 to 3.6 ( the f u l l l ines) for

d i f ferent values of the dimensionless parameters U = u/a and F = f /a.

For a l l cases of F > 0 the l ines exh ib i t a peak runoff and the correspond-

ing storm durat ion td for an i n f i n i t e l y long catchment. For most catch-

ments i t i s necessary to establ ish whether t i s less than t i.e. whether

the peak occurs before the catchment has reached equi l ibr ium.

I n fact , t = td - t ( 3 . 3 3 )

Therefore for t = c te

( 3 . 3 5 )

U

L/aam-l may therefore be plot ted against td for selected values of u/a

and f /a as on the r i g h t hand side of Figs. 3 . 4 to 3 . 6 . Each chart i s

for a di f ferent i n i t i a l abstraction factor U, and i t may be necessary

to interpolate between graphs for intermediate values of U. Lines for

var ious F are plot ted on each graph.

Now the peak runoff w i l l be the maximum of either

( a )

(b ) that for t < tc for long catchments.

that corresponding to t = tc for short catchments o r

Page 62: KINEMATIC HYDROL06Y AND MODELLING

51

I n order to ident i fy which condit ion applies, enter the chart for

the correct U = u/a wi th L /aa on the r i g h t hand side and using the

dotted l ine corresponding to the correct F read off the corresponding

+ t on the abscissa. I t may occur that the equ i l ib r ium tc i s t d = tc off the chart to the r i g h t i n which case i t i s probably of no interest

since the fol lowing case applies. Select the f u l l l i ne wi th the F = f /a

and decide whether i t s maximum l ies a t o r to the left of the value t d

previously established. I f the peak l ies to the lef t , read the revised

design storm durat ion td corresponding to the peak, and the correspond-

i ng peak flow parameter q/aa on the left hand ordinate.

m-1

m

Modif icat ion for Prac t ica l Uni ts

The preceding equations assume dimensional homogeneity. Unfortun-

ately both the Manning resistance equations and the I-D-F relat ionships

are empir ical and the coefficients depend on the un i ts employed. I n the

Manning form of equation (3.241, q i s i n m 2 / s i f iete i s i n metres.

a i s 6 / n i n S . I . un i ts where S i s the dimensionless slope and n is the

Manning roughness.

I t i s most convenient to work w i th td i n hours and i and a i n

mm/h. T h e numbers are then more rea l i s t i c . I n equation (3.32) i f q i s

i n m3/s/m, a i n m-s uni ts, a in mm/h and t i n hours then the lef f

hand side should be replaced by d

q l ~ ~ ~ m - 1 0 ~ ~ 5/3 aam o a

- -

= I O ~ Q 5/3 Baa

(3.36a)

w h e r e Q i s total runoff ra te off a catchment of width B metres. Note that

the r i g h t hand side of (3.32) i s i n hm i f td i s i n h , so no correction

is made to the above factor to convert a to secs, only to convert mm

to m. This i s what the left hand ax i s of Figs. 3.4 to 3.6 represent i f

a i s i n mm/h. I t is referred to as the runoff- factor, QF. S imi la r ly the

left hand side of equation (3.35) i s L /aam- l i n homogeneous uni ts, o r

i f a i s i n mrn/h, L i n metres and a i n m-s uni ts, then i t should be

replaced b y :

a looom - L - - L

a 3600000 m 2 / 3 36aa (3.37a) -

This is termed the length factor LF.

I f q i s i n f t ’ /s / f t , a i n ft-sec un i ts , a i n inches per hour and td i n

hours then the expression for Q should be replaced by

63q ( 3.36b ) aa ’ I 3

Page 63: KINEMATIC HYDROL06Y AND MODELLING

52

... LENGTH W l O A T t 9.8

u= 0.004 c= 0.zL.l0 P= 0.890

0. I

a. I 0 I 2 3

5JDRl bCRAlIOU IN HA5

Y. Y

q.0

3 . 6

3 .2

L -1

0 I- v R

I t-

W -I

2.8

2.q LL

2.0 9

1.6

I . I

I1.B

0.9

6.0

F i g . 3.4 Peak runoff f ac to rs fo r U = 0.00

Page 64: KINEMATIC HYDROL06Y AND MODELLING

53

-- AUNDff Ffl(1UR . . . LENGTH fRClOR

E I 2 51ORR DURATION IN HR5

9.6

q . O

3.6

3.2

L -.l

0 I- U [r

I I- D

2.8 fy:

2.q L

7.0 z

4

1.6

1.2

0. H

0.q

0.0

Fig . 3.5 Peak runof f factors fo r U = 0.20

Page 65: KINEMATIC HYDROL06Y AND MODELLING

54

: . 2

I .a

1 . 9

0.9

LL

13

K 0

0.7

I- LJ

21.6 LL

L LL

7 ct:

g 0.s

O.Y

0 . 3

0.2

0. i

a.n

-- RUNUFf FR(1UR . . . LENETH FACTOR Y.B

4.0

3.6

3 .2

L -I

2.9 ~y:

n I- V a: 2.Y L

I I-

irr 2.0 z w -I

I .6

I .2

0.9

0. q

0.0

Fig . 3.6 Peak runoff factors f o r U = 0.40

Page 66: KINEMATIC HYDROL06Y AND MODELLING

55

a n d the length fac to r expression (3.37b) i s rep laced b y

687a a‘’’

Figs. 3.4 to 3.6 a r e p lo t ted in terms of the dimensioned expressions f o r

LF a n d QF, i.e. use td i n hours a n d the other terms in the chosen metr ic

o r Eng l ish u n i t s above. F u r t h e r c h a r t s were pub l ished b y Stephenson

(1982).

EXAMPLE

Consider a p l a n e r e c t a n g u l a r catchment w i t h the fo l low ing charac ter is t i cs :

o v e r l a n d f low length L = 800m

w i d t h 0 = 450 m

slope S = 0.01

Manning roughness n = 0.1

i n l a n d reg ion , MAP = 620mm/annum

20 year recurrence i n t e r v a l storm

r a i n f a l l factor a = (7.5 + 0.034 x 620)20°‘3 = 70mm/h

c = 0.24h, p = 0.89 in i mm/h = a/ (c+t )p

i n f i l t r a t i o n r a t e f = 14mm/h

i n i t i a l abs t rac t ion u = 14mm

a= JT/n = 1.0

F = f / a = 0.2

u = u /a = 0.2

d

2/3 = 1.30 800

L F = * = 36 x 1 x 7Q

From F ig . 3.5 concentrat ion t ime t = 3.0h

I t w i l l be noted tha t there may be two so lut ions fo r storm d u r a t i o n

td. The longer one corresponds to a very low p r e c i p i t a t i o n r a t e a n d i s

of l i t t l e in terest . Even the shor ter t ime to e q u i l i b r i u m is longer than

the storm r e s u l t i n g in the peak runof f . I n t h i s case i t appears tha t the

peak runof f corresponds to a 1.3 hour storm (shor te r than the time to

e q u i l i b r i u m ) a n d the corresponding

QF = 0.30 = 1 0 5 61/~aa5/3

therefore Q = 0.30 x 450 x 1 x = 1 . 6 0 m 3 / s

The corresponding p r e c i p i t a t i o n r a t e i s :

i = a / (c+ t )’ = 70/(0.24 + 1.3)o’89 = 48mm/h

The equ iva len t r a t i o n a l coef f ic ient C i s

1.60/(450 x 800 x 48/3600000) = 0.33

I t may also be conf i rmed tha t the storm d u r a t i o n corresponding to time

to e q u i l i b r i u m of the catchment i s 2.8 hours :

d

Page 67: KINEMATIC HYDROL06Y AND MODELLING

56

I f i

t = (L /a ie )

= {800/1 x (2.90 x I O - ~ ) ~ / ~ ~ ~ / ~ = 9050s = 2.5h

t = u / i = 14/48 = 0.3h

= 2.8h Storm durat ion t

The corresponding runoff would be only:

i BL = 2.9 x 10 x 800 x 450 = l.Om’/s

i.e. the peak runoff corresponds to a storm of shorter durat ion than

to time to equ i l ib r ium of the catchment.

= 70/(0.24+3.0)0.89-14 = 10.5mm/h = 2.9x1OP6m/s m-1 1-m

U - d

-6

EFFECT OF CANALIZATION

The charts presented are for the case of over land f low. I t fre-

quent ly occurs that runoff reaches channels, and thus flows to the mouth

of the catchment faster than i f overland. The c r i t i c a l storm durat ion

may thus be shorter and the peak flow higher than with no canal izat ion.

A n estimate for the concentration time of a catchment w i th a wide

rectangular channel down the middle may be made using th is chapter

i f over land flow time can be neglected. The effect ive catchment width

i s taken as b , the stream width, and both r a i n f a l l r a te i and losses

f and u should be increased b y the factor B/b where B is the t rue

catchment width. The charts herein can then be app l ied as i n the

example.

I n many si tuat ions both over land flow and stream flow are s ign i f i -

cant and the problem cannot be solved as simply as herein. The hydro-

logist must then resort to t r i a l and er ro r methods using dimensionless

hydrographs for catchment - stream systems as presented later.

‘channel

Fig . 3.7 Rectangular catchment wi th central col lect ion channel.

Page 68: KINEMATIC HYDROL06Y AND MODELLING

57

EST I MAT I ON OF ABSTRACT IONS

The losses to be deducted from precipi tat ion include interception

on vegetation and roofs, evapotranspirat ion, depression storage and

in f i l t r a t i on . The remaining losses may be d iv ided into i n i t i a l retention

and a time-dependent i n f i l t r a t i on . The losses are rea l l y functions of many

var iables, inc lud ing antecedent moisture condit ions and ground cover.

I n f i l t r a t i on i s time-dependent and an exponential decay curve is often

used. The in f i l t r a t i on typ ica l l y reduces from an i n i t i a l ra te of about

50 mm/h down to 10 mm/h over a per iod of about an hour. T h e rates,

especial ly the terminal loss rate, w i l l b e higher for coarse sands than

for clays.

The time-decaying loss ra te could be approximated b y an i n i t i a l

loss p lus a uniform loss over the durat ion of the storm. Values of i n i t i a l

and uniform losses are tentat ively suggested below. The mean uniform

loss rates are average f o r storms of 30 minutes durat ion and the i n i t i a l

losses include the i n i t i a l 10 minutes r a p i d i n f i l t r a t i on o r saturat ion

amount, I n the case of ploughed lands, and other especial ly absorpt ive

surfaces an addi t ional loss of up to l O m m or more may be included.

Allowance must also be made for reduced losses from covered areas

(paved or roofed).

TABLE 3.1 Surface Loss Parameters

I n i t i a I abstract ion In f i l t r a t i on ra te

Max Soil

Surface retention moisture def ic i t

mm inches mm/h inches/h -~ mm inches - - Paved up to 5 0.2 0 0 0 0 Clay up to 5 0.2 15 0.8 2 - 5 0.1 - 0.2 Loam up to 7 0.3 20 1.2 5 - 15 0.2 - 0.6 Sandy up to 10 0.4 30 1.5 15 - 25 0.6 - 1 Dense up to 15 0.6 5 0 . 2 5 - 15 0.2 - 0.6

vegetation

Page 69: KINEMATIC HYDROL06Y AND MODELLING

58

REFERENCES

O p ten Noort , T.H. and Stephenson, D., 1982. F l o o d Peak C a l c u l a t i o n i n South A f r i c a . Water Systems Research Programme, U n i v e r s i t y of t h e W i t w a t e r s r a n d , Repor t No. 2/1982.

Stephenson, D., 1981. Stormwater H y d r o l o g y a n d D r a i n a g e , E l s e v i e r , Amsterdam. pp 276.

Stephenson, D., 1982. "Peak F lows f rom Smal l Catchments U s i n g K inemat i c H y d r o l o g y , ' ' Water Systems Research Programme, Repor t 4/1982. U n i v e r s i t y of the W i t w a t e r s r a n d , Johannesburg.

Wooding, R.A., 1965. A H y d r a u l i c Model f o r t h e Catchment-s t ream Problem, I I , Numer ica l So lu t i ons , Jou rna l of H y d r o l o g y , 3, p 268-282.

Page 70: KINEMATIC HYDROL06Y AND MODELLING

59

CHAPTER 4

K I NEMAT I C ASSUMPT IONS

NATURE OF K I NEMATIC EQUATIONS

The k i n e m a t i c f l o w a p p r o x i m a t i o n h a s p r o v e d t o b e v e r y u s e f u l

in s t o r m w a t e r m o d e l l i n g and in the deve lopment o f a b e t t e r u n d e r s t a n d i n g

o f the r u n o f f p rocess . K i n e m a t i c mode ls a r e d e t e r m i n i s t i c mode ls and

rep resen t a d i s t r i b u t e d , t i m e - v a r i a n t system. They c a n , t he re fo re , b e

c o u p l e d w i t h o t h e r p rocess mode ls t o i n v e s t i g a t e the e f f e c t s o f l a n d use

change , tempora l and s p a t i a l v a r i a t i o n s in r a i n f a l I and wa te rshed

c o n d i t i o n s , a n d p o l l u t a n t washo f f .

S t a r t i n g w i t h the f o r m u l a t i o n o f t he k i n e m a t i c w a v e t h e o r y b y

L i g h t h i l l a n d Wh i tham (19551, k i n e m a t i c o v e r l a n d f l o w mode ls h a v e been

u t i l i z e d i n c r e a s i n g l y in h y d r o l o g i c i n v e s t i g a t i o n s . The f i r s t a p p l i c a t i o n

to wa te rshed m o d e l l i n g was b y Henderson and Wooding (1964) . The

c o n d i t i o n s u n d e r w h i c h the k i n e m a t i c f l o w a p p r o x i m a t i o n h o l d s f o r s u r f a c e

r u n o f f were f i r s t i n v e s t i g a t e d b y Woolh iser and L i g g e t t (1967) ; t h e y

f o u n d i t i s an a c c u r a t e a p p r o x i m a t i o n to the f u l I e q u a t i o n s f o r most

o v e r l a n d f l o w cases . S ince then , a n a l y t i c a l s o l u t i o n s h a v e been o b t a i n e d

f o r r u n o f f h y d r o g r a p h s during s t e a d y r a i n f a l I on s i m p l e geomet r i c s h a p e d

wa te rsheds ; and n u m e r i c a l mode ls h a v e been deve loped f o r a p p l i c a t i o n

to more complex wa te rsheds and u n s t e a d y r a i n f a l l . W i th the easy

a v a i l a b i l i t y o f m ic ro-computers , t he n u m e r i c a l mode ls a r e r e a d i l y access-

i b l e . Success fu l use o f these mode ls r e q u i r e s a f a m i l i a r i t y w i t h compu te rs

a n d an u n d e r s t a n d i n g o f k i n e m a t i c o v e r l a n d f l o w .

K I NEMAT I C APPROXIMATION TO OVERLAND FLOW

K i n e m a t i c o v e r l a n d f l o w o c c u r s when the d y n a m i c te rms in the

momentum e q u a t i o n a r e neg l i g i b l e . T h e r e i s no a p p r e c i a b l e b a c k w a t e r

e f fec t a n d d i s c h a r g e c a n b e exp ressed as a u n i q u e f u n c t i o n o f t h e d e p t h

o f f l o w a t a l l d i s t a n c e x and t ime t. T h a t i s ,

Q = b a y " (4.1

where Q i s t he d i s c h a r g e , y i s t h e d e p t h of f l o w , b the w i d t h a n d ci , m

a r e cons tan ts .

The l a t t e r c o n c l u s i o n c a n b e e s t a b l i s h e d b y n o r m a l i z i n g t h e

momentum e q u a t i o n b y t h e s t e a d y u n i f o r m d i s c h a r g e Qn. The momentum

e q u a t i o n t h e n becomes

Page 71: KINEMATIC HYDROL06Y AND MODELLING

60

where So i s the bed slope, v i s flow velocity, g i s g rav i t y and A i s

cross sectional area. I f the sum of the terms to the r i g h t of the minus

sign is much less than one, then

Q Qn ( 4 . 3 )

which means that g radua l ly -var ied flow may be approximated by a

uniform flow formula such as Manning’s equation. I f one writes

Manning‘s equation for a wide rectangular cross-section such as an

over land flow plane, since the hydrau l i c rad ius can be approximated

by the depth of flow, one obtains the fo l lowing expression (SI un i ts )

Q = - b y y 1 2/3s f

or Q/b = A S y5 I3

( 4 . 4 )

( 4 . 5 )

where Q/b i s discharge per u n i t width. For runof f from a plane surface

with uniform roughness and slope, n and So are constant. Eq. 4.5 can

therefore be wr i t ten in the same form as Eq. 4.1 with cx = S “n and

rn = 5/3; and for the c i ted conditions discharge can indeed be expressed

as a unique funct ion of the depth of flow.

1

Governing Equations

The governing equations for the kinematic over land flow approx-

imation are Eq. 4.1 and the equation for con t inu i ty

where q. is the inf low per u n i t length x .

Conditions for the Kinematic Approximation

The conditions under which the kinematic approximation holds for

over land f i o w can best be i l l us t ra ted b y app ly ing the fuf i equations

to runoff from a long, uni formly sloped plane of u n i t width as shown

in F igure 4.1. The p lane i s of length L and slope So. Rain fa l l occurs

over the plane at the r a t e i ( x , t ) , and i n f i l t r a t i o n i s at the ra te f ( x , t ) .

By wr i t i ng the r a i n f a l I and i n f i l t r a t i on rates in terms of x and t , we

include the effects of spat ia l and temporal var ia t ions i n r a i n f a l l and

soi l . The cont inu i ty and momentum equations are wr i t ten as

( 4 . 7 )

and

Page 72: KINEMATIC HYDROL06Y AND MODELLING

61

v i

Y ( 4 . 8 ) - av a v ay -

a t + v z + g= - g(S0 - 5 ) - e f

where i e ( x , t ) i s the r a i n f a l l excess r a t e a t distance x and time t and

the other terms have been defined previously.

UNIFORM RAINFALL

F L -x x Fig. 4.1 Uniform r a i n over a long impermeable plane

For the purpose of t h i s discussion, Sf i s conveniently defined by

the Chezy equation

( 4 . 9 )

C being the Chezy coefficient which equals Jf/sg where f i s the Darcy

f r i c t i on factor. By wr i t i ng Eqs. 4.7 and 4.8 i n dimensionless form, the

number of parameters are reduced from f i ve to two with obvious advant-

ages. Woolhiser and Liggett (1967) f i r s t presented the fol lowing dimen-

sionless equations

au a T ax ax - ' H + " E + H - = 1 (4 .10 )

and

(4 .11 )

where

H = y/yo, U = v/vo, X = x/L, T = tvo/L ( 4 . 1 2 )

and y and v a re the normal depth and velocity, respectively, at the

end of the p lane for a given steady r a i n f a l l excess ra te , i The normal-

i z i n g parameters a re related by :

i L = v y (4 .13 )

e'

0 0

Page 73: KINEMATIC HYDROL06Y AND MODELLING

62

and 2 2

vo/coYo = so ( 4 . 1 4 )

The two independent parameters in Eqs. 4.10 and 4.11 are the normal

flow Froude number, Fro, vo/ J ( g y o ) , and the kinematic flow number,

k (Woolhiser and Liggett , 1967) .

k = - 2

yoFro

( 4 . 1 5 )

Woolhiser and Liggett (19671, Brutsaert (19681, Morr is (1979) and

Vieira (1983) solved Eqs. 4.10 and 4.11 for the r i s i n g hydrograph for

a range of F r and k values under normal depth, c r i t i ca l depth and

zero depth gradient downstream boundary conditions. The solutions were

started using an ana ly t i c solut ion for simple cases and numerical

solutions i n the other three character ist ic solut ion zones. The resu l ts

of al I studies were qu i te s imi lar . Sample resul ts a re shown in Figures

4.2 and 4.3 .

0 .I 2 3 .4 .5 .6 .7 .8 9 1.01.1 1.21.31.41.51.6 T

Fig. 4.2 Effect of va ry ing k on dimensionless r i s i n g hydrograph

3 , 764, 1967, American Geophysical Union). (Woolhiser and Liggett , Water' Resources Research,

Page 74: KINEMATIC HYDROL06Y AND MODELLING

63

As seen i n F igure 4 .2 , as the kinematic flow number increases,

the solut ion converges very r a p i d l y toward the solut ion for k equal to

i n f i n i t y . Woolhiser and L igget t noted that for Fro = 1 the maximum er ror

between the r i s i n g hydrographs for k = 10 and k equal i n f i n i t y i s about

10 percent. The effect of va ry ing Fro whi le holding k constant i s shown

i n Figure 4.3. Simi lar to the resul ts obtained for increasing k , as F r

increases, the solut ion converges to the solut ion for k equal to i n f i n i t y .

What i s the s igni f icance of k equal to i n f i n i t y ? I f one div ides

Eq. 4.11 by k, the momentum equation reduces to the fo l lowing expression.

1 - U2/H = 0

Hence

U2 = H ( 4 . 1 7 )

Subst i tut ing Eq. 4.17 into the dimensionless cont inu i ty equation, Eq.

4.10, the k inemat ic wave equation i s obtained.

( 4 . 1 6 )

= 1 - aH a H 2 / 3 aT + x ( 4 . 1 8 )

Solving Eq. 4.18 for an i n i t i a l l y d r y surface, we get

H = T ( 4 . 1 9 )

and from Eq. 4.17

1 / z U = T

Thus, the r i s i n g hydrograph is given by

I .5

Q* :$ AC k =I0

PA RAM E TER : Fro /

. I 1 '0 .I .2 .3 .4 .5 .6 .7 .8 .9 1.01.1 1.2 1.31.41.5 1.6

T

( 4 . 2 0 )

( 4 . 2 1 )

Fig. 4.3 Effect of va ry ing F r on dimensionless r i s i n g hydrograph (Woolhiser and Liggc?tt, Water Resources Research, 3 ,

764, 1967, American Geophysical Union).

Page 75: KINEMATIC HYDROL06Y AND MODELLING

64

m'

10-

where Q c i s discharge normalized by the excess r a i n f a l l intensi ty. The

resul t i n Eq. 4.21 suggests that a l l r i s i n g hydrographs for steady excess

r a i n on uniform planes can be represented by a s ing le dimensionless

hydrograph. This resul t also suggests there i s a unique relat ionship

between depth and discharge, and the depth i s the normal depth for

uniform flow at that discharge. When k i s la rge the solut ion to the f u l l

equation can be closely approximated by the kinematic solution. This

i s the kinematic approximation which has been described in de ta i l by

several invest igators ( L i g h t h i l l and Whitham, 1955; Wooding, 1965;

Woolhiser and Ligget, 1967; Morr is and Woolhiser, 1980; Vieira, 1983).

Woolhiser and L igget t (1967) stated that the kinematic wave

approximation may be used instead of the fu l I equations i f k > 2 0 and

Fro> 0.5. Overton and Meadows (1976) noted that Eq. 4.21 i s appl icable

to character ist ic zone A (Fig. 5.1) and of the solut ion shown i n F igure 5.1,

zone A constitutes substant ia l ly a l l of the solut ion for kinematic flow

numbers of 10 or greater. Therefore, they recommend the kinematic wave

approximation be used only when k>10 , regardless of the Froude number

value. Morr is and Woolhiser (1980) re-evaluated Eqs. 4.10 and 4.11 and

suggested that F r k ' 5 i f the kinematic approximation i s used. I t i s

interesting to note th i s i s equivalent to the o r ig ina l c r i t e r i a suggested

by Woolhiser and Liggett , except that i t al lows the kinematic approxi-

mation to be used for F r < 0.5, provided k >20. With these condit ions i n

mind, and using the resul ts obtained i n h i s own study, V ie i ra (1983)

developed the plot i n F igure 4.4 as a guide to determine when the

kinematic and d i f fus ion wave approximations may be used.

2

0

FULL SAINT VENANT

k

KINEMATIC APPROX.

Fig . 4.4 App l icab i l i t y of kinematic, d i f fusion and dynamic wave models (After Vieira, 1983)

Page 76: KINEMATIC HYDROL06Y AND MODELLING

65

Kinematic Flow Number

The k inemat ic f low number can be p laced in terms of the p h y s i c a l

a n d h y d r a u l i c charac ter is t i cs of a p l a n e b y e l i m i n a t i n g y a n d Fro from

Eq. 4.15 us ing Eqs. 4.5 a n d 4.13. The r e s u l t i n g r e l a t i o n s h i p i s

1 .2s0.4L0.2 gn 0 k =

. 0.8 (4.22)

e For r a i n f a l l in tens i ty in mm/hr a n d length in meters, Eq. 4.22 becomes

1 .2s0.4L0.2

. 0 . 8 k = 1 . 7 ~ lo6 "_

e

a n d fo r r a i n f a l l in tens i ty in in/hr a n d length in feet

1.2 0.4 0.2

- 5 " L . 0.8 e

k = 10

(4.23)

(4.24)

In general, h i g h k va lues a r e produced on rough, steep, long p lanes

w i t h low r a i n ra tes.

S i m i l a r l y , the q u a n t i t y k F r 2 can be expressed in terms of the

phys ica l a n d h y d r a u l i c charac ter is t i cs of a p lane. From Eq. 4.15

k F r 2 = ~ (4.25)

I f we w r i t e Eq. 4.21 in dimensional form u s i n g Eq. 4.12, M a n n i n g ' s

res is tance law instead o f ' Chezy's, a n d the fo l low ing d e f i n i t i o n fo r Q+

0 Y O

Q Q, = - e

we obta in the equat ion

t v

e L 0 5 / 3

Q = i A (-)

(4.26)

(4.27)

where A i s the c o n t r i b u t i n g watershed area. For a steady r a i n f a l l excess

ra te , the f low i s a maximum a n d equal to i when the terms ins ide the

parentheses a r e equal to one, tha t is , when time i s equal to the time

of concentrat ion, tC, o r p r e f e r a b l y , the time to e q u i l i b r i u m . The q u a n t i t y

L /vo i s one d e f i n i t i o n fo r the time of concentrat ion used in peak r u n o f f

estimates. According to Eq. 4.27, f o r a steady excess ra te , a t the time

of concentrat ion, the r u n o f f r a t e i s a maximum a n d equal to i . In other

words, one d e f i n i t i o n fo r the time of concentrat ion i s tha t i t i s the time

requ i red fo r a watershed to reach e q u i l i b r i u m fo r a steady r a i n f a l l

excess. Th is occurs when

tC = L /vo (4.28)

Page 77: KINEMATIC HYDROL06Y AND MODELLING

66

Substi tut ing Eq. 4.28 into Eq. 4.13 we get

y o = i t

which, when substi tuted into Eq. 4.25 yields

e c

2 oL kFo = - i t

e c

(4.29)

(4.30)

Using the def in i t ions of Eqs. 4.28 and 4.29, and Manning's equation,

one obtains the desired expression, for r a i n f a l I i n mm/hr,

and

460Sb*3 L O e 4

kF: = 0.6i0.2 e

(4.30a)

(4.30b

for r a i n f a l l i n in /h r .

2 I n general, kFo values are h igh for smooth, steep, long planes w i th

low r a i n f a l l rates. This resul t i s s im i la r to the expression for k, except

that the effect of roughness on the Froude number suggests the kinematic

model may be more appl icable to u rban watersheds with smooth impervious

surfaces.

To i l l us t ra te the hydrological app l i cab i l i t y of these results,

consider an asphal t pa rk ing lo t w i th the fo l lowing character ist ics:

L = 50 meters; So = 0.005; n = 0.022. For an average excess intensi ty

of 50 m m / h r , k = 200 and kFr2 = 31.

K I NEMAT I C AND NON-K I NEMAT I C WAVES

I t was noted in Chapter 2 that the di f fusion and kinematic wave

models may be used instead of the f u l l dynamic wave equations i f cer ta in

assumptions can be made. I n th is section, condit ions under which the

two models can be appl ied to flood rou t ing i n streams are examined.

The material presented here should g ive the reader a better under-

standing of the physical nature of kinematic and non-kinematic waves.

The physical s igni f icance of kinematic and non-kinematic waves and

the major differences between the respective models are better understood

i f the wave speed and crest subsidence (hydrograph dispersion) charac-

ter ist ics a re known.

Page 78: KINEMATIC HYDROL06Y AND MODELLING

67

Wave Speed - Kinematic Waves

The kinematic wave speed i s determined by comparing the cont inui ty

equation wi th no lateral inf low

with the de f in i t ion of the total der iva t ive of Q

dQ - aQ dx aQ dt ax dt

+ -

By rewr i t ing E q . 4.31 as

a Q aA dQ dt = ax at dA dx - + - - -

to an observer moving with wave speed, c,

the flow ra te would appear to be constant, i.e.,

( 4 . 3 1 )

( 4 . 3 2 )

( 4 . 3 3 )

( 4 . 3 4 )

( 4 . 3 5 )

This resul t follows from the de f in i t ion of the total der iva t ive , Eq. 4.32,

and the equation of cont inui ty, Eq. 4.31.

For most channels where the flow i s in-bank

( 4 . 3 6 )

where B i s the channel top width i n meters ( fee t ) ; and since Q i s a

unique function of y

Q = c l ym ( 4 . 3 7 )

the kinematic wave speed i s given as

( 4 . 3 8 )

This relat ionship i s analogous to that of Seddon (1900) who observed

that the main body of f lood waves on the Mississippi River moved a t

a r a t e given by Eq. 4.38.

Eq. 4.38 implies that equal depths on both the leading and

recession limbs of a hydrograph t rave l a t the same speed. Since greater

depths move at faster rates, i t follows that the leading l imb of the

hydrograph w i l l steepen and the recession limb w i l l develop an elongated

ta i l . Eq. 4.38 also shows that kinematic waves are propagated down-

stream only, i.e. Eq. 4.38 i s a forward character ist ic. Kinematic flow

does not exist where there are backwater effects.

Crest Subsidence

Combining Eqs. 4.32 and 4.35, and subs t i tu t ing fo r Q using Eq

Page 79: KINEMATIC HYDROL06Y AND MODELLING

68

4.37 i t can be shown that to an observer moving w i th wave speed c

Manipulat ing th is equation y ie lds

- d Y = V + Q dt = o dx ax at dx

( 4 . 3 9 )

( 4 . 4 0 )

which establishes that theoret ical ly, the kinematic wave crest does not

subside as the wave moves downstream.

These resul ts show that a kinematic wave can a l te r i n shape bu t

does so without crest subsidence. Further, the maximum discharge ra te

occurs wi th the maximum depth of f low. (Th is i s the assumption imp l ic i t

i n the slope-area method for est imating flood discharges from h igh water

marks).

H y d r a u l i c Geometry and Rating Curves

One important aspect of the kinematic wave model i s the replacement

of the momentum equation wi th a uniform flow formula, which i s nothing

more than a s ing le valued r a t i n g between discharge and depth (or area)

at a point in the stream. As discussed previously, the fact that na tura l

channels are not pr ismat ic leads to subsidence and dispersion of a hydro-

graph, suggesting that the discharge ra t i ng relat ionship i s not unique

but var ies over the hydrograph. I f the dispersive character ist ics are

small such that a va r iab le r a t i n g relat ionship does not d i f f e r s ign i f i -

can t ly from the s ing le valued ra t i ng , the conclusion can be drawn that

the main body of a

kinematic model (o r

simul at ion purposes.

tat ional requirements

I t i s evident

and discharge f i r s t

hydrograph moves kinematical ly. I n which case, the

the di f fusion model) should be suff ic ient for most

This represents an economy of da ta and compu-

over the dynamic wave model.

from the relat ionships between hyd rau l i c geometry

set for th by Leopold and Maddock ( 1 9 5 3 ) that the

flow in many streams i s essential ly kinematic. T h e fact that the channel

character ist ics of na tura l streams seemed to consti tute an interdependent

system which could be described by a series of graphs hav ing a simple

geometric form suggested the term "hydraul i c geometry". Subsequent

studies have ver i f ied and expanded on th i s i n i t i a l work w i th the resu l t

that hyd rau l i c geometry equations may be used to estimate general

channel character ist ics at any locat ion w i th in the drainage system.

As a resu l t of the i r ana lys is of the va r ia t i on of hyd rau l i c

character ist ics at a pa r t i cu la r cross-section in a r i v e r , Leopold and

Maddock proposed that discharge be related to other hyd rau l i c factors

Page 80: KINEMATIC HYDROL06Y AND MODELLING

69

i n the fol lowing manner.

(4.41a) b w = aQ

(4.41b) f d = CQ

v = kQm ( 4 . 4 1 ~ )

where w i s width, d i s depth, v i s cross-sectional mean veloci ty, Q i s

discharge, and a, b, c, f , k , and m are best f i t constants. I t follows

that since width, depth, and mean velocity a re each functions of

discharge, then b + f + m = 1.0; and ack = 1.0. Betson (1979) noted

that a fourth relat ionship also can be presented (4.41d)

A = nQp

where A i s the cross-sectional area of flow. Betson also noted that

f = p - b and m = 1 - p. T h e relat ionship in Eq. 4.41 are for ind i -

v idua l stat ions i n that they re la te channel measures to concurrent

discharge.

The resu l ts from several studies are shown i n Table 4.1. I t i s

notable that the values do not va ry widely, p a r t i c u l a r l y for the depth

discharge relat ionship. These resu l ts reinforce the use of s ing le valued

ra t i ng curves and simp1 i f ied rou t ing models.

NON-K I NEMAT I C WAVES

The resu l t in Eq. 4.40 frequent ly does not agree with nature.

Rather, due to previously mentioned factors, flow peaks are seen to

subside which suggests the appl icat ion of the kinematic model i s l imited,

and that ei ther the d i f fus ion or dynamic wave model i s preferred. I t

i s important then to examine the non-kinematic wave models and to

establ ish how they d i f f e r from the kinematic model.

Differences between the two non-kinematic models can be invest-

igated by examining the signi f icance of each of the dynamic terms i n

the momentum equation. The discharge at a point in a stream is

Q = vA (4.42

The momentum equation can be rewri t ten as follows:

- Q A2 ax A3 ax A at A2 at ax o f A

a Q Q 2 - aA + - 1 - aQ - - Q - aA + ay = g (s -5 ) - - q i (4.43

The p a r t i a l der iva t ive of A w i th respect to time is removed i n terms of

the spat ia l der iva t ive of Q using the cont inui ty expression. After th is

subst i tut ion and rear rang ing , Eq. 4.43 becomes

s -sf 28 aQ Q2 aA + - a B + a v 1 =

gA2 ax

gA3 ax gA at ax (4.44)

Page 81: KINEMATIC HYDROL06Y AND MODELLING

70

TABLE 4.1 Typ ica l Stat ion Exponent Terms f o r Geomorphic Equat ions

Exponents

LOCAT I ON OF BASIN

w i d t h depth ve loc i ty a rea Reference b f m P

Midwest 0.26 0.40 0.34 0.66 Leopold, et al. (1954)

Brandywine, P.A 0.04 0.41 0.55 0.45 d i t t o

158 Stations in U.S. 0.12 0.45 0.43 0.57 d i t t o

B i g Sandy River , K Y 0.23 0.41 0.36 0.64 Sta l l a n d Yang (1976)

Cumberland Plateau, KY 0.245 0.487 0.268 0,732 Betson (1979)

Johnson C i ty , TN 0.08 0.43 0.49 0.51 Weeter a n d

T heore t i ca I 0.23 0.42 0.35 0.67 Leopold a n d Meadows (1 979)

Langbe in (1962)

At any cross-section Eq. 4.36 holds; and fo r most n a t u r a l channels , the

wave speed ( c e l e r i t y ) i s approx imated b y the k inemat ic wave speed.

I f Chezy's res is tance equa l ion i s assumed

38 2A

c = - (4.45)

Drawing on these two re la t ionsh ips and the d e f i n i t i o n fo r Froude number

2 g 2 8

gy gA3 (4.46) F r 2 = __

the var ious terms in Eq. 4.44 can be r e w r i t t e n as

n

a n d

(4.47c)

Trac ing back , the cont r ibu t ion of each term in the momentum equat ion

i s found (Meadows, 1981).

a n d

Page 82: KINEMATIC HYDROL06Y AND MODELLING

71

1 av 2 a Y

g at ax = (-0.75 F r - _ - (4.48b)

which allows the momentum equation to be wri t ten as

( 1 - 0.25 Fr2) a = ax ' 0 - 'f

(4.49)

An equivalent expression was found by Dooge (1973).

Examination of Equations 4.48 and 4.49 reveals that the convective

and temporal accelerat ion terms essential ly are of equal magnitude but

opposite sign, and hence, act to near ly cancel each other. These two

terms are s ign i f i can t for Froude numbers greater than 0.60, where s igni-

ficance i s taken as 10 percent of the coefficient value i n Equation 4.49.

Evidence of Froude numbers less than 0.60 for unsteady events i n small

streams i s documented in the l i terature, e.g. (Gburek and Overton,

1973). Further, using the theoretical values for hyd rau l i c elements of

Leopold and Langbein (1962), i t was shown by Meadows (1981) that

F r oi

demonstrat ing that Froude number i s la rge ly insensit ive to increasing

discharge i n most na tura l streams for flow i n bank. These resul ts suggest

the di f fusion wave model can be confidently appl ied to most f lood rou t ing

events.

Wave Speed

Based on the method of characterist ics, i t was shown that dynamic

waves propagate both downstream ( fo rward character ist ic) and upstream

(backward charac ter is t i c ) . The di f fusion wave speed i s given by the

kinematic wave speed. As such, the di f fusion wave model has only a

forward character ist ic meaning that wave forms are propagated only

downstream and that backwater effects a re negl ig ib le. I t i s left to the

reader to confi rm this.

C r e s t Subsidence

Both the dynamic and d i f fus ive wave models simulate a dispersing

hydrograph, hence, a subsiding wave crest. To i I lustrate, consider the

modified d i f fus ive wave equation, Eq. 4.49. For the fo l lowing develop-

ment, a rectangular cross section i s assumed. As w i th the der ivat ion

of most over land and open channel flow equations, t h i s assumption

great ly simp1 i f ies the mathematics, yet does not a l te r appreciably the

f i na l form of the equations being developed.

Page 83: KINEMATIC HYDROL06Y AND MODELLING

72

Approx imat ing the f r i c t i o n slope w i t h Chezy's equat ion, Eq. 4.49

becomes

Q2 (1 - 0.25 F r 2 ) a = S - -

ax o c2A2R

T a k i n g the p a r t i a l d e r i v a t i v e w i t h respect to t ime

2 a ay Q2 - 2 a Q 2 aA 1 aR ( 1 - 0.25 F ~ ) - (--) = - __ 1 at ax c2A2R Q a t A a t R a t J

From cont inu i ty

o r

Genera l ly , over a reach, aq/ax = 0. Thus,

For a p r ismat ic section

dA _ = B d y

such tha t

- a A * B d y g B a a x dA a x which, when subs t i tu ted in to Eq. 4.54 y ie lds

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

In o b t a i n i n g Eq. 4.56, the assumption was made tha t aB/at = 0;

which i s sa t is fac to ry i f the channel i s r e c t a n g u l a r o r the f lood wave

r i ses s lowly . The momentum equat ion can now be w r i t t e n

(4.57)

For a wide r e c t a n g u l a r channel ( w > l O y ) , the h y d r a u l i c r a d i u s , R,

i s approx imate ly equal to the depth of f low, y . Us ing t h i s approx imat ion

a n d c o n t i n u i t y f o r a r e c t a n g u l a r geometry

(4.58a)

(4.58b)

the r i g h t hand s ide of Eq. 4.57 i s r e w r i t t e n as

Page 84: KINEMATIC HYDROL06Y AND MODELLING

73

Comb in ing s i m i l a r terms a n d r e c o g n i z i n g t h a t the c o e f f i c i e n t terms a r e

mere l y S 0’

s [ - - - - 2 aQ 3 qi j o a a t A a x A

The whole e q u a t i o n t h u s becomes

M u l t i p l y i n g b y Q / 2

F o r Chezy ’s e q u a t i o n

3Q 2A

c = -

M a k i n g t h i s s u b s t i t u t i o n i n t o Eq. 4.60

(4.59)

(4 .60)

(4.35)

(4.61)

w h i c h i s a c o n v e c t i v e - d i f f u s i v e e q u a t i o n f o r u n s t e a d y s t reamf low . T h i s

e q u a t i o n i l l u s t r a t e s the o r i g i n of t he d i f f u s i v e wave l a b e l . The presence

of t he d i s p e r s i o n te rm (second p a r t i a l d e r i v a t i v e ) c o n f i r m s t h a t the

d i f f u s i v e wave model s imu la tes a s u b s i d i n g peak .

One v e r y i n t e r e s t i n g p r o p e r t y of t he c res t r e g i o n of a d i f f u s i v e

wave c a n b e d e r i v e d b y r e w r i t i n g Eq . 4.50 in terms of Q a s f o l l o w s

Q = C y B ,/y[So-(l - 0.25 F r 2;2]

where h y d r a u l i c r a d i u s h a s been a p p r o x i m a t e d b y y . T a k i n g the d e r i v a -

t i v e w i t h respect to x a n d e q u a t i n g to zero y i e l d s

(4.62) a x

(4.63)

In the r e g i o n o f t he c res t , the shape of the h y d r o g r a p h i s concave

downward , a n d a 2 y / a x 2 0, a n d the re fo re , b y Eq. 4.63, a y / a x < 0,

a l so . Tha t i s , t he peak f l o w r a t e does not o c c u r where d e p t h i s a

maximum, b u t a t a p o i n t in a d v a n c e o f the maximum dep th .

Page 85: KINEMATIC HYDROL06Y AND MODELLING

74

Looped Rating Curves

Eq. 4.62 c lear ly demonstrates that a s ing le valued r a t i n g between

discharge and depth (a rea) does not hold for non-kinematic waves. An

approximate expression for the va r iab le (looped) r a t i n g curve i s given

by

- _ Q - 4- ( 1 - 0.25 Fr')

'n ax

( 4 . 6 4 )

where Q i s the uniform flow at a given depth. This expression i s

rendered more useful i f the spat ia l der iva t ive i s replaced by some

al ternate quant i t y , deductible from in-si tu conditions.

Using the kinemat ic relat ionship

ay - 1 - ay ax c a t

Eq. 4.64 can be wr i t ten as

( 4 . 6 5 )

2 ( 1 - 0.25 F r )

a t ( 4 . 6 6 )

I t must be noted that Eq. 4.66 i s not s t r i c t l y correct since the kinematic

relat ionship was included.

A typical looped r a t i n g curve i s shown in the F igure 4.5. Com-

par ison with the associated discharge hydrograph i l lus t ra tes that as

a f lood hydrograph passes a point , the maximum discharge i s f i r s t

observed, then the maximum depth, and f i n a l l y a point where the flow

is uniform. The uniform 'flow occurs when the f lood wave i s essent ia l ly

horizontal and therefore has a slope, dy/dx, that i s very small re la t i ve

to the bed slope. Th is obviously w i l l occur close to the region of max-

imum depth. The occurrence of uniform flow i s i l l us t ra ted graph ica l l y

as the point of intersection of the looped r a t i n g curve w i th the s ing le

valued uniform flow r a t i n g curve.

I t should be noted that the scale i s exaggerated for c l a r i t y . The

three points in question are more l i ke l y to occur much closer together

than indicated by the f igure.

The usefulness of the looped r a t i n g curve compared with a s ingle

valued r a t i n g curve is determined b y how wide the loop is re la t i ve to

the s ingle valued curve. I t should be noted however, that most publ ished

streamflow data and associated r a t i n g curves determined from f i e ld

discharge measurements general ly a re better approximated by a s ingle

valued relat ionship. Looped curves can be approximated using Eq. 4.64

or 4.66 and time series records of r i v e r stage a t a stat ion.

Page 86: KINEMATIC HYDROL06Y AND MODELLING

UNIFORM FLOW RATING W R V E d Q

TIME

Fig. 4.5 Loop stage-discharge r a t i n g curve and associated discharge hydrograph for at tenuat ing wave.

Page 87: KINEMATIC HYDROL06Y AND MODELLING

76

MUSK I NGUM R I VER ROUT I NG

Flood rou t ing refers to a set of models used to predict the temporal

and spat ia l var ia t ions of a f lood wave ( runof f hydrograph) as i t t rave ls

through a channel reach. Routing techniques are classed into two

categories: hydrau l ic and hydrologic. The kinemat ic, d i f fusion and

dynamic wave models a re hyd rau l i c rou t ing models. The hydrologic models

are based on cont inu i ty and an empi r i ca l l y der ived relat ionship between

channel storage and discharge; therefore, they are not as r igorous as

the hydrau l i c models and represent a fu r ther s impl i f icat ion to the f u l l

equations for open channel flow.

Perhaps the best known and most widely used of the hydrologic

models i s the Muskingum rou t ing model. This model was developed

o r ig ina l l y for f lood rou t ing on the Muskingum River in Central Ohio,

hence the o r ig in of the name. T h e model u t i l i zes cont inu i ty

dS l + Q L - 0 = - dt

where I i s inf low to a r i v e r reach, QL is lateral inf low ( = q A x ) , 0 i s

outflow and S is the storage w i th in the reach; and the storage relat ion-

(4 .67 )

ship

S = K [Z l + ( l - Z ) O ] (4 .68 )

where K i s a character ist ic storage time approximated as the t rave l time

through a reach, and 2 i s a weight ing coefficient.

For attenuating waves, z<o-5.

Equations 4.67 and' 4.68 are solved using a f i n i t e di f ferencing

technique. Defining I 1 = l ( t ) and I = I ( t + A t ) , and s im i la r l y , 01 , 02, and

S1 and S2, the fo l lowing approximation to Eq. 4.67 i s wr i t ten 2

01+02 s -s (4 .69 )

11+12+&--=- 2 1 2 2 At

where QL i s the average lateral inf low dur ing the time in te rva l At. The

inf low hydrograph provides I, and 1 2 , and O2 i s the desired quant i t y .

O1 i s known from ei ther i n i t i a l condit ions or a previous calculat ion.

S and S are expressed in terms of I and 0 as follows

S - S = K[Z(12-11) + ( 1 - Z) (02-01)] ( 4 . 7 0 )

1 2

2 1

Substi tut ing Eq. 4.70 into Eq. 4.69 and s imp l i f y ing gives

o2 = C 0 l 2 + C , I , + c20, + c3QL

where

( 4 . 7 1 )

( 4 . 7 2 a ) -KZ + 0.5At '0 - K-KZ + 0.5At

Page 88: KINEMATIC HYDROL06Y AND MODELLING

KZ + 0.5At c 1 = K-KZ t 0.5At

K-KZ - 0.5At '2 = K-KZ + 0 . 5 ~ 1

a n d

'3 - K-KZ + 0 . 5 ~ t A t

77

(4.72b)

( 4 . 7 2 ~ )

(4 .72d)

K a n d t must h a v e the same t ime u n i t , a n d the f i r s t t h r e e c o e f f i c i e n t s

sum to 1.0.

Estimation of Model Parameters

The M u s k i n g u m model i s q u i t e s e n s i t i v e to the se lec t i on of model

pa ramete rs . H i s t o r i c a l l y , K a n d Z h a v e been es t ima ted b y m a t c h i n g model

o u t p u t w i t h a c t u a l i n f l ow-ou t f l ow reco rds . The o b v i o u s sho r t coming i s

t ha t the model i s l i m i t e d to g a u g e d st reams. Of tent imes, we need to r o u t e

f l o o d h y d r o g r a p h s a l o n g u n g a u g e d st reams. To do so r e q u i r e s t h a t we

h a v e a means o f e s t i m a t i n g model p a r a m e t e r s f rom a v a i l a b l e c h a n n e l a n d

h y d r o g r a p h c h a r a c t e r i s t i c s .

F o l l o w i n g the techn ique o f Cunge (1969) a n d u s i n g a T a y l o r se r ies

e x p a n s i o n to each of the terms in Eq . 4.67, i t i s t rans fo rmed to a n

e q u i v a l e n t e q u a t i o n o f the c o n v e c t i v e - d i f f u s i v e fo rm

- - 'a + A? ?-!? = b x ( l - Z ) c ( Q ) - - I - hXL ]- a % a t K a x

QL ' 2 K 2 + T

a x (4.73)

where A x i s the r e a c h leng th . Compar ison o f t h i s e q u a t i o n w i t h Eq. 4.68

shows t h a t

= $Q) (4.74a)

a n d

2 = - Q(1-0.25Fr ) ]

BSoA x c (Q )

(4.74b)

Cunge (1969) a n d l a t e r r e s e a r c h e r s developed s i m i l a r exp ress ions to Eqs.

4.74. Ponce a n d Y e v j e v i c h (1978) cons ide red the v a r i a t i o n o f K a n d

Z w i t h Q; w h i l e Dooge (1973) i n c l u d e d the c o r r e c t i o n f o r d y n a m i c ef fects ,

( I -0 .25Fr 1 , in the e q u a t i o n for 2 , b u t cons ide red c ( Q ) to b e cons tan t

a n d no t a f u n c t i o n of 8. Therefore, Eqs. 4.74 a r e the most g e n e r a l

exp ress ions f o r K a n d Z (Meadows, 1981).

2

Another v e r y i m p o r t a n t f e a t u r e o f Eq. 4.73 i s t h a t i t demonstrates

the Musk ingum r o u t i n g model i s d i f f u s i v e for Z<O.5, a n d o f f e r s the same

a d v a n t a g e s o f the d i f f u s i o n wave model. I f , however , Z=O.5, the

Page 89: KINEMATIC HYDROL06Y AND MODELLING

78

Muskingum model predicts pure t ranslat ion, and i s equivalent to the

kinematic wave model. Typical values for Z for na tura l streams are 0.3

to 0.4, and for pr ismat ic channels, 0.4 to 0.5.

K I NEMATIC AND D I FFUS ION MODELS

We have discussed the kinematic and di f fusion wave models as

approximations to the dynamic wave model and have shown they are

appl icable for certain f lood wave and channel condit ions.. As users, we

need c r i t e r i a or guidel ines for selecting which model to use. Two notable

works toward establ ishing such guidel ines are Henderson (1963) and

Ponce, et a l . ( 1 9 7 8 ) .

Henderson conducted a theoretical examination of the governing

equations s imi la r to that presented in the previous sections. He compared

theoretical resu l ts wi th a l imited number of f lood hydrographs, and noted

that subsidence i s most pronounced in the v i c in i t y of the wave crest.

Generally, he may be credited wi th efforts to c lassi fy f lood waves

according to the magnitude of So into waves broadly character ist ic of

steep, mi Id and intermediate slopes. However, he cautioned that t h i s

c lassi f icat ion i s not exhaustive, but should suf f ice for most floods in

na tura l waterways. He d i d not offer specif ic guidel ines to define mi ld,

intermediate and steep, although he concluded the kinematic model i s

appl icable i n steep channels; the d i f fus ion i n m i ld and steep channels;

and the dynamic to a l l three. The ra t iona le for t h i s conclusion i s that

he considered Fr2 > > 1 in steeply sloped channels; hence, according to

Eq. 4.49 , the momentum equation w i l l become S = Sf . For m i ld slopes,

F r2 < < I , and the momentum equation becomes :he s t r i c t d i f fusion wave

model. For intermediate slopes a l l terms in the momentum equations are

si gnif i cant.

Ponce, et a l . , appl ied l inear s tab i l i t y ana lys is in an ef for t to

propose a theory that accounts for wave celer i ty as well as attenuation

characterist ics. To do so required they use a l inearized, therefore

somewhat simp1 i f ied, version of the governing equations. Assuming a

sinusoidal wave, they compared the propagat ion character ist ics of the

kinematic, d i f fusion and dynamic wave models. As expected, the dynamic

wave model i s app l i cab le to the en t i re spectrum of waves that can be

routed with a one-dimensional model. For Fr<2, the celer i ty of a dynamic

wave i s greater than the kinematic wave celer i ty. For Fr=2, r o l l waves

w i l l form. Thus, for p r imary waves (main body of a f lood wave), Fr=2

i s the threshold d i v id ing attenuation and amp1 i f icat ion. For secondary

waves, Fr= l i s the threshold d i v i d i n g the propagation upstream or

Page 90: KINEMATIC HYDROL06Y AND MODELLING

79

downstream; fo r F r = l they remain s ta t ionary o r p ropagate downstream

o n l y ; and fo r F r < 1 , they propagate on ly downstream. A phys ica l

observat ion b y Stoker (1957) e x p l a i n s t h i s conclusion r e g a r d i n g secondary

waves:

"What seems to happen i s the fo l low ing : smal l forerunners of a

d is turbance (wave) t r a v e l w i t h the speed fi r e l a t i v e to the f l o w i n g

stream, b u t the r e s i s t i v e forces act i n such a way as to decrease the

speed of the main p o r t i o n of the d is tu rbance f a r below the va lues g i v e n

b y a.. . I '

Ponce, et a l . , d i d o f fe r f i r s t generat ion c r i t e r i a fo r app l i ca t ion

of the k inemat ic a n d d i f f u s i o n wave models:

Kinematic:

D i f fus ion :

TBSo > 171

T B S o ( e ) '30

where TB i s the d u r a t i o n of the f lood wave, So i s the channel slope,

v a n d y a r e the i n i t i a l ve loc i ty a n d depth of f low, respect ive ly , and

g i s g r a v i t y . Based on these c r i t e r i a , the k inemat ic model app l ies to

shal low f low o n steep slopes (hence the steep channel of Henderson a n d

sur face r u n o f f from h i l l s lopes) a n d to long d u r a t i o n f lood waves (slow

r i s i n g floods on major r i v e r s as observed b y Seddon). The d i f f u s i o n model

i s a p p l i c a b l e to these as we l l as a w ider range. When these two models

b reak down, the dynamic model appl ies.

P

These c r i t e r i a a r e si,gnif icant in that they r e l a t e model a p p l i c a t i o n

to channel slope a n d h y d r o g r a p h charac ter is t i cs . The reader i s caut ioned

that these a r e o n l y f i r s t generat ion formulae.

REFERENCES

Betson, R.P., 1979. A geornorphic model fo r use in streamflow rou t ing , Water Resources Research, Vo l . 15, No. 1 , pp. 95-101.

Brutsaer t , W. 1968. The i n i t i a l phase of the r i s i n g h y d r o g r a p h of tu rbu len t free sur face flow w i t h unsteady l a t e r a l in f low. Water Resources Research, V o l . 4, p p 1189-1 192.

Cunge, J.A., 1969. O n the subject of a f lood propagat ion computation method (Muskingum Method). J. Hydr . Res., V o l . 7, No. 2, pp . 205-230.

Dooge, J .C . I . 1973. L i n e a r theory of hydro log ic systems. U.S. Dept. of Agr icu l tu re , Agr i . Res. Ser. Tech. B u l l . No. 1968.

Gburek, W.J. a n d Overton, D.E., 1973. Subcr i t i ca l k inemat ic f low in a s tab le stream. J. Hydr . Div. ASCE. V o l . 99, No. HY9, pp. 1433-1447.

Henderson, F.M., 1963. Flood waves in pr ismat ic channels. J. Hydr . Div . ASCE, V o l . 89, No. H Y 4 , pp. 39-67.

Henderson, F.M. a n d Wooding, R.A., 1964. Over land f low a n d groundwater from a steady r a i n f a l l o f f i n i t e durat ion. Journal of Geophysical Research, V o l . 69, No. 8, p p . 1531-1540.

Page 91: KINEMATIC HYDROL06Y AND MODELLING

80

Leopold, L.B., e t a l . , 1954. F l u v i a l Processes in Geomorphology. N.H. Freeman, San F ranc i sco , Cal .

Leopold, L.B. a n d L a n g b e i n , W.B., 1962. The concept o f e n t r o p y in landscape e v o l u t i o n . U.S. Geologica l Su rvey P ro f . P a p e r 500-A.

Leopold, L.B. a n d Maddock, T. , Jr . 1953. The h y d r a u l i c geometry o f s t r e a m channe ls a n d some p h y s i o g r a p h i c i m p l i c a t i o n s . U.S. Geologica l Su rvey P ro f . P a p e r 252.

L i g h t h i l l , M.J. and Whitham, G.B., 1955. On k i n e m a t i c waves: I. F l o o d movement in l o n g r i v e r s . Proc. Roya l Society , London, Vol. 229, No. 1178, pp. 281 -

Meadows, M.E., 1981. M o d e l l i n g the impac t o f s to rmwate r r u n o f f , in Proceedings, I n t e r n a t i o n a l Symposium on U r b a n H y d r o l o g y , H y d r a u l i c s a n d Sediment Con t ro l , U n i v e r s i t y o f K e n t u c k y , L e x i n g t o n , Ken tucky , pp. 31 3-31 9.

M o r r i s , E.M., 1979. The e f fec t o f t he s m a l l s l ope a p p r o x i m a t i o n a n d lower b o u n d a r y c o n d i t i o n s on s o l u t i o n s o f t he S a i n t Venant Equa t ion . Jou rna l of H y d r o l o g y , Vol . 4 0 , pp. 31-47.

M o r r i s , E.M. a n d Woolhiser, D.A., 1980. Unsteady one-d imensional f l ow o v e r a p l a n e : p a r t i a l e q u i l i b r i u m a n d recess ion h y d r o g r a p h s . Water Resources Research, 16 ( 2 ) , pp 355-366.

Over ton, D.E. a n d Meadows, M.E., 1976. Stormwater M o d e l l i n g . Academic Press, N.Y.

Ponce, V.M., L i , R.M. a n d Simons, D.B., 1978. A p p l i c a b i l i t y o f k i n e m a t i c a n d d i f f u s i o n wave models. J. H y d r . D i v . ASCE, Vol . 104, No. HY3, pp. 353-360.

Ponce, V.M. a n d Yev jev i ch , V. 1978. Muskingum-Cunge Method w i t h v a r i a b l e pa ramete rs . J. H y d r . D i v . ASCE, Vol. 104, No. HY12, pp. 1663- 1667.

Seddon, J.A., 1900. R i v e r h y d r a u l i c s . T r a n s : ASCE, Vol . 43, p. 179. Sta l I , J.B. a n d Yang , C.T., 1970. H y d r a u l i c geometry o f I I I i n o i s s t reams.

Research Repor t No. 15, Water Resources Research Center , U n i v e r s i t y o f I I I i no i s , U r b a n a , I I I i no i s .

V i e i r a , J.H.D., 1983. Cond i t i ons g o v e r n i n g the u s e of a p p r o x i m a t i o n s f o r the S a i n t Venant e q u a t i o n s f o r s h a l l o w s u r f a c e w a t e r f low. J o u r n a l o f H y d r o l o g y , Vol. 60, pp. 43-58.

Weeter, D.W. a n d Meadow's, M.E., 1978. Water Q u a l i t y Mode l i ng f o r R u r a l Streams. F i r s t Tennessee - V i r g i n i a Development D i s t r i c t , Johnson C i t y , 104 p.

Wooding, R.A., 1965. A h y d r a u l i c model f o r the catchment steam problem, I . Kinemat i c wave theo ry . Jou rna l of H y d r o l o g y , Vol . 3, pp 254-267.

Woolhiser, D.A. a n d L i g g e t t , J.A. 1967. Unsteady one d imens iona l f l o w o v e r a p l a n e - the r i s i n g h y d r o g r a p h . Water Resources Research, Vol. 3, NO. 3, pp. 753-771.

Page 92: KINEMATIC HYDROL06Y AND MODELLING

81

CHAPTER 5

NUMER I CAL SOLUT IONS

METHODS O F SOLUTION OF EQUATIONS OF MOTION

T h e r e a re no known general ana ly t i ca l solut ions to the hyd rau l i c

equations

(5.1

They must therefore be solved using the method of character ist ics or

numerical integrat ion techniques. Ava i lab le numerical methods include

f i n i t e di f ferencing and f i n i t e elements.

F in i t e di f ferencing techniques are founded on the classical def in i t ion

for a continuous der iva t ive term. Use of these methods transforms the

set of p a r t i a l d i f fe ren t ia l equations into an equal number of approximate

algebraic equations which then a re solved according to the ru les of

I inear algebra.

The f i n i t e element method i s a re la t i ve l y recent approach to solv ing

pa r t i a l d i f fe ren t ia l equations that govern hyd rau l i c processes. The basis

of f i n i t e element integrat ion i s approximating polynomials. I n essence,

the polynomial coeff icients a re adjusted to minimize an er ro r term whi le

sat isfy ing known boundary. conditions. The resu l t ing polynomials express

the unknown var iab les i n terms of the known (independent) var iables.

The detai Is of t h i s method are beyond the scope of these notes; however,

appl icat ion of t h i s method to kinematic over land flow i s i l l us t ra ted i n

a later chapter.

Given the many and var ied ways of in tegra t ing the f lood rou t ing

equations, one can log ica l l y ask which technique to choose. Some csn

be discarded as being inaccurate o r unstable o r too time consuming;

others seem to reproduce solutions re la t i ve l y well. However, there i s no

s ing le answer to which method i s "best". Indeed, the answer to that

question depends on the pa r t i cu la r appl icat ion, and perhaps on the

ava i lab le comput ing equipment.

METHOD OF CHARACTER I ST I C S

The method of character ist ics may be described as a technique

whereby the problem of solv ing two simul taneous p a r t i a l d i f fe ren t ia l

Page 93: KINEMATIC HYDROL06Y AND MODELLING

82

equations (cont inui ty and momentum) can be replaced by the problem

of solv ing four o rd inary d i f fe ren t ia l equations. This method has been

known for many years; i t was devised long before the computer as a

means for g raph ica l l y in tegra t ing the unsteady streamflow equations.

T h e character ist ic equations are no longer solved graph ica l l y , but are

solved numerical ly using the computer.

By making the subst i tut ion

( 5 . 3 ) 2

c = SY

into Eqs. 5.1 and 5.2 and then by wr i t i ng f i r s t the sum, and then t

difference, of the two new equations, we obtain the two equations

q i (,-,)a0 ax + a0 at = g (so - S f ) - ( v+c) - A

(5.4a

(5.4b

e

which are two equations i n the form of di rect ional der ivat ives of

v + 2c. Recall ing the def in i t ion of a total der iva t ive , i t can be shown

that for

-

(5.5) - _ z ; - v + c

then

dx a(vk2.c) a(V'2.c) d (v*2c) dt a x at dt

which gives the desired set of o rd inary d i f fe ren t ia l equations to replace

the p a r t i a l d i f fe ren t ia l equations. The character ist ic roots (direct ions)

are given b y Eqs. 5.5, and along each direct ion the respective. total

der ivat ives i n Eqs. 5.6 hold. The resu l t ing equations can be rewr i t ten :

c + . _ dx - - v + c (5.5a) ' dt

(5.6a) d (v+2c)

(5.5b)

(5.6) - - + - = ~

q i - - - g(S0 - S f ) - ( v - c ) - dt A

- dx c . _ = v - c ' dt

(5.6b) d(v-2c) 'i

where c and c- symbolical ly designate forward and backward character-

g(S0 - S f ) - ( v + c ) - _ _ _ - A d t +

i s t i c respective1 y.

Physical ly, the character ist ic roots represent the pa th i n time

and space followed by a disturbance, e.g. flood wave. The speed of

propagation i s given by the slope dx/dt ; and the state of the system

(values of the dependent var iab les) i s given by the total der ivat ives

that hold along the character ist ic paths.

Mathematical ly, the character ist ics a re loci of possible discont inui t ies

In the temporal and spat ia l der ivat ives of the dependent var iables. Thus,

one may think of a character ist ic curve as a l ine of separation between

Page 94: KINEMATIC HYDROL06Y AND MODELLING

83

two regions of somewhat di f ferent physical conditions. Th is i s important

when modelling unsteady flows where the boundary conditions va ry w i th

time, since the solut ion at inter ior points of the ( x , t ) domain are

dependent on the boundary information. The solut ion at those points

above a character ist ic curve requires more boundary information than

the solution below the character ist ic. I n fact , the character ist ics i n

Eqs. 5.5 define four unique solution zones as shown i n F igure 5.1.

A

UPSTREAM I t

BOUNDARY

x= 0 X=

I

UPSTREAM DOWNSTREAM BOUNDARY BOUNDARY

x= 0

DOWNSTREAM BOUNDARY

- x :L

F ig . 5.1 Zones of solution domain defined by character ist ics.

(Woolhiser and Liggett , Water Resources Research, 3, 755, 1967, American Geophysical Union).

These zones are formed by the intersection of the forward and backward

character ist ics ernanat ing from the upstream (x=O) and downstream (x=L)

end of the channel reach at the i n i t i a l time. The solut ion in Zone A

requires only the i n i t i a l values ( the beginning state of the system a t

a l l x ) ; whi le the solut ion i n Zones B and C requires both i n i t i a l values

and a boundary condit ion. This i s because these zones l i e above the

backward and fo rward character ist ics, respectively. Zone B requires the

downstream boundary condit ion, and Zone C , the upstream. F ina l l y , Zone

D, which l ies above both character ist ics requires the i n i t i a l values and

both boundary conditions.

Numerical Integrat ion of Character ist ic Equations

The objective of the method of character ist ics is to f i l l the ( x , t )

plane with character ist ics as shown i n Figure 5.2. The unknowns are

determined at the intersections where the four equations 5.5a, 5.5b, 5.6a

Page 95: KINEMATIC HYDROL06Y AND MODELLING

84

and 5.6b are satisf ied. The extent to which solutions can be obtained

over the ( x , t ) p lane i s dependent on the amount of i n i t i a l value, (x,O),

and boundary condit ion, (0 , t ) and ( L , t ) , information that i s specif ied

beforehand. I n i t i a l conditions are the velocity and depth of flow at a l l

x at the beginning of the simulat ion, usua l ly designated time zero. The

upstream boundary condit ion typical ly i s the known inf low hydrograph

that i s to be routed downstream. Values for v and y are obtained with

known ra t i ng relat ionships. Usual l y the outflow hydrograph at the down-

stream end (boundary) i s the desired resu l t ; hence, Q, v and y a t the

downstream boundary a re unknown. However, i f r a t i n g relat ionships are

known, they can be used as the downstream boundary condit ion.

With the boundary information specified, the solut ion for v and y

at a suf f ic ient number of intermediate points and at the downstream

boundary i s obtained at the intersection of forward and backward

character ist ics and at the intersection of forward character ist ics and

the downstream boundary, respectively. The number of solution points

must be suff ic ient to adequately describe the movement of a f lood wave

downstream and i s determined by the number of character ist ics inscribed

on the ( x , t ) plane. Usual ly, the a v a i l a b i l i t y of data l im i ts the number

of character ist ics; however, i t should be noted that a better solut ion

general ly i s obtained when more character ist ic curves are involved.

Mathematical ly, a complete solut ion i s obtained i f a l l the boundary

informat ion i s ut i I ized.

The usual procedure for solv ing Eqs. 5.5 and 5.6 simultaneously

i s shown in F igure 5.2. Consider the points numbered 2, 5, 6, 10, 1 1

and 12. There i s both a forward and a backward character ist ic emanating

from points 2, 5 and 10. The intersection of the forward character ist ic

out of point 10 w i th the backward character ist ic out of point 5 specifies

the conditions (values of v and y ) at point 1 1 . S imi la r ly , point 6

conditions are determined at the intersection of the respective character-

is t ics out of po in ts 5 and 2. The fo rward character ist ic out of point 10

i s continued downstream i n time and space u n t i l i t intersects w i th the

backward character ist ic out of point 2, thereby determining v and y

at point 12. The procedure continues for a1 I forward and backward

character ist ics unt i I they intersect ei ther the downstream or upstream

boundary.

At each intersection there are four unknowns x, t, v, and y. These

are uniquely determined by the simultaneous solut ion of the four

equations given by Eqs. 5.5 and 5.6. At the downstream boundary x

i s given and i s no longer an unknown. The other three unknowns are

determined by the simultaneous solution of Eqs. 5.5a and 5.6a and r a t i n g

Page 96: KINEMATIC HYDROL06Y AND MODELLING

85

Fig. 5.2 Characterist ics i n ( x , t ) Plane

curves that re la te v and y.

A method for solv ing the character ist ic equations according to th i s

procedure i s out l ined as follows. With reference to Figure 5.3, i t i s

assumed the values for v and y a re known at L and R and are desired

at M. Eqs. 5.5 a re approximated as

L

and XM = XR + ( t M - tR) ( V - c ) ~

These two equations can be easi ly solved for the two unknowns XM and

tM. Once these a re known Eqs. 5.6 a re solved by the same approach.

where A = g(So-Sf)L - (v-c), - q i (5.11)

A L

Page 97: KINEMATIC HYDROL06Y AND MODELLING

86

Fig. 5.3 Characterist ic Solution for Point M

The method out l ined by E q s . 5.7 through 5.13 is l inear and can

be solved for v M, cM hence yM. The boundary condit ion, inf low, i n i t i a l

values and downstream r a t i n g curve must be known. A more stable and

accurate solut ion can be obtained with a nonl inear formulation (Overton

and Meadows, 1976; and Mahmood and Yevjevich, 1975).

When solv ing problems using the method of character ist ics, check

whether the, flow i s subcr i t i ca l o r supercr i t ical . When the flow is sub-

c r i t i c a l , v < c and the forward character ist ic has a posi t ive slope dx/dt

i n the ( x , t ) p lane while the backward character ist ic has a negat ive

slope, as shown i n F igure 5.4a. When, however, the flow is supercr i t i ca l ,

v > c and both character ist ics have a posi t ive slope i n the ( x , t ) plane,

F igure 5.4b.

+ +

F ig . 5.4 Characterist ic Lines for Subcr i t ical and Supercr i t ical Flows

L FIN I TE DIFFERENCE METHODS

F in i te di f ferencing involves replacing the continuous der iva t ive

terms with approximate f i n i t e dif ference quotients, thereby transforming

the set of d i f fe ren t ia l equations into a set of e i ther l inear o r non-

l inear algebraic equations which can b e solved more read i l y . These

Page 98: KINEMATIC HYDROL06Y AND MODELLING

87

algebraic equations re la te unknown dependent va r iab le values a t nodal

points on a f i n i t e g r i d over lay ing the continuous solution domain to

known in i t i a l values and boundary conditions. Solution of these equations

i s e i ther direct o r through a root determining scheme such as the Newton-

Raphson Method. In ei ther case, depending on the manner i n which the

replacements are made, mat r ix techniques may also be required.

Difference Quotients

F in i te dif ference quotients are obtained by d i v i d i n g the dif ference

between two values of a function by the corresponding two values of

the independent var iable. For the case of a function of a s ingle

var iable, e.g. f ( x ) , the dif ference quotient i s given b y

f (x+Ax) - f ( x )

The l im i t ing value, as Ax->O, is the def in i t ion of the der iva t ive

A X

d f ( x ) - l im f (x+Ax) - f ( x ) ~- dx Ax

a x->o ( 5 . 1 4 )

Thus the f i n i t e dif ference quotient i s an approximation to the continuous

der ivat ive as long as Ax i s kept small.

Several dif ference quotients can be defined to approximate p a r t i a l

der ivat ives. To i l l us t ra te some of them, consider a function of two

independent var iables, say U ( x , t ) . With reference to the f i n i t e dif ference

g r i d i n Figure 5 . 5 , the most commonly used dif ference quotients are

defined as follows. The forward difference approximation to the f i r s t

pa r t i a l der iva t ive for U wi th respect to x i s

- 2U = U(x+Ax,t) - U(x , t ) ax Ax

( 5 . 1 5 )

Physical ly, one can thin< of an observer standing at the point ( x , t ) ,

looking ahead ( fo rward) to the point (x+ Ax , t ) , and using the elevation

( funct ion value) dif ference between the two points d iv ided by the distance

to evaluate the slope (va lue of the de r i va t i ve ) . The backward dif ference

approximation i s

- - au - u ( x , t ) - u ( x - A x , ~ ) ax A X

The centered (o r cen t ra l ) dif ference approximation is

- au = U(x+Ax,t) - U(x-Ax,t) ax 2 ax

( 5 . 1 6 )

( 5 . 1 7 )

Page 99: KINEMATIC HYDROL06Y AND MODELLING

88

Fig. 5.5 F in i t e Difference Grid for x , t Solution Domain

NUMER I CAL SOLUTION

There are two basic f i n i t e dif ference schemes used i n solv ing the

streamflow rou t ing equations. They a re the exp l i c i t and imp1 i c i t schemes.

Exp l i c i t schemes u t i l i ze i n i t i a l value and left hand side (upstream)

boundary information and solve for the remaining g r i d points one a t a

time. They are subject to s tab i l i t y l imi tat ions on the al lowable g r i d

in te rva l size which means exp l i c i t schemes t yp i ca l l y have large da ta

requirements. However, exp l i c i t methods often resu l t i n l inear algebraic

equations from which the unknowns can be evaluated d i rec t l y without

i te ra t i ve computations. Imp l ic i t schemes u t i l i ze i n i t i a l value and both

left and r i gh t hand side boundary information, and solve for the

unknown g r i d po in ts at the next time level simultaneously. Therefore,

imp1 i c i t schemes often requ i re mat r ix techniques. Imp l ic i t methods

t yp i ca l l y involve nonl inear algebraic f i n i t e dif ference equations whereby

the solut ion i s at ta ined by i terat ion. Both schemes can be and have been

used in solv ing the governing equations for over land and open channel

flow.

Page 100: KINEMATIC HYDROL06Y AND MODELLING

89

Most e x i s t i n g methods f o r n u m e r i c a l s o l u t i o n o f e q u a t i o n s c a n b e

c l a s s i f i e d i n t o t h e f o l l o w i n g g r o u p s :

( a ) E x p l i c i t f i n i t e d i f f e r e n c e methods

( b ) I m p l i c i t f i n i t e d i f f e r e n c e methods

( c ) F i n i t e e lement methods

The use o f the f i r s t two methods was summar i sed b y L i g g e t t a n d

Woolh iser (1967). They r e v i e w e d d i f f e r e n t e x p l i c i t f i n i t e d i f f e r e n c e

schemes. The schemes were:

a ) me thod o f c h a r a c t e r i s t i c s

b ) u n s t a b l e me thod

c ) d i f f u s i o n me thod

d ) Lax -Wendro f f me thod

e ) l e a p - f r o g me thod

The method o f c h a r a c t e r i s t i c s uses an i r r e g u l a r g r i d f o l l o w i n g the

c h a r a c t e r i s t i c c u r v e s w h i l e the o t h e r s use a r e c t a n g u l a r g r i d f o r t he

s o l u t i o n o f t he e q u a t i o n s .

The me thod o f c h a r a c t e r i s t i c s emp loys the f a c t t h a t f l o w conforms

to c e r t a i n r e l a t i o n s h i p s a l o n g c h a r a c t e r i s t i c c u r v e s a n d t h e r e f o r e t h e

s o l u t i o n i s p e r f o r m e d a l o n g the c h a r a c t e r i s t i c c u r v e s . The m a i n

a d v a n t a g e s o f t he c h a r a c t e r i s t i c me thod i s t h a t i t i s a c c u r a t e a n d f a s t .

I t i s t he most a c u r a t e me thod f o r t he same i n i t i a l p o i n t s p a c i n g o f a l l

methods. I t s a c c u r a c y i s a consequence o f f o l l o w i n g the c h a r a c t e r i s t i c

c u r v e s w h i c h d e s c r i b e t h e p a t h o f t he d i s t u r b a n c e s in the f l o w . I t a l s o

c o v e r s the x - t p l a n e f a s t e r t h a n a n y o t h e r me thod w i t h t h e same i n i t i a l

p o i n t s p a c i n g . The m a i n d i s a d v a n t a g e o f t he me thod o f c h a r a c t e r i s t i c

i s t h a t d a t a a t i n t e r m e d i a t e p o i n t s in the x - t p l a n e i s d i f f i c u l t t o

o b t a i n i n an a c c e p t a b l e fo rm, r e q u i r i n g ted ious i n t e r p o l a t i o n techn iques .

I f t he me thod i s a p p l i e d to a two-d imens iona l p r o b l e m the use of t h e

c h a r a c t e r i s t i c me thod becomes e v e n more d i f f i c u l t . More r e c e n t l y more

e l a b o r a t e methods o f c h a r a c t e r i s t i c s were deve loped. A b b o t t a n d Verwey

(1970) used a f o u r - p o i n t me thod o f c h a r a c t e r i s t i c s , i .e . u t i l i s i n g t h r e e

d i f f e r e n t p o i n t s in f i x i n g the p r o p e r t i e s of a f o u r t h p o i n t . T h i s s o l u t i o n

c o u l d o n l y b e used w i t h the d y n a m i c e q u a t i o n s a s the k i n e m a t i c e q u a t i o n s

do no t h a v e n e g a t i v e c h a r a c t e r i s t i c s r e q u i r e d f o r t h i s method.

The i m p l i c i t me thod o f s o l u t i o n i n v o l v e s s imu l taneous s o l u t i o n o f

a l l the f l ow p r o p e r t i e s b y s o l v i n g a m a t r i x ; i t s m a i n a d v a n t a g e i s t h a t

the r a t i o o f space to t ime i n t e r v a l , Ax/A t , i s no t g o v e r n e d b y a n y

s t a b i l i t y c r i t e r i a a n d the me thod i s c o n s i d e r e d to b e s t a b l e f o r a n y

cho ice o f A x and At. Most p r e v i o u s i n v e s t i g a t o r s c o n s i d e r e d t h i s to b e

Page 101: KINEMATIC HYDROL06Y AND MODELLING

90

an advantage. Liggett and Woolhiser (1967) report , however, that they

were unable to make pract ical use of t h i s 'advantage ' . I f they increased

Ax/At ra t i o more than would be al lowed for i n an exp l i c i t f i n i t e d i f -

ference scheme, inaccuracy resul ted and sometimes stabi I i t y problems

occurred. They suggest that the imp l ic i t methods seemed to be more

advantageous when deal ing wi th r i v e r problems but pointed out that

attention should be pa id to the accuracy of the resu l ts obtained.

Only a few invest igators have used f i n i t e element methods i n solv ing

the St. Venant equations. The main reason for nor being used i s that

f i n i t e element programs are expensive to r u n and accuracy and s tab i l i t y

c r i t e r i a can become tedious to app ly .

Exp l i c i t f i n i t e dif ference schemes have been widely used i n the past

for the solution of the one-dimensional S t . Venant equations. They d i f f e r

from each other in the way they define the i r discharge and depth

gradients, but they a l l express the flow propert ies at a certain time

as a function of the flow propert ies at a previous time thus permit t ing

an exp l i c i t solution. They are simple to use as they use a f i xed regu la r

g r i d and i t i s easier to follow the var ia t ion of the flow propert ies along

the catchment as the solut ion i s performed exp l i c i t l y . They have been

found to be accurate and economical when proper ly used. The main

problems accompanying the choice and the use of an exp l i c i t f i n i t e

difference scheme are, however, those of accuracy and s tab i l i t y . Choosing

the most proper scheme and using i t accordingly is, therefore, important

in obtaining stable and accurate results.

The main exp l i c i t f i n i t e dif ference schemes which have been used

previously are summarised i n F igure 5.6 in terms of the points used at

a time in te rva l to propagate information at the next time in te rva l .

The propert ies of the di f ferent schemes are summarized by L igget t

and Woolhiser (1967). T h e unstable method was found to be unre l iab le

whi le the rest shcwed signs of i ns tab i l i t y when used i n certain cases.

The Lax-Wendroff scheme tended to dampen out ins tab i l i t ies and produce

better results.

Various other invest igators were faced w i th s imi la r problems when

using such di f ferent schemes for the solut ion of the kinematic equations.

Constant inides (1982), however, argued that as the na ture of informat ion

propagation for the kinematic equations d i f fe rs from that of the St.

Venant equations a l te rna t ive dif ference schemes had to be developed.

Furthermore, he argued that the scheme to be used should propagate

numerical ly, information i n a s imi la r manner as suggested by the kine-

mat i c character ist ic equations. Using th i s he developed a scheme shown

to be accurate, stable and fast (Table 5.1, p. 103).

Page 102: KINEMATIC HYDROL06Y AND MODELLING

91

X- AX a x+ & X X-AX X X + A X

( a ) Unstable method ( b ) Di f fusing method

( d ) Lax Wendroff method

Uses for d i f fus ing scheme for the f i r s t time in te rva l and the leap-frog scheme for subsequent t ime in te rva ls

X- AX X X+hX

( c ) Leap-frog method

P : Point where flow propert ies w i l l be calculated ( x , t ) + : Points used for de f in ing discharge gradients

4: Direction a t which information is propagated

-: Direct ion a t which information i s propagated

: Points used i n the depth gradient def in i t ion

fo r discharge

for depth

F ig . 5.6 Exp l i c i t f i n i t e difference scheme used i n the solut ion of the one-dimensional St. Venant equations.

Exp l i c i t Scheme

The appl icat ion of the exp l i c i t method to the unsteady flow equations

i s p r imar i l y the outcome of pioneering work by J.J. Stoker; a complete

descript ion is found in Isaacson, et at. (1956). The exp l i c i t scheme

Page 103: KINEMATIC HYDROL06Y AND MODELLING

92

shown h e r e i s f rom t h a t r e p o r t . A r e c t a n g u l a r c h a n n e l w i t h no l a t e r a l

i n f l o w i s assumed.

A ne twork o f node p o i n t s i s shown in F i g u r e 5.7 f o r s o l v i n g the

g o v e r n i n g e q u a t i o n s u s i n g the e x p l i c i t method. The v a r i a b l e s a r e k n o w n

a t p o i n t s L, M and R, and a r e to be de te rm ined f o r p o i n t P. Us ing a

centered d i f f e r e n c e quo t ien t to a p p r o x i m a t e the s p a t i a l d e r i v a t i v e s a n d

a f o r w a r d d i f f e r e n c e q u o t i e n t to a p p r o x i m a t e the tempora l d e r i v a t i v e s ,

the f o l l o w i n g a p p r o x i m a t i o n s a r e made a t p o i n t M :

(5 .18)

(5.19)

( 5 . 2 0 )

F i g . 5.7 Network o f P o i n t s f o r E x p l i c i t Method

Simi l a r a p p r o x i m a t ions a r e made to the o t h e r d e r i v a t i v e terms. When

these a p p r o x i m a t i o n s a r e i n s e r t e d i n t o Eqs . 5 .1 and 5 . 2 , v ( P ) and y ( P )

c a n be s o l v e d d i r e c t l y a s

(5.21 )

( 5 . 2 2 )

Page 104: KINEMATIC HYDROL06Y AND MODELLING

93

t

The s o l u t i o n p r o c e d u r e i s to use the i n f o r m a t i o n a t t ime leve l t a n d

so lve f o r the unknowns a t each o f the g r i d p o i n t s a t t ime leve l t t

A t . Once t h i s row o f v a l u e s h a s been determined, a d v a n c e the com-

p u t a t i o n s to t ime leve l t t 2At. The v a l u e s a t t ime leve l t + A t become

the i n i t i a l v a l u e s f o r d e t e r m i n i n g the unknowns a t t h i s a d v a n c e d t ime

leve l . The s o l u t i o n proceeds i n t h i s f a s h i o n u n t i l a l l the g r i d p o i n t s

in the s o l u t i o n doma in h a v e been determined.

To ensu re s t a b i l i t y , the g r i d s izes Ax a n d a t a r e chosen to s a t i s f y

the c o n s t r a i n t

pstream Downstream Boundary Boundary

Condi t ion : o n d i t . i o n 2 m /

A t 1

(5.23)

T h i s c r i t e r i o n f o r compu ta t i ona l step sizes, k n o w n as the Couran t

c o n d i t i o n , i n s u r e s t h a t the t ime increment i s se lected s u c h t h a t the node

p o i n t P l i e s w i t h i n the a r e a bounded b y the f o r w a r d a n d b a c k w a r d

c h a r a c t e r i s t i c s genera ted f rom node p o i n t s L a n d R . As d i scussed

p r e v i o u s l y , t h i s ensu res t h a t p o i n t P i s w i t h i n s o l u t i o n zone A a n d c a n

be f u l l y de te rm ined u s i n g o n l y the i n i t i a l v a l u e i n f o r m a t i o n c o n t a i n e d

a l o n g the l i n e f rom L t o R.

Imp I ici t Scheme

A ne twork of node p o i n t s i s shown in F i g u r e 5.8 f o r s o l v i n g the

uns teady f l ow e q u a t i o n s u s i n g a n i m p l i c i t method. t he cen te red f o u r p o i n t

d i f f e r e n c e scheme i s i I l u s t r a t e d (Amein a n d F a n g , 1969).

I

X

F i g . 5.8 Network o f P o i n t s f o r I m p l i c i t Method

Page 105: KINEMATIC HYDROL06Y AND MODELLING

94

The fol lowing approximat ions

Sf = 1, 1 [ S f ( l ) + S f ( 2 ) + Sf(3) + Sf(4)]

to the der iva t ive terms are made:

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

These approximations are used to replace the respective terms i n

Eqs. 5 . 1 and 5.2. Hydrau l i c var iab les at node points 1 , 2 and 3 a re

known from boundary condit ions and i n i t i a l values, hence the unknowns

are Q(4) , v ( 4 ) , y ( 4 ) , A(4) and Sf (4 ) . Since y (4 ) and A(4) are related

by the cross-sectional geometry and Q ( 4 ) , v ( 4 ) and A(4) are related by

cont inui ty, ' there are ac tua l l y three unknowns and two equations. Since

there i s the need for another equation, the dif ference scheme i s wr i t ten

for a l l of the distance steps at g iven time level u n t i l the downstream

boundary i s reached. I n F igure 5.8 there are 12 g r i d boxes, meaning

there w i l l be 24 equations to be wr i t ten but there w i l l be 27 unknowns.

The three add i t iona l equations are specif ied by the downstream boundary

condit ion which most often i s a r a t i n g curve between discharge and area

(depth 1. The resu l t ing set of a lgebraic f i n i t e dif ference equations i s non-

l inear and must be solved using an i te ra t i ve root- f inding scheme. Amein

and Fang (1969) found that the Newton scheme could b e used to l inear ize

the equations which they then solved using mat r ix techniques.

The solut ion procedure i s to solve for a l l the unknowns at one

advanced time level before proceeding to the next. A l l values are

determined simultaneously, and must sat isfy a l I boundary conditions.

Therefore, t h i s method avoids the s tab i l i t y requirements of the exp l i c i t

method meaning tha t la rger x and t g r i d in te rva l sizes can be used

which requires less input data.

Page 106: KINEMATIC HYDROL06Y AND MODELLING

95

ACCURACY AND STAB I L I TY OF NUMERICAL SCHEMES

There are two approximations in numerical modelling. One needs

to ask the questions: "How well i s the na tura l system modelled b y the

di f ferent ia l equations?", and, "How well i s the solut ion to the d i f fe ren t ia l

equations represented by the computational algori thm?". I n the analysis

here more at tent ion is pa id to the second question. The f i r s t question

can only be answered by studying the behaviour of the na tura l system

and comparing i t to the equations appl ied to i t . Therefore i t w i l l be

assumed here that the d i f fe ren t ia l equations approximate the system we1 I

despite the fact that i t has been noticed that th is i s not necessarily

the case. Abbott (1974) noticed that a dif ference scheme considerably

di f ferent from the d i f fe ren t ia l equations used to describe a system, can

y ie ld more accurate resul ts than a difference scheme s imi la r to the

d i f fe ren t ia l equations when compared w i th experimental resul ts.

There are three possible sources of e r ro r associated with f i n i t e

difference solutions to p a r t i a l d i f fe ren t ia l equations. I t i s important

that one understands these sources, their consequence i f not control led,

and means for con t ro l l ing them. These three sources of e r ro r are:

truncation, d iscret izat ion, and round-off. Truncation er ro r occurs when

a der iva t ive is replaced with a f i n i t e dif ference quotient; d iscret izat ion

er ro r i s due to the replacement of a continuous model ( funct ion) w i th

a discrete model; and round-off e r ro r i s essential ly machine er ro r i n

that the algebraic f i n i t e dif ference equations are not always solved

exact I y . For f i n i t e dif ference solutions to be accurate, they must be con-

sistent and stable. Consistency simply means that the t runcat ion errors

tend to zero as Ax and At - > 0, i.e., as Ax and At - > 0 the f i n i t e

dif ference equation becomes the o r ig ina l d i f fe ren t ia l equation. This i s

examined i n the fo l lcwing paragraphs. S tab i l i t y implies the control led

growth of round-off error. S tab i l i t y considerations apply p r i nc ipa l l y to

exp l i c i t schemes to be discussed later. Any numerical scheme that al lows

the growth of e r ro r , eventual ly "swamping" the t rue solut ion, is unstable.

Page 107: KINEMATIC HYDROL06Y AND MODELLING

96

Generally, to ensure s tab i l i t y requires that l im i ts b e placed on the

al lowable sizes for Ox and At, The c r i te r ion for establ ishing the al low-

ab le sizes i s that they b e chosen such that the forward and backward

character ist ics w i l l not t ravel the distance Ax in the time in te rva l At .

This insures that the solut ion at the advanced point i n time can be f u l l y

determined from ava i l ab le i n i t i a l value information; i.e. the g r i d point

being solved i s i n solut ion Zone A . General ly, i f a numerical scheme

i s both consistent and stable, i t s solut ion w i l l be convergent (accurate)

wi th the solut ion of the p a r t i a l d i f fe ren t ia l equation.

The truncat ion er ro r i s examined with a Tay lo r ' s series expansion

for U ( x , t ) at the point (x,O), i.e. time i s held constant. 2

U(x+Ax,t) = U ( x , t ) + Ax% + % Lu 2 + * ' * a x 2 ! a x

(5.31)

where the der iva t ives are evaluated at x , t . D iv id ing Eq. 5.31 by ,x,

and rearranging, gives the series equivalent to the forward dif ference

quotients, Eq. 5.8

(5.32)

which shows that replacing aU/ ax wi th the forward dif ference quotient

introduces an er ro r of approximation equal to those terms on the r i g h t

hand side of Eq. 5.32 a f te r a U/ ax. This e r ro r i s proport ional to th?

f i r s t power of Ax ; we cal I t h i s f i r s t order e r ro r (o r approximat ion).

Simi lar ly, i t can be shown that the backward dif ference quotient has

f i r s t order e r ro r , and the centered dif ference has second order e r ro r .

Consider the fo l low ing p a r t i a l d i f fe ren t ia l equation

aa aa at ax - + c - = o

One f i n i t e dif ference approximation to th i s equation i s

Q(x+Ax,t+At) + Q(x, t+At) - Q(x+Ax,t) - Q(x , t )

2 At

Q(x+A.x,t+At) - Q(x,t+At) = + C

A x

(5.33)

(5.34)

Examination of the Tay lo r ' s series residuals reveals the absolute value

of the truncation er ro r i s

(5.35) 2 2

2 Error = -. A t - a 2 Q +O(Cx ,At )

2 ax

where the last term indicates a second order of approximation. On

inspection i t appears that Eq. 5.34 is consistent wi th Eq. 5.33 as A t - 0. However, for t h i s pa r t i cu la r solut ion, s tab i l i t y considerations

requ i re that

Ax c 5 - A t

(5.36)

Page 108: KINEMATIC HYDROL06Y AND MODELLING

97

S u b s t i t u t i n g t h i s i n e q u a l i t y i n t o Eq. 5.34 t r a n s f o r m s t h e e r r o r t e rm i n t o

(5.37)

w h i c h i n d i c a t e s a s m a l l e r r o r term, b u t one t h a t c a n become s i g n i f i c a n t

i f A t - > 0 f a s t e r t h a n A x 2 - > 0. S ince A x a n d At a r e f i n i t e and a r e

no t a p p r o x i m a t e l y ze ro , Eq. 5.34 a p p r o x i m a t e s Eq. 5.33 w i t h second o r d e r

a c c u r a c y b u t w i t h a te rm i n t r o d u c i n g a r t i f i c i a l ( n u m e r i c a l ) d i s p e r s i o n .

T h i s e x a m p l e was chosen because i t i l l u s t r a t e s how k i n e m a t i c mode ls

c a n s i m u l a t e a d i s p e r s i n g h y d r o g r a p h . Eq. 5.33 i s m e r e l y the k i n e m a t i c

w a v e e q u a t i o n f o r no l a t e r a l i n f l o w w h i c h , t h e o r e t i c a l l y , c a n n o t p r e d i c t

h y d r o g r a p h d i s p e r s i o n . Eq. 5.34 i s one o f t he f i n i t e d i f f e r e n c e mode ls

used to s o l v e the k i n e m a t i c model. Because o f t he presence o f t he

t r u n c a t i o n e r r o r , i t s i m u l a t e s a d i s p e r s i n g h y d r o g r a p h , t h e r e b y demon-

s t r a t i n g t h a t a n u m e r i c a l k i n e m a t i c model c a n s i m u l a t e a d i s p e r s i n g

h y d r o g r a p h .

Numer i ca l d i s p e r s i o n o r d i f f u s i o n i s t h e p rocess i n w h i c h t h e E r r o r

i s formed. I t i s t h e deve lopment o f t he t r u n c a t i o n e r r o r . to the e r r o r

t h r o u g h the n u m e r i c a l t e c h n i q u e used.

L a x ' s (1954) theo ry , p r o v e d b y R i c h t m y e r and Mor ton (1967) s ta tes

t h a t f o r l i n e a r e q u a t i o n s w i t h c o n s t a n t c o e f f i c i e n t s o p e r a t i n g on u n i f o r m l y

c o n t i n u o u s i n i t i a l a n d b o u n d a r y d a t a the f o l l o w i n g theorem h o l d s . G i v e n

a p r o p e r l y posed i n i t i a l - v a l u e p r o b l e m and f i n i t e d i f f e r e n c e a p p r o x i m a t i o n

to i t t h a t s a t i s f i e s the cons is tency c o n d i t i o n s , s t a b i l i t y i s t he necessa ry

a n d s u f f i c i e n t c o n d i t i o n f o r convergence. T h i s i s however p r o v e d o n l y

f o r l i n e a r e q u a t i o n s a n d a c c o r d i n g to Abbo t t (1979) i t b r e a k s down when

t h e r e a r e d i s c o n t i n u i t i e s in f l ow .

S ince one i s d e a l i n g w i t h n o n - l i n e a r p a r t i a l d i f f e r e n t i a l e q u a t i o n s

( p . d . e ' s ) t h e r e i s no r i g o r o u s p r o o f s p e c i f y i n g s t a b i l i t y c r i t e r i a . F o r

l i n e a r p .d .e ' s , however , s t a b i l i t y a n a l y s e s e x i s t . Von Neuman (1949)

was f i r s t to d e v i s e a p o w e r f u l t e c h n i q u e f o r d e t e r m i n i n g s t a b i l i t y c r i t e r i a

f o r l i n e a r p . d . e ' s . He made use o f t he f a c t t h a t j u s t a b o u t a n y f u n c t i o n

c a n b e r e p r e s e n t e d b y a F o u r i e r se r ies . The l i n e a r s t a b i l i t y a n a l y s i s

method e s s e n t i a l l y de te rm ines how t h e F o u r i e r c o e f f i c i e n t s b e h a v e ( g r o w ,

decay , o r s t a y c o n s t a n t ) w i t h t ime f o r a n y te rm i n the F o u r i e r se r ies .

F o r s t a b i l i t y to o c c u r t h e r a t i o o f a F o u r i e r c o e f f i c i e n t o f a n y te rm a t

a n y t ime o v e r t h e F o u r i e r c o e f f i c i e n t o f t he same te rm a t a p r e v i o u s t ime

must b e less t h a n one.

The e f fec t o f A x and A t on s t a b i l i t y and a c c u r a c y a r e summar i zed

in F i g u r e 5.9. F rom F i g u r e 5.9 one c a n deduce t h a t t he m a i n c r i t e r i a

in the se lec t i on o f Ax and A t v a l u e s f o r a n e x p l i c i t f i n i t e d i f f e r e n c e

scheme a r e :

Page 109: KINEMATIC HYDROL06Y AND MODELLING

98

solution i s solution is stable

___)

Accuracy of solution decreases due to numerical diff sion

For fixed (6X/At), accuracy for smaller A X and At I ncreases

Fig. 5.9 Effect of value of A x and A t on s tab i l i t y and accuracy for and exp l i c i t f i n i t e dif ference scheme.

a ) that the scheme shal I proceed under stable condit ions

( 5 . 3 8 )

Ax Ax sha l l be close to (-) to minimise di f fusion er ro rs and obtain

b, at At c r

c ) the dif ference scheme’shal I be convergent. Th is could be ascertained

by runn ing the scheme wi th di f ferent A x ‘ s and At ’s and comparing

with ana ly t i ca l resul ts i n a simple case.

( A X / At,]cr

optimal accuracy.

has been shown to be the speed of wave disturbance or

information as i t i s propagated. Th is can be demonstrated by considering

the manner in which information i s propagated along the character ist ic

curves. For example, consider a central dif ference scheme, simi l a r to

the di f fusion method, for solv ing the St. Venant equations. Let i

represent a space in te rva l , and k represent a time in te rva l as shown

in Figure 5.10. The point i n question, i.e. where the flow propert ies

a re to be calculated, has the co-ordinates ( i , k ) . Information about the

flow propert ies i s sought from the previous time in te rva l . I n F igure 5.10

( a ) the true propagation speed i s smaller than the numerical propagation

speed whi le in F igure 5.10 ( b ) the converse i s true. Numerical propa-

gat ion l ines are l ines that have a slope Ax/A t i n the x - t p lane whi le

true propagation l ines have a slope dx/dt in the x - t plane. I n F igure

Page 110: KINEMATIC HYDROL06Y AND MODELLING

99

5.10 ( a ) information is obtained w i th in the i - I , i + I range by the

true propagation l ines. In F igure 5.10 information i s sought b y the t rue

propagation l ines outside the i - I, i + I range.

Since information outside th i s range i s not propagated by the

numerical scheme, i t cannot be found and thus i ns tab i l i t y w i l l resul t .

A more detai led explanat ion i s given by Stoker (1957).

For stabi I i t y of an exp l i c i t f i n i t e dif ference scheme the fol lowing

must therefore hold:

Lix dx At = d t - > - (5.39)

This i s referred to as the "CFL condit ion" a f te r Courant, Fr iedr ichs

and Lewy (1928), or simply the Courant c r i te r ion for s tab i l i t y .

t t

1-1 i i+1

( a ) ax > dx At dt

1-1 i i+i

Numerical propagation l ines; slope ( A x / A t )

- - - - True propagation l ines; slope (dx /d t )

Fig. 5.10 Comparison of numerical and theoretical propagation of information in a central dif ference scheme

I t has been noticed, however, that even i f one satisf ies the CFL

conditions i t i s not necessarily true that the solut ion of the dif ference

scheme i s inherent ly stable (e.g. by LAX, 1954; Richtmyer and Morton,

1967; Abbott, 1974). There are two poss ib i l i t i es which could g i ve r i se

to i ns tab i l i t y . There could be a physical d iscont inui ty in the flow, e.g.

Page 111: KINEMATIC HYDROL06Y AND MODELLING

100

a bore or a hyd rau l i c jump or pa ras i t i c waves could be generated w i th in

the difference scheme.

I n terms of character ist ics a physical d iscont inui ty imp1 ies the inter-

section of two or more characterist ics. Theoretical ly th is resul ts i n

dif ferent values of flow propert ies for a f i xed place and time. I n a

difference scheme w i th a f i xed g r i d th is theoretical mult ivaluedness

cannot b e accounted for and i n the solut ion i s present i n the form of

osci l lat ions. I f the difference scheme tends to amp1 i f y these osci l lat ions

i ns tab i l i t y w i l l occur. I f however, these osci l lat ions get damped s tab i l i t y

w i l l resul t and our scheme is referred to as a dissipat ive dif ference

scheme.

The dif ference scheme being used can also cause osci l lat ions ca l led

paras i t i c waves. I t has been noticed (e.g. by Abbott, 1974) that the

paras i t i c waves do not only occur when a physical d iscont inui ty occurs

but can ar ise out of the numerical procedure used. Therefore cer ta in

difference schemes have been found to produce pa ras i t i c waves whi le others

do not when considering the same physical problem.

There are two ways these problems can be overcome. I f a physical

discontinuity exists, i t can be located, the laws governing the discon-

t i nu i t y can be appl ied, and the laws governing continuous flow can be

appl ied to each side.

I t i s also possible to adjust any difference scheme to dampen instead

of amp1 i f y paras i t i c waves. The solutions obtained from these "dissip-

at ive dif ference schemes", a re ca l led "weak solutions", as i n th i s way

s tab i l i t y i s obtained a t the loss of accuracy (see Lax , 1954). Abbott

(1974) describes the dissipat ive schemes and the amount of accuracy lost

extensively.

I f one considers the method of sett ing up a d iss ipa t ive scheme, one

w i l l also i l l us t ra te the pr inc ip le of the weighted averages which is based

on averaging flow propert ies at a certain time in te rva l by l inear inter-

polat ion according to where the character ist ic curves intersect a t t =

constant l ine. Consider for example a backward dif ference scheme as shown

i n Fig. 5.11 and the way information about depth ( y ) is propagated. k;l k-1

Depth at time t = k - 1 i s taken to be as 4 ( 1 - r,)y I + v i - 1 (see

Figure 5.11) .

Suppose now one wants to propagate the depth at point Q. Then

interpolat ing l i nea r l y between points A and B one must use depth a t Q a t

time t = k-1 as (1 - r ) y I + r y i - 1 , where r i s the r a t i o of distance QB

over distance AB i n f i g u r e 5.11.

kT1 k-1

Page 112: KINEMATIC HYDROL06Y AND MODELLING

101

t

1 T at

1-1 I

-4 i+l

- t

Fig. 5.11 T h e p r i nc ip le of weighted averages for information prop-

agation i n a backward dif ference scheme.

I f one uses the fact that information is t ru l y propagated as a speed

of - dt then the slope of l i ne QP, shown i n Figure 5.11 should be the

value of - dx a t point Q (representing a point i n space a t a pa r t i cu la r

time) denoted as (dx /d t l g

S t r i c t l y speaking the value of r should therefore be

dx

dt

( 5 . 4 0 ) dx AX

r = ( 3 l Q / t

A dissipat ive dif ference scheme i s one as described above but wi th

r chosen i n such a way as to dampen osci l lat ions. The discrepancy

between r chosen and r i n equation (5 .40 ) w i l l resul t i n loss of accuracy

i n the solut ion of the dif ference scheme.

Page 113: KINEMATIC HYDROL06Y AND MODELLING

102

EFFECT OF FRICTION

Because the f r i c t i o n term in the f low equa t ion i s non l i n e a r i t makes

so lut ion of i m p l i c i t t ype equat ions more d i f f i c u l t t han wi thout the

f r i c t i o n term. A number of methods of accoun t ing f o r the f r i c t i o n term

was descr ibed b y Cunge et a l . (1980) : The f r i c t i o n g r a d i e n t i s assumed

to be of the form

sf = Q I Q I / K ~ (5.41)

where K = ARZ'3/n (Mann ing , S.I. u n i t s ) (5.42)

R = A/P (5.43)

I f a n e x p l i c i t scheme i s not acceptable, f o r instance i f Sf i s l a r g e

compared w i t h a y / a x , then some form of a v e r a g i n g of Sf in t ime i s

requ i red . Cunge et a l . suggest t a k i n g the ave rage Q ove r the d i s tance

i n t e r v a l a n d s q u a r i n g t h a t , r a t h e r t h a n the ave rage of the squares of

the Q l s over the i n t e r v a l , i.e.

(5.44)

An a l t e r n a t i v e wh ich produces a l i n e a r equa t ion a n d a l so y i e l d s

the correct s i g n of Q was suggested b y Stephenson (1984) f o r closed

condui ts : ,

[ ( Q " / K " ) ~ + (Q" /K" 1 ' 3 (5.45) + 1 - 0

j j j+l j + l 4

Stre lkof f (1970) i nd i ca tes tha t the d i r e c t e x p l i c i t scheme i s i n h e r e n t l y

unstable. He ind i ca tes the L a x t ype scheme shou ld s a t i s f y the Courant

c r i t e r i o n . For i m p l i c i t schemes he suggests t h a t to ensure s t a b i l i t y in

f r i c t i o n

At < A g / T K O

(5.46)

where KO = AoC 1% = Qo/ (5.47)

.'. At < gsf

(5.48)

Wyl ie (1970) suggested tha t f o r a s imple l i n e a r e x p l i c i t system f o r

open channels tha t for s t a b i l i t y

At 5 (Ax/c) (1 - gSfAt/2V)'" (5.49)

Even t h i s does not guarantee s t a b i l i t y acco rd ing to Wylie.

Page 114: KINEMATIC HYDROL06Y AND MODELLING

103

CHOOSING AN EXPLIC IT F I N I T E DIFFERENCE SCHEME FOR THE SOLUTION

OF THE ONE-D I MEN5 I ONAL K I NEMAT I C EQUAT I ONS

Constan t i n i d e s (1982) used v a r i o u s schemes f o r s o l v i n g the one-

d imens iona l k inemat i c e q u a t i o n s in an a t t e m p t to choose t h e most s u i t a b l e

scheme. The d i f f e r e n c e schemes men t ioned e a r l i e r a s w e l l a s new p r o p o s a l

schemes were used. The e q u a t i o n s were s o l v e d f o r d i f f e r e n t p r o b l e m s

w h i c h c a n a l s o b e s o l v e d w i t h a n a l y t i c a l methods. The a n a l y t i c a l sol-

u t i o n s were then compared w i t h r e s u l t s f r o m t h e n u m e r i c a l so lu t i ons . The

s u i t a b i l i t y o f t he v a r i o u s d i f f e r e n c e schemes was t h e n e v a l u a t e d on the

b a s i s o f a c c u r a c y and s t a b i l i t y . The cho ice o f a d i f f e r e n c e scheme was

done b y the p rocess o f e l i m i n a t i o n a s more c o m p l i c a t e d p r o b l e m s were

cons ide red . A new p r o p o s a l scheme, shown in T a b l e 5.1 was f o u n d to y i e l d

e x t r e m e l y a c c u r a t e r e s u l t s , t o b e s t a b l e as l o n g a s t h e Couran t c r i t e r i o n

i s s a t i s f i e d and to b e f a s t and economic to run. The scheme i s summar i sed

in T a b l e 5.1 b y d e f i n i n g the d i s c h a r g e r a t e a n d d e p t h a t a t ime i n t e r v a l .

TABLE 5.1 B a c k w a r d - c e n t r a l e x p l i c i t d i f f e r e n c e schemes

D i f f e r e n c e Scheme D i s c h a r g e R a t e D e p t h y a t

t = k - 1 - a t t = k - 1 ax

i - l i i + l

INDEX

x p o i n t s where f l o w p r o p e r t i e s a r e t o b e c a l c u l a t e d

+ p o i n t s used f o r c a l c u l a t i n g d i s c h a r g e a t t ime t = k - 1

0 p o i n t s used f o r c a l c u l a t i n g d e p t h a t t ime t = k - 1

The e x p l i c i t f i n i t e d i f f e r e n c e scheme shown i n T a b l e 5 . 1 a l t h o u g h

chosen b y t r i a l and e r r o r a s b e i n g t h e most e f f i c i e n t scheme, becomes

a p p a r e n t when one c o n s i d e r s t h e method o f c h a r a c t e r i s t i c s d e s c r i b e d

e a r l i e r . The schemes p r o p a g a t e i n f o r m a t i o n downs t ream o n l y a s i s

sugges ted b y t h e c h a r a c t e r i s t i c e q u a t i o n .

Page 115: KINEMATIC HYDROL06Y AND MODELLING

104

REFERENCES

Abbot t , M.B., 1974. Con t inuous f l ows , d i s c o n t i n u o u s f l o w s and n u m e r i c a l

Abbo t t , M.B., 1979. Computa t i ona l h y d r a u l i c s . P i t m a n P u b l . L t d . L o n d o n Abbo t t , M.B. and Verwey, A., 1970. F o u r - p o i n t method o f c h a r a c t e r i s t i c s .

J. Hyd. D iv . , ASCE, HY12, Dec. 1970. Amein , M. and F a n g , C.S. (19691, S t reamf low r o u t i n g - w i t h a p p l i c a t i o n s to

N o r t h Card l ina R i v e r s . Repor t No. 17, Wate r Resources Research I n s t i t u t e , U n i v e r s i t y o f N o r t h C a r o l i n a , Chape l H i l l , N o r t h C a r o l i n a .

Cons tan t i n ides , C.A., 1982. Two-d imens iona l k i n e m a t i c model l i n g o f t h e r a i n f a l I - r u n o f f process. Water Systems Research Programme, Repor t 1/1982. U n i v . o f t he W i t w a t e r s r a n d .

C o u r a n t , R., F r i e d r i c h s , K.O. and Lewy , H., 1928. Uber d i e p a r t i e l l e n D i f f e r e n t i a l g l e i c h u n g e n d e r Ma themat i schen P h y s i k , M a t h . A n n , 100.

Cunge, J.A., H o l l y , F.M. and Verwey, A., 1980. P r a c t i c a l Aspec ts o f Compu ta t i ona l R i v e r H y d r a u l i c s . P i t m a n s , Bos ton , 420 pp.

Isaacson, E., S tocker , J.J., and Troesch, B.A., 1956. Numer i ca l s o l u t i o n o f f l o o d p r e d i c t i o n and r i v e r r e g u l a t i o n p rob lems . I n s t . Ma th . Sci . Repor t No. IMM-235, New Y o r k U n i v e r s i t y , New Y o r k .

L a x , P.D., 1954. Weak s o l u t i o n s f o r non- l i n e a r h y p e r b o l i c e q u a t i o n s and t h e i r n u m e r i c a l a p p l i c a t i o n s . Comm. P u r e A p p l . M a t h . 7.

L i g g e t , J.A. and Woolh iser , D.A., 1967. D i f f e r e n c e s o l u t i o n s o f t h e s h a l l o w w a t e r e q u a t i o n . J. Eng. Mech. D i v . ASCE, A p r i l .

L i g h t h i l l , F.R.S. and Whi tham, C.B., M a y 1955. On k i n e m a t i c waves 1 . F l o o d movement in l o n g r i v e r s . P roc . Roy . SOC. London , A, 229.

Mahmood, K . and Y e v j e v i c h , Eds., 1975 , U n s t e a d y f l o w in open c h a n n e l s , Vols. I and I I , Water Resources P u b l i c a t i o n s , F o r t C o l l i n s , Co lo rado .

Over ton , D.E. and Meadows, M.E., 1976. S to rmwate r Model I i n g . Academic Press , New Y o r k .

R ich tmyer , R.D. and Mor ton , K.W.. 1967. D i f f e r e n c e methods o f i n i t i a l v a l u e prob lems. 2 n d Ed. In te rsc ience , New Y o r k .

Stephenson, D. 1984. P ipe f l ow A n a l y s i s . E l s e v i e r , Amsterdam, 274 p. Stoker , J.J. 1957. Water Waves. I n t e r s c i e n c e Press , New Y o r k . S t r e l k o f f , T., 1970. Numer i ca l s o l u t i o n o f Sa in t -Venan t e q u a t i o n s . Proc .

Von Neuman, J . , 1963. Recent t h e o r i e s o f t u r b u l e n c e . Co l l ec ted Works

Wyl ie, E.B., Nov. 1970. Uns teady f r e e - s u r f a c e f l o w compu ta t i ons . Proc .

a n a l y s i s . J. Hyd . Res., 12, No. 4.

ASCE. J. H y d r . D i v . 96(HY1) , 223-252.

(1949/1963) e d i t e d b y A.H. T a u b , 6 , Pergamon, O x f o r d .

ASCE, J. H y d r . D i v . , 9 6 ( H Y l l ) , 2241-2251.

Page 116: KINEMATIC HYDROL06Y AND MODELLING

105

CHAPTER 6

DIMENSIONLESS HYDROGRAPHS

UNIT HYDROGRAPHS

I n the same way tha t the peak f low g raphs in Chapter 3 can rep lace

the Rat ional equa t ion , so k inemat i c theory can be used to generate u n i t

hyd rog raphs fo r l a r g e r catchments. The s impl i f y i n g assumptions in the

Rat ional method a n d the peak f low c h a r t s a r e of ten i naccu ra te when i t

comes to l a r g e r catchments. A n extens ion of the Ra t iona l method became

necessary f o r l a r g e catchments a n d u n i t h y d r o g r a p h theory was developed.

The h y d r o g r a p h shape was needed for r o u t i n g too. A n analogous procedure

i s developed below f o r se lect ing h y d r o g r a p h s fo r v a r i o u s catchment

con f igu ra t i ons . A n advan tage ove r the u n i t h y d r o g r a p h methods i s t h a t the

hyd rog raphs here a r e dimensionless a n d a l low fo r v a r i o u s s impl i f i e d

catchment con f igu ra t i ons . T h i s i s o f fset b y a s l i g h t l y more compl icated set

of ca l cu la t i ons . As w i t h u n i t h y d r o g r a p h procedures however, the

catchment storm d u r a t i o n i s selected b y t r i a l .

The dimensionless hyd rog raphs presented below a r e synthes ized f o r

selected un i fo rm storm du ra t i ons . The catchments selected have v a r y i n g

shape a n d topography rep resen t ing the m a j o r i t y of smal l catchments. The

hyd rog raphs , be ing dimensionless, a r e presented as func t i ons o f r a i n f a l I

i n tens i t y a n d should therefore f i n d i n te rna t i ona l a p p l i c a b i l i t y . The user

must select r a i n f a l I r a t e s corresponding to des i red r e t u r n pe r iods as we l l

as i n i t i a l abs t rac t i on a n d i n f i l t r a t i o n ra tes a p p l i c a b l e to the catchment i n

quest ion.

The hyd rog raphs a r e in tended fo r use b y des ign engineers where not

on l y the h y d r o g r a p h peak f low r a t e b u t the shape of the h y d r o g r a p h i s

impor tant . The app l icat ion to d i f f e ren t catchments of v a r y i n g shape a n d

topography i n deve lop ing the hyd rog raphs makes t h e i r use more a d v a n t -

ageous over o ther techniques, as e x p l a i n e d below.

The l a g effect due to o v e r l a n d f low leng th , su r face roughness a n d

slope i s i n v a r i a b l y i nc luded i n the g r a p h s presented. The r e s u l t i s a more

r e a l i s t i c a n d e f fec t i ve h y d r o g r a p h f o r the des igner than i s poss ib le w i t h

p rev ious methods. The ef fect of f low concentrat ion i n streams a f t e r f l o w i n g

ove r land cannot be r e a d i l y assessed u s i n g isochronal methods ( o r any

other s t a n d a r d method). Nei ther can the effect of c h a n g i n g g round slope or

converg ing f low wh ich can a l l be accounted f o r w i t h the k inemat i c models

used here.

Page 117: KINEMATIC HYDROL06Y AND MODELLING

For peak discharge computation storms of durat ion smaller or equal

to the time of equ i l ib r ium of the catchment a re important, as a storm

could produce maximum peak discharge of f the catchment. Higher f lood

peaks may resul t from a shorter storm. T h e c r i t i ca l storm durat ion, i .e.

the storm durat ion that w i I I produce maximum peak discharge, w i l l depend

on two factors, these being the way the catchment responds to storms of

durat ion less than the catchment's time of equ i l ib r ium, the r a i n f a l l

characterist ics and the retent ive propert ies of the catchment's soi Is . Storms

of durations longer than the catchment's time of equ i l ib r ium are also

important, especial ly in cases where runoff volume i s of importance.

Neither a s ing le value of peak discharge ra te nor total runoff volume

are general ly suf f ic ient for a l l the purposes of the drainage engineer. The

time the catchment takes to reach i t s peak discharge as well as the

complete hydrograph shape are general ly of prime importance. I n cases

where runoff hydrographs have to be combined from di f ferent catchments o r

a re routed through hydraul i c conduits, the complete runoff hydrograph

shape i s essential for accurate design.

The hydrograph shape i s also important i n designing hyd rau l i c

structures to cope w i th floods of h igher re tu rn periods than those which

they were designed to ca r ry . The p a r t of the hydrograph not car r ied b y

the hydrau l i c conduit structure, i f known, can be diverted by sui table

means, while, i t s backwater effects upstream and the force on the

structure could also be evaluated.

The volume under the hydrograph i s of pa r t i cu la r importance when

detention or retention storage are contemplated. The rou t ing effect and

peak flow attenuation are pa r t i cu la r l y sensit ive to the hydrograph shape

as opposed to the peak.

I n general the dimensionless hydrographs should be of pa r t i cu la r

interest to the urban drainage engineer who w i l l wish to study stormwater

management and the effects of urbanisat ion - changing surface configur-

a t ion , roughness and permeabil i ty on flow rates.

DEVELOPMENT AND USE OF GRAPHS

I n developing runoff hydrographs for a catchment i t i s important to

understand how the catchment w i l l react to di f ferent storms. The volume of

surface runof f i s p r imar i l y a funct ion of r a i n f a l I and i n f i l t r a t i on

characterist ics, whi le the hydrograph shape is a function of catchment

shape, roughness and topographical characterist ics.

Page 118: KINEMATIC HYDROL06Y AND MODELLING

107

Computer models can account fo r any time and space va r ia t i on of

ra in fa l I and catchment character ist ics as described later. T h e i r use entai I s

substantial computer time and the model has to be used i n conjunction

wi th various storm inputs to ensure c r i t i ca l storm input. I n th i s section,

runoff hydrographs of f catchments of f i xed shapes and w i th spat ia l l y

var ied catchment character ist ics are presented. The resu l t ing hydrographs

are dimensionless, i.e. in terms of catchment size and r a i n f a l l rate,

al lowing the use of d i f ferent catchment dimensions and di f ferent roughness

and catchment slope parameters. The design engineer can use these

hydrographs for na tu ra l catchments which have simi l a r shapes to the model

catchments studied and where the roughness and slope character ist ics are

consistent. The design engineer s t i l l has to use h i s judgement i n

approximat ing catchment shapes and in averaging roughness and slope

pa ramet ers.

The kinematic equations have been used to prepare the hydrographs

presented by Constantinides and Stephenson (1982). Computer solut ion of

the f i n i t e dif ference form of the equation of motion and the flow

resistance equation was performed for numerous si tuat ions. With the use of

dimensionless parameters the number of var iab les i s reduced considerably

and a few graphs present a range of hydrographs covering the range of

parameters normal l y encountered.

Runoff hydrographs off three model catchments a re presented, these

being the fol lowing:

( a ) A sloping plane catchment

( b ) A converging surface catchment

( c ) A V-shaped catchment wi th stream

Design hydrographs may be obtained by comparing dimensional runof f

hydrographs fo r di f ferent storm durations, and selecting I the one resu l t ing

in maximum flow r a t e ( i f the unattenuated peak i s of concern) o r greatest

volume required to attenuate the flood i f storage is to be designed, or any

other relevant c r i t i ca l parameter.

L i s t of Symbols

x space ax i s along over land p lane (m or f t )

z space ax i s along channel (m or f t )

L length of over land p lane (m or f t )

Ls length of channel o r stream (m or f t )

So bed slope of over land p lane

Page 119: KINEMATIC HYDROL06Y AND MODELLING

108

n roughness coefficient of over land planes

n roughness coefficient of channel or stream

0 angle describing converging surface catchment ( rad ians )

r ra t i o describing converging surface catchment

w width of over land flow in converging surface catchment ( m or f t )

H depth of channel ( m o r f t )

b width of channel (m or f t )

yo depth of over land flow

qo discharge per u n i t width of over land flow (m’/s or f t ’ /s)

ys depth of channel flow (m or f t )

Q discharge of channel flow (m3/s or f t 3 / s )

Q discharge of converging surface (m3/s or f t 3 / s )

( m or f t )

Kinematic equations

The one-dimensional kinematic equations for flow have already been

presented and a re merely stated here. They consist of the cont inui ty

equation and an equation re la t i ng hydrau l ic resistance to flow.

aQ aA + - - - ax at - q~ (6.1 1 and q = uym ( 6 . 2 )

where Q i s the flow ra te (m’/s or f t ’ / s ) , A i s the cross sectional area

(m‘ or f t ’ ) , t i s time (secs), x i s the space a x i s (m or f t ) , q i s la te ra l

inf low per un i t length along the x - ax i s (m’/s or f t ‘ / s ) , q i s the

average discharge across a section per u n i t width (m’/s or f t ‘ /s) and y

i s the depth of water (m or f t ) . u , m are coefficients dependent on surface

roughness and bed slope.

L

EXCESS RA I NFALL

I n developing runof f hydrographs of f the simple catchments already

outl ined, an excess r a i n f a l l d is t r ibu t ion is required. I n th is case, excess

r a i n f a l l intensi ty i s assumed to be uniform in space, and constant du r ing

the storm and equal to a negative constant (being a constant i n f i l t r a t i on

ra te ) a f te r the storm. Fig. 6.2 depicts the assumed excess r a i n f a l l input

and F ig . 6 . 1 shows the assumed r a i n f a l l input and loss d is t r ibu t ion for

obtaining the excess r a i n f a l l d is t r ibu t ion shown i n Fig. 6 .2.

Page 120: KINEMATIC HYDROL06Y AND MODELLING

109

(mm/h

i l

U V f C

*

- * u - +4 t e d t (h)

* ). I i

l d

* t e

Fig. 6.1 Assumed r a i n f a l l input and d is t r ibu t ion losses

In Figs. 6 . 1 and 6 . 2 i i s r a i n f a l l intensi ty ra te (mm/h o r inches/h), i is

excess ra in fa l I intensi ty r a t e (mrn/h o r inches/h), td i s storm durat ion

( h ) , ted i s excess r a i n f a l l durat ion ( h ) , fc i s f i n a l i n f i l t r a t i on r a t e

(rnm/h or inches/h),f i s uniform in f i l t r a t i on ra te (mm/h o r inches/h) and u

is i n i t i a l abstraction (rnm or inches).

The f i na l i n f i l t r a t i on rate, fc i s a function of so i l type and

vegetation cover or land use. The excess r a i n f a l l intensi ty, ie, i s a

function of excess r a i n f a l l durat ion, t, which depends on local r a i n f a l l

characterist ics and on catchment soi I and vegetation cover propert ies.

Page 121: KINEMATIC HYDROL06Y AND MODELLING

110

Rainfall intensit: (mm/h)

t (hi 1 -

t (hi

1 - t t time runoff stops time runoff stops

Fig . 6 .2 Excess r a i n f a l l input

D I MENS IONLFSS EQUAT I ONS

I t i s evident from kinematic theory that if any catchment i s

subjected to a constant excess r a i n f a l l intensi ty i for a period equal to

or longer than i t s time of equ i l ib r ium i t w i l l produce a peak discharge

equal to i mu l t ip l ied by the area of the catchment. In deciding on

dimensionless parameters to be used for developing runoff hydrographs i t

therefore seems logical to plot the ra t i o o f discharge d iv ided by excess

r a i n f a l l intensity and area against a ra t i o of time div ided by the time of

equ i l ib r ium of a simple catchment, namely the s loping plane catchment.

Sloping Plane Catchment

For the s loping p lane catchment depicted i n Fig. 6 .3 the cont inu i ty

equation becomes:

(6.3a)

= - f c fo r t ? ted (6.3b)

Page 122: KINEMATIC HYDROL06Y AND MODELLING

The uniform flow equation can also be expressed as:

m qo = uoyo

1

where a = Soy/no

1 1 1

16.4)

and n o,So are the Manning coefficients and bed slope respectively.

Expressing y i n terms of qo from equation (6.4), d i f fe ren t ia t ing w i th

respect to t and subs t i tu t ing i n equation (6.3) y ie lds:

The fol lowing dimensionless var iab les are then defined:

x = x LO

P = qo

i eLo

tc 0

tCO

-

T = mte -

mt TD = ed

~ (6.9)

F = fc (6.10) - I e

where t is the time of concentration of a s loping plane i n kinematic co theory and is given by :

tco = (--- Lo l /m (6.11)

Subst i tut ing for qo, x , t , ted and f i n equation (6.5) and manipulat ing

y ie lds the fo l lowing equation:

m-1 'oie

1 ap aP

aT ax _ _ _

D

> TD

+ - = 1 f o r T < T 4

= -F for T (6 .12)

F ig . 6 . 3 Sloping plane catchment

Page 123: KINEMATIC HYDROL06Y AND MODELLING

P

&

F i g . 6 .& D i m e n s i o n l e s s r u n o f f hydrographs f o r the s l o p i n g p l a n e catchment

F = 0.0

Page 124: KINEMATIC HYDROL06Y AND MODELLING

F=O. 5

D Pmax versus' T

F i g . 6 .5 Dimensionless r u n o f f h y d r o g r a p h s f o r t he s l o p i n g p l a n e catchment

F = 0 . 5

Page 125: KINEMATIC HYDROL06Y AND MODELLING

114

where (m- l ) /m = 0.4 fo r m = 5/3

Equat ion (6.12) i s solved fo r f low P as a f u n c t i o n of t ime r a t i o T a t

D the ou t l e t end of the catchment p lane . Th is i s repeated fo r d i f f e ren t T

va lues. Di f ferent p lo t s a r e ob ta ined f o r d i f f e ren t F values in F igs . 6.4

a n d 6.5. The theory of Overton (1972) was a l so adap ted to cascades o f

p lanes b y K i b l e r and Woolhiser (1970).

Converging surface Catchment

For the converg ing su r face depic ted in F i g . 6.6 the c o n t i n u i t y

eq. (6.1) becomes (Woolhiser, 1969):

(6.13)

= - w f f o r t > ted (6. o c

where w = ( L o - x)B

(6. a n d Qo =

Express ing y i n terms of €Io f rom equat ion (6 .4 ) , d i f f e r e n t i a t i n g

respect to t a n d s u b s t i t u t i n g i n equa t ion (6.13) y i e l d s :

m WoaoYo

4 )

5 )

w i t h

l - l / rn

ed = i w f o r t j t

= - w f f o r t > t d

aQo wo 5 e o 7- 0 0 a t

- + ax

o c (6.16)

I n a d d i t i o n to dimensionless v a r i a b l e s de f i ned in equat ions (6.8) to

(6.10) the f o l l o w i n g dimensionless v a r i a b l e s a r e de f i ned (Singh, 1975):

F i g . 6 . 6 Converg ing su r face catchment

Page 126: KINEMATIC HYDROL06Y AND MODELLING

115

(6.17)

(6.18)

w h e r e ( 1 - r 2 ) / 2 i s the area of the catchment a n d r the r a t i o of bottom

segment to the to ta l catchment r a d i u s .

For the converg ing sur face tCO i s def ined as the time of e q u i l i b r i u m

fo r a s lop ing catchment of leng th L (1-r), i.e.

t i 0 - la Oiem-l] (6.19)

Subs t i tu t ing f o r x , Qo,wo,t, ted,fc a n d m in equat ion (6.16) a n d

man i p u I a t i n g y ie lds :

L o ( l - r ) 1 /m

-~

(6.20)

(6.21)

Equations (6.20) a n d (6.21) were so lved numer ica l l y to g i v e S as a

funct ion of T a t the ou t le t f o r d i f fe ren t T,, values. Plots a r e f o r v a r i o u s

r a n d F va lues as presented in F igs. 6.7 a n d 6.8.

V-Shaped Catchment w i t h Stream

I n the V-shaped catchment ( F i g . 6.9) the d ischarge from o v e r l a n d

f low i s used as input in the channel . Kinematic theory i s used to route

over land f low runof f through the channel. I t i s assumed tha t bo th

over land f low p lanes a r e s i m i l a r . From k inemat ic theory the c o n t i n u i t y

equat ion in the channel would be:

__ = 2q0L a Q ~ + b a y s

az at (6 .22)

A bas ic assumption i n equat ion (6.22) i s tha t the n a t u r a l depth of the

channel i s a lways grea ter than the water depth in the channel . Another

assumption i s tha t the channel area i s small compared to the p l a n e area.

The un i fo rm f low res is tance equat ion f o r the channel may be wr i t ten :

(6.23) m

Qs = baSYs

Express ing y in terms of Q from (6 .23) , d i f f e r e n t i a t i n g w i t h respect

to t a n d s u b s t i t u t i n g in to (6.22) y i e l d s :

Page 127: KINEMATIC HYDROL06Y AND MODELLING

S

Fig . 6 .7 D i m e n s i on I e s s r u n off h y d rog r alp h s f o r the con v e r g i n g s u r f ace c a t c h m e n t

R = 0.05 F = 0.00

.... m

Page 128: KINEMATIC HYDROL06Y AND MODELLING

0, - R=O .05 F=O. 50

5-

Smax versus T D

S

F i g . 6 .8 Dimensionless r u n o f f h y d r o g r a p h s fo r the converg ing s u r f a c e ca tchment

R = 0.05 F = 0.50

Page 129: KINEMATIC HYDROL06Y AND MODELLING

118

( 6 . 2 4 )

I n a d d i t i o n to the dimensionless v a r i a b l e s de f i ned i n equat ions ( 5 . 6 )

a n d (6.10) the fo l l ow ing dimensionless v a r i a b l e s a r e de f i ned :

Q = Q , / ~ L ~ L ~ ~ ~ ( 6 . 2 5 )

2 = z/L!j ( 6 . 2 6 )

where t i s the s a m e as fo r the s l o p i n g p lane , i .e. equa t ion ( 6 . 1 1 ) .

Subs t i t u t i ng fo r Q ,z,t ,qo, a n d rn in equat ion (6 .24 ) a n d r e - a r r a n g i n g

y i e l d s :

LO

2L5 0.6 ba 0.6 where G = (c )

Equa t ion ( 6 . 1 2 ) i s solved to y i e l d P as a

5 2L0

i n c t i o n c

the p lanes. P i s used as i n p u t i n equat ion ( 6 . 2 7 ) 10

( 6 . 2 7 )

( 6 . 2 8 )

T a t X .- 1 f o r

so lve for Q as a

func t i on of T a t the out le t f o r d i f f e r e n t va lues fo r F G G a n d the r e s u l t s

appended a t F igs . 6.10 a n d 6.13. The same problem was hand led i n a

d i f f e ren t ' way b y Wooding (1965).

H>ys a t a1

Ca t c hme n t

F-ig. 6 .9 V-shaped catchment w i t h stream

Page 130: KINEMATIC HYDROL06Y AND MODELLING

9.- d

9- d

Q -

5-

9- d

61- d

3- d

8- d

R- d

3- d

F i g . 6 .10 D i m e n s i o n l e s s runoff hydrographs for the V-shaped catchment with stream

G = 0.5 F = 0.0

Page 131: KINEMATIC HYDROL06Y AND MODELLING

Fig . 6 .ll D i m e n s i o n l e s s runoff h y d r o g r a p h f o r t h e V - s h a p e d c a t c h m e n t w i t h s t r e a m

G = 0.5 F = 0 . 5

>

N 0

Page 132: KINEMATIC HYDROL06Y AND MODELLING

I

F i g . 6 . 1 2 D i m e n s i o n l e s s r u n o f f h y d r o g r a p h s f o r t h e V - s h a p e d c a t c h m e n t b v i t h s t r e a m

G = 2 . 0 F = 0.0

Page 133: KINEMATIC HYDROL06Y AND MODELLING

G=2.0

Fig. 6 .13 Dimens ionless runoff hydrographs fo r the V-shaped catchment wi th s t r e a m

G = 2.0 F = 0.5

Page 134: KINEMATIC HYDROL06Y AND MODELLING

123

F i g . 6 . 1 4 E x a m p l e : Catchment w i t h s t ream

Page 135: KINEMATIC HYDROL06Y AND MODELLING

124

O v e r l a n d f l o w

Channel f l o w

X w

Cover M a n n i n g ' s n Slope

Medium g r o w t h 0.15 5%

Medium g r o w t h 0.15 1.2%

meadow

meadow

0 0 2 4 6 8 10

EXCESS STORM DURATION (HOURS]

F i g . 6.15 Examp le : Excess i n t e n s i t y - d u r a t i o n r e l a t i o n s h i p

TABLE 6 .1 Examp le : M a n n i n g ' s roughness c o e f f i c i e n t s

a n d b e d s lopes

Page 136: KINEMATIC HYDROL06Y AND MODELLING

125

USE OF D I MENS I ONLESS HYDROGRAPHS

The procedure for using the dimensionless hydrographs i s i l l us t ra ted

by means of an example.

Problem

Consider the na tura l catchment out l ined i n Fig. 6.14 and the 5

year recurrence in te rva l excess IDF relat ionship shown i n Fig. 6.15.

Obtain the runoff hydrograph producing the worst peak discharge off

the catchment. The excess IDF relat ionship given al lows for the storm

spat ia l d is t r ibu t ion (which has been reduced from the point excess

r a i n f a l l IDF re la t ionsh ip ) and has been developed using local r a i n f a l l

data and catchment characterist ics. The average f i na l i n f i l t r a t i on ra te

of the soi l ( f ) i s 1.5 mm/h.

So I u t i on

The natura l catchment shown i n F ig . 6.14 i s approximated by a

V-shaped catchment wi th stream. The main waterway i n the catchment

has a length of 1350 metres and subdivides the catchment approximately

i n the middle. The other waterways are minor and most of the catchment

flow is i n the form of over land flow f lowing perpendicular ly to the

waterway. The waterway . is assumed to be a rectangular channel 31-17 wide.

The assumed V-shaped catchment w i th stream is i l l us t ra ted i n F ig . 6.16.

Manning's roughness coefficients are shown i n Table 6 .1 whi le bed slopes

are averaged using the contour l ines from Fig. 6.14 and summarized i n

Table 6.1. Parameter G must be evaluated using (6.28):

G = Z(1350)- 2 (308.9)

Figs. 6.10 and 6.11 with G = 0.5 a re used for choosing the c r i t i ca l

runoff hydrographs. T h e i n f i l t r a t i on parameter F i s a function of the

excess r a i n f a l l rate.

Table 6.2 shows the calculat ions i n choosing a c r i t i ca l runoff hydrograph

and dimensioning i t . The table refers to Figure 6.10.

Page 137: KINEMATIC HYDROL06Y AND MODELLING

126

Outlef

Scale I :7500

Fig . 6 .76 E x a m p l e : Assumed c a t c h m e n t

Page 138: KINEMATIC HYDROL06Y AND MODELLING

TABLE 6 .2 Exarrple : Choosing and dimensioning runoff hydrograph w i t h m9x lmum peak c i scha rge

- -. r----------- -___

1 . 2

1 . 4

1 2 . 7 0 U . 1 1 8

1 1 . 6 3 0.12' ,

0 . 6 ~ 0 . 4 ( 3 . 6 ~ 1 O b )

3 6 0 0 0 1

t C O

a Qs F a c t o r s t.o d imeno j .on I r u n o f F hydrograph

Mu 1 t l p l y var j.a bX e

___~.

source

var j.a bX e

units hours m / h r

source guess excess IDF's

1 . o 1 3 . 9 9 0 . 1 0 7

0 . 5 1 7 . 5 5 0.086 --

a x is

m' I s hours hours I I

dirnensionl.ess hydrographs

0 . 9 9 5

0 .go9

1 . 6 7 5

1 . 1 0 1

I

1 .034 1.934 1 1 . 6 6 2 . 7 0 1 P . 6 2 0 I 2 . 9 4 2

1 1 . 0 7 1 2.178 1 1 . 2 9

_" ....,

Critical storm has an CXCPSF: duration of 1 . j : h o u r s prodiicIny a dlsclrarqc peak of 1 .70 c u m ~ c ' i .

~ ~ . . - - - , . - - . _ . . . . . . - . - - - I - - _ -

Page 139: KINEMATIC HYDROL06Y AND MODELLING

3.0

2 -5

n E

I .o

0.5

0.0 1.0 2.0 3.0 Time (hours)

!Fig. 6 . 1 7 Examp le : C r i t i c a l runo f f h y d r o g r a p h

4.0 5.0

Page 140: KINEMATIC HYDROL06Y AND MODELLING

129

As c a n b e seen f r o m T a b l e 6 . 2 the s to rm p r o d u c i n g the max imum p e a k

d i s c h a r g e o f f t he ca tchmen t h a s an excess s to rm d u r a t i o n o f 1.2 h o u r s a n d

p roduces a p e a k d i s c h a r g e o f 2.70 cumecs. The comp le te r u n o f f h y d r o g r a p h

i s o b t a i n e d f r o m F i g . 6.10 f o r a v a l u e of TD = 1.93. The h y d r o g r a p h i s

r e n d e r e d d i m e n s i o n a l b y m u l t i p l y i n g t h e two a x e s o f F i g . 6.10 b y t h e

v a l u e s g i v e n i n T a b l e 6.2 a n d i s shown in F i g . 6.17.

REFERENCES

Constan t i n ides , C.A. and Stephenson, D., 1982. D imens ion less h y d r o g r a p h s u s i n g k i n e m a t i c theo ry , Water Systems Research Programme, Repor t 5/1982, U n i v e r s i t y o f t he W i t w a t e r s r a n d .

K i b l e r , D.F. a n d Woolh iser , D.A., 1970. The k i n e m a t i c cascade a s a h y d r a u l i t model. H y d r o l . p a p e r 39, Co lo rado S ta te U n i v e r s i t y , F o r t Col I i ns .

Over ton , D.E., 1972. K i n e m a t i c f l o w o n l o n g impermeab le p l a n e s , Water Res. B u l l . 8 ( 6 ) .

S i n g h , V.P., 1975. H y d r i d f o r m u l a t i o n o f k i n e m a t i c w a v e model o f wa te rshed r u n o f f , J. H y d r o l . 27.

Wooding, R.A., 1965. A h y d r a u l i c model f o r t he ca tchmen t s t ream p r o b l e m ,

Woolh iser , D.A., 1969. O v e r l a n d f l o w o n a c o n v e r g i n g su r face . T r a n s . I I . Numer i ca l So lu t i ons . J . H y d r o l . 3.

Am. SOC. A g r . E n g r . 12 (4 ) , 460-462.

Page 141: KINEMATIC HYDROL06Y AND MODELLING

130

CHAPTER 7

STORM DYNAM I CS AND D I STR I BUT I ON

DES I GN PRACT I CE

I t i s common pract ice to design stormwater systems for uniform

intensi ty, uni formly distr ibuted, stat ionary storms. Lack of data often

makes any other basis for design d i f f i cu l t . There i s l i t t l e information

ava i lab le on instantaneous precipi tat ion rates, storm cel l size and cel l

movement. Time average precipi tat ion ra te or p rec ip i ta t ion depth can be

predicted from intensity-duration-frequency curves (e.g. Van Wyk and

Midgley, 1966) or equations such as that of Bel l (1969). The most common

method of abstract ing data from r a i n f a l l records is to select a durat ion

and calculate the maximum storm precipi tat ion i n that period. The so-

defined storm may include times of low r a i n f a l l intensity immediately

preceding and succeeding a more intense prec ip i ta t ion rate.

Such simp1 i f icat ions in data render runoff calculat ion s impl ist ic.

Even when employing numerical models i t i s simplest to use a uniform

intensity hyetograph for every point on the catchment. Although time

va ry ing storms a re sometimes used, the prec ip i ta t ion pattern i s seldom

related to the maximum possible runoff rate.

Warnings have been made against s impl i f icat ion in ra in fa l I

patterns. For example, James and Scheckenberger (1983) indicated that

storm movement can affect' the runoff hydrograph s ign i f i can t ly . Eagleson

(1978) has expounded on the spat ia l v a r i a b i l i t y of storms and Huff (1967)

studied the time v a r i a b i l i t y of storms.

Although much research has been done on storm v a r i a b i l i t y ,

re la t i ve ly l i t t l e has been publ ished on the resu l t ing effects on runoff

hydrographs (Stephenson, 1984). Research appears to have concentrated on

models of pa r t i cu la r (monitored) storms over pa r t i cu la r catchments. The

design engineer or hydrologist does not have suff ic ient guidance as to

what storm pattern to design for. Presumably cer ta in ra in fa l I sequences,

spat ia l var ia t ions and storm movement w i l l resu l t i n a higher ra te of

runoff than other r a i n f a l l patterns for a pa r t i cu la r catchment. Apart from

an indicat ion of what storm pattern produces the worst flood, one needs an

indicat ion of what storm pattern could be expected for the design

catchment. Such da ta should be ava i l ab le on a frequency basis i n order to

estimate the l ikel ihood of the worst hyetograph shape, spat ia l storm

d is t r ibu t ion and movements occurring. Although isolated catchments have

been studied a t many research centres considerably more information is

required for the country as a whole. Analysis and use of such data

Page 142: KINEMATIC HYDROL06Y AND MODELLING

131

i n di f ferent combinations would requ i re many t r i a l s before the worst storm

patterns would emerge. An a l te rna t ive approach i s a determinist ic one.

Before ca lcu la t ing runoff, the analyst determines the fol lowing in order

to select the correct design storm:

i ) The storm durat ion. For small catchments th is i s usua l ly equated

to the time of concentration of the catchment.

i i ) Var iat ion i n p rec ip i ta t ion ra te du r ing the storm

i i i ) Spat ia l d is t r ibu t ion of the storm; and the

i v ) Direct ion and speed of movement of the storm.

The above information could be employed i n numerical modell ing

of the design storm. Al ternat ively, fo r minor structures, s impl ist ic

methods such as the Rational method could be employed. Since data

shortage often l im i ts the accuracy of modelling, the la t te r , manual

approach, i s often su f f i c ien t ly accurate. The guides presented below

may assist both the modeiler b y p rov id ing information on which design

storm would produce the highest runoff ra te and the formula orientated

solut ion by prov id ing factors to account fo r storm v a r i a b i l i t y .

STORM PATTERNS

Variation in rainfal l intensity during a storm

I n order to understand the reasons for and extent of v a r i a b i l i t y

(spa t ia l and temporal) of r a i n f a l l , i t i s useful to describe the physical

process of cloud formation and precipi tat ion. Convective storm clouds

or ig ina te from r i s i n g a i r masses. The size and shape of the r i s i n g a i r

mass depends on the topography and the a i r masses w i l l usua l l y be of

smaller scale than the a i r mass which has been brought by advection

and which contains suf f ic ient moisture fo r ra indrops to precipi tate.

Mader (1979) concluded from radar observations of storms in South Afr ica

that storm areas, durat ion and movement were related to mean 500 mb

winds, thermal i ns tab i l i t y and wind shear.

Most recorded hyetographs indicate that r a i n f a l I intensi ty i s

highest somewhere i n the middle of the storm durat ion. Huff (1967)

presented extensive data on r a i n f a l l rates fo r storms of va ry ing intensi ty

ind ica t ing a time d is t r ibu t ion somewhat between convex upward and

t r i angu la r . In order to create a hyetograph which could be used for

simple design of interconnecting stormwater conduits, Keifer and Chu

(1957) proposed an exponential d is t r ibu t ion termed the Chicago storm.

Page 143: KINEMATIC HYDROL06Y AND MODELLING

132

The posit ion of the peak intensity could be var ied and was observed

to occur about 0.375 of the storm durat ion from the s ta r t .

i

mm/h

I

'1

Fig. 7.1 Hyetograph with peak near beginning

Spat i a I d is t r ibu t ion

The nature of storm cel ls w i th in a potent ia l r a i n area has been

documented by many researchers e.g. Waymire and Gupta (1981). The

persistence of storms observed i n the northern hemisphere has not been

found i n countr ies south of the equator however (Carte, 1979). The la rger

a i r mass w i th in which storm cel ls occur i s referred to as the synoptic

area (see F ig . 7.2). The synoptic area can last f o r 1 to 3 days and

the size i s general ly greater than 104km2. Within the synoptic area are

la rge mesoscale areas (LMSA) of lo3 to lo4 km2 which have a l i f e of

several hours. Sometimes small mesoscale areas (SMSA) of lo2 to lo3 k m 2 can

exist simultaneously. Within the mesoscale areas or sometimes on the i r

own, convective cel ls, which are regions of cumulus convective precipi-

tat ion, exist. These may have an area extent of 10 to 30 km2 and have

an average l i f e of several minutes to ha l f an hour. These cel ls a re of

concern to the hydrologist involved i n stormwater design. By comparing

the storm cel l size w i th the catchment size he can decide whether the

Page 144: KINEMATIC HYDROL06Y AND MODELLING

133

cell scale i s s ign i f i can t i n inf luencing spat ia l d is t r ibu t ion over the

catchment. There may be over lapping cel ls which could resul t i n greater

intensity of p rec ip i ta t ion than for the s ingle cel ls. Eagleson (1984)

investigated the stat ist ics of storm cel l occurrences i n a catchment and

found the poss ib i l i t y

lapping small storms.

Synoptic

of large storms can be computed assuming over-

a r e a 7

Fig. 7.2 Areal d is t r ibu t ion of a convective storm

The shape of the storm cel l has s igni f icance for catchments la rger

than the cel l . Scheckenberger (1984) indicates that the cel ls are e l l i p -

t ical which may be related to storm movement. The r a i n f a l l intensi ty

i s highest a t the centre and decreases outwards. The intensi ty has been

shown to decrease exponential ly, r a d i a l l y outwards from the focus, i n

various local i t ies as i n Fig. 7.3 (Wilson et al., 1979). Generally the

v a r i a b i l i t y i n intensi ty does not necessarily cause higher runoff intensit ies

but on small catchments near the centre of the cel l the average precipi-

tat ion can be higher than for a la rger catchment, and as a ru le , the

r a i n f a l l depth increases the smaller the storm area.

Storm movement

Clouds general ly t ravel w i th the wind at the i r elevation. As the

r a i n f a l l s i t goes through lower speed wind movements so that the most

s igni f icant speed is that of the clouds. The direct ion of lower winds

can also d i f f e r from the general d i rect ion of movement of the upper strata.

This may be the reason Changnon and Vogel (1981) observed s l i gh t l y

dif ferent direct ions for storm and cloud movements. Dixon (1977) analysed

storm data and indicated storm cel ls have a c i rcu la t ion i n addi t ion to

a general forward movement.

Page 145: KINEMATIC HYDROL06Y AND MODELLING

134

NUMERICAL MODELS

The effect of storm dynamics and d is t r ibu t ion can be studied

numerical ly and the resul ts for simple plane catchments are presented

below. The kinematic equations are employed i n the numerical scheme.

Although these solutions are no subst i tute for detai led catchment modell ing

when there are suf f ic ient data, they do indicate which var iables are

l i ke l y to be the most important i n storm dynamics. I t must be pointed

out that the fo l lowing studies are s impl i f ied to the extent of assuming

constant speed storms with unvary ing spat ia l d is t r ibu t ion . True storms

are considerably more complex as explained i n the above reference.

Fig. 7.3 I l l us t ra t i on of spat ia l d is t r ibu t ion of p rec ip i ta t ion intensi ty

Kinematic equations

The one-dimensional kinematic equations are for a simple plane

catchment (Brakensiek, 1967):

The cont inui ty equation; a y + a q = i and at ax

Flow resistance; q = a y m

y is water depth on the plane, q is discharge ra te per un i t width of

plane, ie i s excess r a i n f a l l rate, t i s time, x i s longi tudinal distance

down the plane, a i s assumed a constant and m i s a coefficient. Employ-

ing the Manning discharge equation i n S . I . un i ts a = J (So) /n where

So i s the slope of the plane, n i s the Manning roughness coeff icient,

and m is 5/3.

Page 146: KINEMATIC HYDROL06Y AND MODELLING

135

The number o f v a r i a b l e s c a n be reduced to f a c i l i t a t e s o l u t i o n

b y r e - w r i t i n g t h e e q u a t i o n s in terms of t h e f o l l o w i n g d imension less

v a r i a b l e s :

x = x / L

T = t / t c

I = i / i

Q = q/iaL e a

where L i s t h e l e n g t h o f o v e r l a n d f l ow , ia i s t h e t ime and space a v e r a g e d

excess r a i n f a l l r a t e and tc i s t h e t ime to e q u i l i b r i u m , o r t ime o f

c o n c e n t r a t i o n , f o r a n a v e r a g e excess r a i n f a l l i . S u b s c r i p t c r e f e r s to

t ime o f concen t ra t i on , d to s to rm d u r a t i o n , a to t ime and space a v e r a g e

a n d p to peak . Then t h e f o l l o w i n g exp ress ion f o r t c a n b e d e r i v e d :

a

I n g e n e r a l t he d imension less v a r i a b l e s a r e p r o p o r t i o n a l t o t h e

d imensioned v a r i a b l e s . Thus Q i s t h e p r o p o r t i o n o f max imum f l o w a t

e q u i l i b r i u m . S u b s t i t u t i n g y = ( q / a ) f r om t h e r e s i s t a n c e e q u a t i o n and

f o r X ,T , I and Q f rom t h e e q u a t i o n s f o r t he d imens ion less terms, the

f o l l o w i n g e q u a t i o n r e p l a c e s t h e c o n t i n u i t y equa t ion .

1 -m

T h i s s i n g l e e q u a t i o n c a n be s o l v e d f o r Q i n s teps of T and X f o r v a r i o u s

d i s t r i b u t i o n s o f I and m = 5 / 3 .

F i g . 7 . 4 P l a n e r e c t a n g u l a r catchment s t u d i e d w i t h s to rm

Numerical Scheme

A l t h o u g h i t a p p e a r s a s i m p l e m a t t e r to r e p l a c e d i f f e r e n t i a l s b y

f i n i t e d i f f e r e n c e , t h e r e c a n b e p rob lems of conve rgence and speed of

s o l u t i o n u n l e s s t h e c o r r e c t n u m e r i c a l scheme i s employed. The s imp les t

Page 147: KINEMATIC HYDROL06Y AND MODELLING

136

f i n i t e dif ference schemes are exp l i c i t , employing values of Q at a

previous T to estimate new values a t the next time T . This method i s

not recommended as i t i s often unstable when discont inui t ies i n r a i n f a l l

intensi ty occur. Upstream differences are usua l ly taken i n such schemes,

as downstream effects cannot be propagated upstream according to

Huggins and Burney (1982). I t i s also necessary to l im i t the value of

AT/AX to ensure s tab i l i t y .

Woolhiser (1977) documented var ious numerical schemes inc lud ing

very accurate methods such as Lax-Wendroff ' s . Brakensiek (1967)

suggested 3 schemes: four point , imp l ic i t and exp l i c i t . His second scheme

( imp l i c i t ) i s adopted here as i t i s accurate and r a p i d for the examples

chosen.

I M -'l M * X

Fig. 7.5 X-T g r i d employed i n numerical solut ion

Employing the notat ion i n the g r i d i n Fig. 7.5,

aQ - Q1-Q2 ax AX

Q1+Q -Q -Q aQ - 2 3 4 - - 2T 2AT

Since aQ/ aT i s not sensit ive to Q2/5, ( the power i s less than one),

Q2/5 i s approximated by ((Q3+Q4)/2)2/5, i.e. an exp l i c i t form i s employed

here or else the resu l t ing equations would be d i f f i cu l t to solve. The

f i n i t e difference approximation to the d i f fe ren t ia l equation is thus:

Page 148: KINEMATIC HYDROL06Y AND MODELLING

137

Q 2 + Q +Q -Q 3 4 2 Q +€I 0 . 4 5 (3) ( 1 + - )

2 AX 2A T s o l v i n g f o r Q 1 : Q , = -

3

1 5 / 3 Q3+Q4 0 . 4 (- ) _ _ - ~ .

2AT A X 2

S t a r t i n g a t t h e u p s t r e a m e n d o f t h e ca tchmen t w h e r e Q2 = 0 and r e p l a c i n g

Q2 a t the n e x t p o i n t b y Q1 a t t h e p r e v i o u s p o i n t , a l l t h e v a r i a b l e s o n

t he r i g h t hand s i d e a r e k n o w n a n d one c a n s o l v e f o r Q , . The d imens ion -

less t ime s tep used was 0.05. The d i f f e r e n c e f o r s m a l l e r t ime s teps was

f o u n d b y t r i a l to b e u n n o t i c e a b l e .

SOLUT!ONS FOR DYNAMIC STORMS

T ime varying s to rms

One o f t h e most f r e q u e n t l y used s i m p l i f y i n g assumpt ions , b u t a

d a n g e r o u s assumpt ion , i n m a n y r a i n f a l I - r u n o f f mode ls i s t h a t o f c o n s t a n t

p r e c i p i t a t i o n r a t e t h r o u g h o u t the s to rm d u r a t i o n . The tempora l v a r i a t i o n

of p r e c i p i t a t i o n i n t e n s i t y f o r s to rms o v e r I l l i n o i s was documented b y

H u f f (1967) whose f i n d i n g s were o f t e n e x t r a p o l a t e d to o t h e r r e g i o n s . He

sugges ted i d e n t i f y i n g t h e q u a r t i l e o f max imum p r e c i p i t a t i o n and f u r t h e r

e m p l o y i n g p r o b a b i l i t i e s o f t he r a i n s o c c u r r i n g sooner o r l a t e r t h a n the

med ian . H u f f p l o t t e d h i s r e s u l t s a s mass r a i n f a l l c u r v e s so i t i s no t

easy t o d i s c e r n t h e s h a p e o f t h e h y e t o g r a p h s u n l e s s h i s c u r v e s a r e

d i f f e r e n t i a t e d w i t h respec t to t ime. I n g e n e r a l t hey a r e f o u n d t o b e

convex u p w a r d s . A p a r t f rom K e i f e r a n d C h u ' s (1957) s y n t h e t i c hye to -

g r a p h , ev idence p o i n t s to convex up h y e t o g r a p h s . The assumpt ion o f a

t r i a n g u l a r h y e t o g r a p h i s t h u s ex t reme a s a r e a l s to rm w o u l d t e n d t o

b e less ' p e a k y ' t h a n a t r i a n g u l a r one. The g e n e r a l t r i a n g u l a r - s h a p e d

r a i n f a l l r a t e v e r s u s t ime r e l a t i o n s h i p d e p i c t e d in F i g . 7.6 i s t h e r e f o r e

s t u d i e d . The t ime o f t h e p e a k i s v a r i e d ' be tween t h e s t a r t o f t h e s to rm

(TP = 0 ) and t h e e n d ( T = 1 ) . P

' I

T 1 T P

F i g . 7.6 T e m p o r a l l y v a r y i n g s to rm

Page 149: KINEMATIC HYDROL06Y AND MODELLING

138

Simple models of hyetographs assume a single peak i n r a i n f a l l

intensi ty. Storms with mult ip le major peaks can be synthesized from over-

lapp ing compound storms. I t i s a s ingle peak-storm which is considered

here and the time of the peak intensi ty permitted to va ry .

Q .

Constant exce'

0 1 2 T

Fig . 7.7 Simulated dimensionless hydrographs caused by storms with

time va ry ing r a i n f a l l intensi t ies (F ig . 7.6) bu t the same total p rec ip i ta t ion

Design storms for flood estimation general ly peak i n intensi ty i n

the f i r s t ha l f of the storm. T h i s i s an a l l ev ia t i ng factor i n peak runof f ,

as indicated i n Fig. 7.7. That i s a plot of hydrographs from the simple

catchment depicted i n F ig . 7 . 4 wi th var ious hyetographs imposed, i . e .

a rectangular hyetograph and t r i angu la r hyetographs with various peak

times were employed. The ordinate i n F ig . 7.7 i s the discharge ra te

expressed as a f ract ion of the mean excess prec ip i ta t ion rate, and the

abscissa i s time as a f ract ion of the time of concentration for a uniform

storm with p rec ip i ta t ion ra te equal to the mean ra te over the storm for

each of the t r i angu la r hyetographs.

I t w i l l be observed from F ig . 7.7 that i f the storm intensi ty peaks

in the f i r s t p a r t of i t s durat ion ( T 50.5) the peak runoff i s less than

that for a uniform storm of the same average intensi ty. This holds for

peaks up to 80% of the durat ion af ter commencement of r a i n . Only for

the peak a t the end of the storm (e.g. T = 1.0) does the peak runoff

exceed that for a uniform intensi ty storm. Then the peak runoff i s

approximately 10% greater than for a uniform storm of the same durat ion.

P

P

Page 150: KINEMATIC HYDROL06Y AND MODELLING

139

Q . T d = 0.4 0.6 0,8 1 1.2

I . _ . . . _ . _ . a

0 1 2 1

Fig. 7.8 Simulated dimensionless hydrographs caused by late peaking storms of constant volume and va ry ing durat ion

I f the storm durat ion i s not equal to the time of concentration for

a uniform storm however, the peak can be higher. Fig. 7.8 i s for a

storm of constant volume peaking a t i t s termination ( T P = 1 ) and for

durat ions represented by Td = 0.4 to 1.2. These hydrographs are for

storms of equal volume so that the shorter durat ion storms are of a

higher intensi ty than longer durat ion storms. Depending on the IDF curve

then a short durat ion storm may or may not resul t i n a higher runoff

ra te than for one of durat ion equal to the concentration time of the

catchment.

I t should be recal led that a l l other hydrographs plotted are for

a specif ied excess ra te of precipi tat ion. That is, i f the hyetograph i s

uniform so are the abstractions. I n practice, losses w i l l be higher a t

the beginning of a storm, resu l t ing i n a late peak i n excess r a i n even

for a uniform prec ip i ta t ion rate. This has the same effect as a storm

peaking i n the la t te r pa r t as i t increases the peak runoff . The effect

i s compounded as a storm which peaks near the end w i l l occur on a

re la t i ve l y saturated catchment so a greater proport ion of the higher ra te

of r a i n w i l l appear as runoff n?ar the end. This tends to make the

excess r a i n versus time graph concave upwards i f the hyetograph was

a s t ra igh t - l ined t r iang le . This effect i s not modelled here bu t a l l the

effects resul t i n a higher peak than for a uniform input. Scheckenberger

i n fact indicates peaks up to 30% greater than for uniform storms due

to the sum of these effects.

Page 151: KINEMATIC HYDROL06Y AND MODELLING

140

Spatial var ia t ions

I t appears that areal d is t r ibu t ion of the storm i s less effect ive

than temporal d is t r ibu t ion i n inf luencing peak runoff rate. Fig. 7.10

represents the simulated runoff from a 2-dimensional p lane subjected to

various d is t r ibu t ions of a steady excess ra in . The storm durat ion was

made in f i n i t e i n case the time to equ i l ib r ium exceeded the storm durat ion.

The spat ia l (o r longi tudinal i n th is case) d is t r ibu t ion was assumed

t r iangu lar , the peak va ry ing from the top to the bottom of the catchment

as i n F ig . 7.9.

I

'P =2

I , =1

peak intensity

_ -

Fig. 7.9 Catchment wi th long i tud ina l l y va ry ing storm

The same example would app ly to a uniform intensi ty storm over

a wedge-shaped catchment, the catchment width increasing I inear ly to

X and then decreasing l inear ly towards the outlet where X = 1 . P

0 1 2 1

F ig . 7.10 Simulated dimensionless hydrographs caused by steady semi-

i n f i n i t e storms of va ry ing d is t r ibu t ion down catchment (F ig . 7.9).

Page 152: KINEMATIC HYDROL06Y AND MODELLING

141

F i g . 7.10 d e p i c t s the r e s u l t i n g s i m u l a t e d h y d r o g r a p h s w h i c h i n d i -

ca te t h a t the r u n o f f n e v e r exceeds t h a t f o r a r e c t a n g u l a r s p a t i a l d i s t r i -

b u t i o n of r a i n f a l l . The r e s u l t i n g d imens ion less t ime to e q u i l i b r i u m i s

n e a r l y u n i t y f o r a l l cases, i m p l y i n g the same t ime o f c o n c e n t r a t i o n h o l d s

f o r uneven d i s t r i b u t i o n a s f o r u n i f o r m d i s t r i b u t i o n o f r a i n . The re i s

t he re fo re no t a chance o f a s h o r t e r d u r a t i o n s torm w i t h a h i g h e r

i n t e n s i t y c o n t r i b u t i n g to a g r e a t e r p e a k t h a n the u n i f o r m storm ( u n l e s s

the i n t e n s i t y - d u r a t i o n c u r v e is a b n o r m a l l y s teep) s i n c e the t ime to e q u i l -

i b r i u m i s no t reduced r e l a t i v e to a u n i f o r m storm.

X=x/L cotchmcnt lcngth

F i g . 7.11 Catchment w i t h a s torm m o v i n g down i t

9

1

1 1

1 2 1

F i g . 7.12 S imu la ted d imension less h y d r o g r a p h s caused b y u n i t s teady u n i f o r m storms m o v i n g down catchment a t d i f f e r e n t speeds (see F i g . 7.11)

Page 153: KINEMATIC HYDROL06Y AND MODELLING

142

Moving storms

Fig. 7.12 represents simulated hydrographs from a storm wi th a

constant p rec ip i ta t ion ra te and spa t ia l l y uniform travel I i ng down the

catchment. The long i tud ina l extent of the storm cel l i s the same as the

length of the catchment since in general smaller area storms are reputed

to be more intense than la rger cel ls. C i s X/Tc o r the speed d iv ided

b y the ra te of concentration. For slow storms ( C S 1 ) the dimensionless

hydrograph peak i s un i t y whi le for faster storms the peak is less. The

faster storms do not f a l l on the catchment long enough to reach equi-

I i b r i um.

Q 1

I

c = S

0 1 ' 2 7

F ig . 7.13 Simulated dimensionless hydrographs caused by steady uniform semi-inf inite storms moving down catchment a t d i f ferent speeds

Fig. 7.13 indicates there is also no increased peak for storms of

semi-inf inite longi tudinal extent (never ending once they enter the catch-

ment). A l l peaks converge on un i t y and there is no peak greater than

un i t y . Thus movement does not appear to resul t i n a hydrograph peak

greater than for a stat ionary storm.

For storms of l imi ted extent t rave l l i ng up the catchment, the peak

flow was observed ' to be less than for a stat ionary storm and the faster

the speed of t ravel of the storm the smaller the peak runoff .

Page 154: KINEMATIC HYDROL06Y AND MODELLING

143

I t h a s been demons t ra ted u s i n g n u m e r i c a l s o l u t i o n s t o t h e k i n e m a t i c

e q u a t i o n s f o r s i m p l e ca tchmen ts t h a t n o n - u n i f o r m i t y in r a i n f a l l i n t e n s i t y

c a n a f f e c t p e a k r u n o f f r a t e s . Tempora l v a r i a t i o n in excess p r e c i p i t a t i o n

r a t e c a n i n c r e a s e r u n o f f r a t e a b o v e t h a t f o r a s t e a d y r a t e o f r a in . S ince

s to rms u s u a l l y p e a k sometime a f t e r commenc ing and t ime d i m i n i s h i n g

a b s t r a c t i o n s t e n d to cause a l a t e r p e a k in excess r a i n f a l l r a t e , t h e

assumpt ion o f s t e a d y r a i n f a l l c a n b e d a n g e r o u s a s p e a k r u n o f f i s

underes t ima ted.

Uneven s p a t i a l d i s t r i b u t i o n o f a s to rm does n o t d i r e c t l y c o n t r i b u t e

to a h i g h e r p e a k r u n o f f u n l e s s i t r e s u l t s in a s h o r t e r d u r a t i o n s to rm

b e i n g t h e d e s i g n s to rm. S torm movement reduces t h e p e a k f l o w u n l e s s

t h e movement i s down-ca tchment , when t h i s model shows n o c h a n g e in

p e a k r u n o f f r a t e . A s m a l l e r , more i n tense s to rm t h a n t h e one t o e q u i l i -

b r i u m f o r t h e ca tchmen t m a y however r e s u l t in a h i g h e r p e a k r u n o f f r a t e .

REFERENCES

B r a k e n s i e k , D.L., 1967. K i n e m a t i c f l o o d r o u t i n g . T r a n s Amer. SOC. A g r i c . Engs . lO (3 ) p 340-343.

Be1 I , F.C., 1969. Genera l i zed r a i n f a l I - d u r a t i on - f requency r e l a t i o n s h i p s . Proc . Amer. SOC. C i v i l E n g r s . 95 (HY1) 6537, p 311-327.

C a r t e , A.E. 1979. S u s t a i n e d s to rms o n the T r a n s v a a l H i g h v e l d . S.A. Geogr. J o u r n a l , 6 1 ( 1 ) p. 39-56.

Changnon, S.A. and Voge l , J.L. , 1981. H y d r o c l i m a t o l o g i c a l c h a r a c t e r - i s t i c s of i s o l a t e d seve re r a i n s t o r m s . Water Resources Research 17 (6 ) p 1694-1700.

D i x o n , M.J., 1977. P roposed Mathemat i ca l Model f o r t he E s t i m a t i o n o f A r e a l P r o p e r t i e s o f H i g h D e n s i t y Shor t D u r a t i o n Storms. Dept . Water A f f a i r s , Tech. Rept. TR78, P r e t o r i a .

Eag leson, P.S., 1978. C l ima te , s o i l and vege ta t i on . 2. The d i s t r i b u t i o n o f a n n u a l p r e c i p i t a t i o n d e r i v e d f r o m o b s e r v e d s to rm sequences. Water Resources Research 14 (5 ) p 713-721.

Eag leson, P.S., 1984. The d i s t r i b u t i o n o f ca tchmen t c o v e r a g e b y s t a t i o n a r y r a i n s t o r m s . Water Resources Research , 20(5) P 581-590.

H u f f , F.A., 1967. Time d i s t r i b u t i o n o f r a i n f a l l in h e a v y s to rms. Water Resources Research , 3( 14) p 1007-1019.

H u g g i n s , L.F. and B i r r n e y , J.R., 1982. S u r f a c e r u n o f f , s t o r a g e and r o u t i n g . I n H y d r o l o g i c M o d e l l i n g of Sma l l Watersheds . Ed. Haan , C.T., Johnson, H.P. and B r a k e n s i e k , D.L., Amer. SOC. A g r i c . Engrs . Mono- g r a p h No.5.

James, W. and Scheckenberge r , R., 1983. S torm d y n a m i c s model fo r urban r u n o f f . I n t l . Symp. U r b a n H y d r o l o g y , H y d r a u l i c s and Sediment c o n t r o l , L e x i n g t o n , K e n t u c k y . p 11-18.

K e i f e r , C.J. and Chu , H.H. 1957. S y n t h e t i c s to rm p a t t e r n s f o r d r a i n a g e des ign . Proc . Amer. SOC. C i v i l E n g r s . 83 ( H Y 4 ) p 1332-1352,

Mader , G.N., 1979. Numer i ca l s t u d y o f s to rms in t h e T r a n s v a a l . S.A. Geogr. J o u r n a l , 6 1 ( 2 ) p 85-98.

N a t u r a l E n v i r o n m e n t Research Counc i I, 1975. F l o o d S t u d i e s Repor t , Vol . 1 . H y d r o l o g i c a l S tud ies , London , 5 vo lumes.

Scheckenberger , R., 1984. D y n a m i c s p a t i a l l y v a r i a b l e r a i n f a l I mode ls fo r s t o r m w a t e r management . M. Eng. Repor t , McMaster U n i v e r s i t y , Hami I ton.

Page 155: KINEMATIC HYDROL06Y AND MODELLING

144

Stephenson, D., 1984. Kinematic study of effects of storm dynamics on runoff hydrographs. Water S.A. October, Vol. 10, No. 4, pp 189-196.

Van Wyk, W. and Midgley, D.C., 1966. Storm studies i n S.A. - Smal I area, h igh intensi ty r a i n f a l l . The C i v i l Eng. in S.A., June, Vol. 8 No.6, p 188-197.

Waymire, E. and Gupta, V.L. 1981. The mathematical structure of r a i n f a l l representations 3, Some appl icat ions of the point process theory to ra in fa l I processes. Water Resources Research, 1 7 ( 5 ) , p 1287-1294.

Wilson, C.B., Valdes, J.B. and Rodrigues, 1 . 1 . ) 1979. On the inf luence of the spat ia l d is t r ibu t ion of r a i n f a l l i n storm runoff . Water Resources Research, 1 5 ( 2 ) , p 321-328.

Woolhiser, D.A., 1977. Unsteady free surface flow problems. I n Math- ematical Models for Surface Water Hydrology. Ed. by C i r i an i , T . A . Maione, U. and Wal I is, J.R., John Wiley G Sons, 423 pp.

Page 156: KINEMATIC HYDROL06Y AND MODELLING

145

CHAPTER 8

CONDUIT FLOW

KINEMATIC EQUATIONS FOR NON-RECTANGULAR SECTIONS

The a n a l y s i s o f f l o w i n c o n d u i t s i s more c o m p l i c a t e d t h a n f o r

o v e r l a n d f l o w on accoun t o f s i d e f r i c t i o n . N o n - r e c t a n g u l a r c ross sec t i ons

e.g. t r a p e z o i d s a n d c i r c u l a r d r a i n s a r e more d i f f i c u l t t h a n r e c t a n g u l a r

sec t i ons to a n a l y z e . Su r face w i d t h and h y d r a u l i c r a d i u s become a

f u n c t i o n o f w a t e r d e p t h . The s i d e s o f t h e c h a n n e l (and top in the c a s e

o f c losed c o n d u i t s ) i n c r e a s e f r i c t i o n d r a g . As f a r a s t h e f o r m o f t h e

b a s i c k i n e m a t i c e q u a t i o n s i s conce rned t h e m a t h e m a t i c a l e x p r e s s i o n s

become more c o m p l i c a t e d , a n d n u m e r i c a l s o l u t i o n s a r e necessa ry in t h e

m a j o r i y y o f cases.

The c o n t i n u i t y e q u a t i o n r e m a i n s

o r e x p a n d i n g t h e second te rm,

where t h e f i r s t t e rm i s the r a t e o f r i s e , t h e second p r i s m s t o r a g e a n d

t h e t h i r d wedge s t o r a g e .

The d y n a m i c e q u a t i o n reduces t o

( 8 . 3 ) M Q = aAR

where Q i s t h e d i s c h a r g e r a t e , a I S a f u n c t i o n of c o n d u i t roughness ,

q i s i n f l o w p e r u n i t l e n g t h , B i s t h e s u r f a c e w i d t h , A i s t h e c r o s s

sec t i ona l a r e a o f f l o w and R i s t h e h y d r a u l i c r a d i u s A/P where P i s

t h e we t ted p e r i m e t e r . E m p l o y i n g M a n n i n g ' s f r i c t i o n e q u a t i o n ,

a = K S /n a n d M = 2/3 ( 8 . 4 )

where

LIZ

1 K 1 = l (S .1 . u n i t s ) and 1.486 ( i t - sec u n i t s )

n = M a n n i n g ' s r o u g h n e s s c o e f f i c i e n t

O w i n g t o t h e g r e a t e r d e p t h s i n c o n d u i t s i n c o m p a r i s o n w i t h o v e r l a n d

f l o w , l ower v a l u e s o f n a r e a p p l i c a b l e . The a b o v e e q u a t i o n s c a n b e

s o l v e d f o r s p e c i a l cases o f n o n r e c t a n g u l a r c o n d u i t s a s i n d i c a t e d be low.

PART-FULL C I RCULAR P I PES

The c ross s e c t i o n a l a r e a o f f l o w i n a c i r c u l a r c o n d u i t ( F i g . 8 . 1 )

r u n n i n g p a r t f u l l (S tephenson, 1981) i s

Page 157: KINEMATIC HYDROL06Y AND MODELLING

146

0 a . a 4 2 2 2

A = - D 2 ( - -cos-sin-)

a n d P = DO 2

Thus i f one takes 0 as the v a r i a b l e , the c o n t i n u i t y equat ion becomes

aA a o + aa aa at

- a x = q ; _ -

a n d

;’ ( 1 + s i n 2 ~ - cos2 0 a o i@ = 2 % ) a t + ax

I n f i n i t e d i f ference form, s o l v i n g f o r 0 a f t e r a t ime i n t e r v a l A t ,

a = o + ( q - - ) G Q 8 Gt A X

2 1 ~ 2 ( l + s i n 2 5 - cos’g) 2 2

a n d in terms of the new , s ince 61 = aARZ3

0 . a D2 0 2 2 4 2 2

. a cos-sin- 2 3

o’} Q = a- (3 - cos-sln-) { z ( l -

( 8 . 7 )

( 8 . 8 )

(8 .9)

I n o rde r to s imulate f low a n d dep th v a r i a t i o n s in pipes, the l a t t e r

two equat ions a r e a p p l i e d a t successive po in ts fo r successive t ime

i n t e r v a Is.

I n a d d i t i o n to a n a l y s i s of f lows i n p ipes , the methods can b e

a p p l i e d to des ign b y successive a n a l y s i s . When des ign ing storm d r a i n

co l lect ion systems there a r e many approaches (Yen and Sevuk, 1975) .

I t i s i n normal p r a c t i c e not necessary to consider su rcha rged cond i t i ons

in a des ign unless a d u a l system (ma jo r a n d m ino r condu i t s ) i s employed.

I f p ipes a r e designed to r u n j u s t f u l l a t t h e i r des ign c a p a c i t y , then

they w i l l r u n p a r t f u l l f o r any other des ign storm d u r a t i o n . The h i g h e r

up the leg a p i p e l eng th i s , the shor ter w i l l b e the concentrat ion t ime,

o r t ime to f low e q u i l i b r i u m . The des ign storm d u r a t i o n w i l l equa l the

concentrat ion t ime of the d r a i n s down to the p i p e i n question. Any

subsequent p ipes w i I I have l a r g e r concentrat ion times a n d consequently

a lower storm in tens i t y .

F i g . 8.1 Cross section th rough p a r t - f u l l p i p e

Page 158: KINEMATIC HYDROL06Y AND MODELLING

147

COMPUTER PROGRAM FOR DESIGN OF STORM DRAIN NETWORK

The p r e c e d i n g scheme was employed i n a p r o g r a m f o r a n a l y s i n g

the f l o w in e a c h p i p e in a d r a i n a g e n e t w o r k the p l a n o f w h i c h i s

s p e c i f i e d b y t h e d e s i g n e r . The e n g i n e e r must p re -se lec t t h e l a y o u t , sub-

d i v i s i o n o f ca tchmen t , p o s i t i o n o f i n l e t s a n d g r a d e s . The g r a d e s w i l l

in g e n e r a l con fo rm to t h e s lope o f t h e g r o u n d .

I t i s necessa ry to s i m u l a t e o v e r l a n d f l o w and e a c h u p p e r dra in

i n o r d e r to s i z e a n y l ower drain. Such a n a l y s i s c a n o n l y b e done

p r a c t i c a l l y b y d i g i t a l compu te r u s i n g n u m e r i c a l s o l u t i o n s o f t h e f l o w

e q u a t i o n s . M a n y c a l c u l a t i o n s a r e necessa ry f o r comp lex n e t w o r k s . A

l i m i t a t i o n o n t h e max imum t ime i n t e r v a l f o r n u m e r i c a l s t a b i l i t y i m p l i e s

m a n y i t e r a t i o n s u n t i l e q u i l i b r i u m f l o w c o n d i t i o n s a r e r e a c h e d f o r e a c h

p i p e d e s i g n . I n a d d i t i o n , a number of d i f f e r e n t s to rm d u r a t i o n s mus t

b e i n v e s t i g a t e d f o r e a c h p i p e . A s i m p l e and e f f i c i e n t i t e r a t i v e p r o c e d u r e

was t h e r e f o r e sough t in o r d e r to m i n i m i z e compu te r t ime. The k i n e m a t i c

fo rm of t he f l o w e q u a t i o n was emp loyed to e n s u r e t h i s . The emphas is

t h r o u g h o u t t h e p r o g r a m i s s i m p l i c i t y o f d a t a i n p u t a n d m i n i m i z a t i o n o f

c o m p u t a t i o n a l e f f o r t . Some a c c u r a c y i s s a c r i f i c e d b y t h e s i m p l i f i c a t i o n s

b u t t h e o v e r r i d i n g assumpt ion of p r e c i p i t a t i o n p a t t e r n i s p r o b a b l y more

i m p o r t a n t .

The d e s i g n method (S tephenson, 1980) p roceeds f o r success i ve p i p e s ,

t h e d iamete rs o f w h i c h a r e c a l c u l a t e d p r e v i o u s l y . I t i s assumed t h e

n e t w o r k l a y o u t i s spec i f i ed , . and t h e p i p e g r a d e s a r e d i c t a t e d b y t h e

g r o u n d s lope. S t a r t i n g a t t h e top e n d s o f a d r a i n a g e system, t h e p r o g r a m

s izes success i ve l y l ower p i p e s . Thereby e a c h p i p e u p s t r e a m o f t he one

to b e des igned i s p re -de f i ned . I t i s necessa ry t o i n v e s t i g a t e s to rms o f

d i f f e r e n t d u r a t i o n a n d c o r r e s p o n d i n g i n t e n s i t y of f l o w to de te rm ine t h e

d e s i g n s to rm r e s u l t i n g in max imum f l o w for t h e n e x t p i p e .

I t i s assumed t h a t t h e d e s i g n s t o r m r e c u r r e n c e i n t e r v a l i s p r e -

se lec ted . The i n t e n s i t y - d u r a t i o n r e l a t i o n s h i p i s t h e n assumed t o b e o f

t h e f o r m

i =a e b + t d (8.10)

B y s e l e c t i n g s to rms o f v a r y i n g d u r a t i o n td, and s i m u l a t i n g t h e

f l o w b u i l d u p down t h e d r a i n s , t h e p r o g r a m c a n se lec t a s to rm w h i c h

w i l l r e s u l t in t h e max imum p e a k f l o w f r o m t h e l ower e n d o f t h e system.

T h a t d i s c h a r g e i s t h e one t o use f o r s i z i n g t h e n e x t l ower p i p e . T h u s

t h e p r o g r a m p roceeds f r o m p i p e t o p i p e u n t i l t h e e n t i r e n e t w o r k i s

des igned .

Page 159: KINEMATIC HYDROL06Y AND MODELLING

148

The program is l imited i n appl icat ion to selection of d r a i n pipe

diameters for a simple g rav i t y col lect ing system, and uses kinematic

theory and the l imi tat ions of the theory should be recal led. I t should

be noted that for major pipes i t may become necessary to al low for

backwater and rou t ing effects (Barnes, 1967). The program does not

optimize the layout (Argamon et al. 1973; Mer r i t t and Bogan, 1973). Nor

i s surcharge (Mar t in and King, 1981) o r detention storage considered

here.

\ Lsubcotchment boundary

* drain 4 ‘drain number

Fig. 8.2 Layout p lan of drainage network sized i n example

Program description

Pipes are assumed to flow i n i t i a l l y a t a depth corresponding to

a subtended angle of 0.2 radians at the centre. The corresponding flow

is very low, bu t th is assumption avoids an anomaly for the case of

zero depth when the numerical solut ion of the exp l i c i t equation i s

impossi b le.

Inf low from subcatchments i s assumed to occur along the f u l l length

of the respective pipe, i.e. subcatchment breadth is assumed to be equal

to pipe length. This affects over land flow time to some extent. I f

necessary ( i f flow is sensit ive to storm dura t ion) the subcatchment

f r i c t ion factor could be adjusted to g ive the correct over land flow time.

The computer program, wr i t ten i n FORTRAN for use i n conversational

mode on a terminal connected to an IBM 370 machine, i s appended. The

Page 160: KINEMATIC HYDROL06Y AND MODELLING

149

input format i s described below. Data is read i n free format and can

be input on a terminal as the program stands.

F i rs t l ine of da ta :

M, A , B, E, I N , I R , 1 1 , G .

Second and subsequent l ines of data (one l ine for each length of p ipe ) :

x ( I ) , s ( I ) , z ( I ) , C ( I ) , S O ( I ) , EO(I), I B ( I ) .

The input symbols are explained below:

M - The number of pipes: the number of pipes should be minimized

fo r computational cost minimization. For computational accuracy

the pipes should be d iv ided into lengths of the same order

of magnitude. I t i s convenient to make the pipe lengths equal

to the distance between in lets. In lets between 10 and 200m

apar t are normally suf f ic ient for computational accuracy.

There should be a t least two pipes i n the system.

A , B - Precipi tat ion ra te i i s calculated from an equation of the

form i = A / ( B + td) where td i s the storm durat ion and B

is a regional constant (both i n seconds). A i s a function

of storm re tu rn per iod and catchment location and i t s un i ts

are i n m i f S I un i ts are used, and f t i f ft-lb-sec un i ts a re

used.

E - Pipe roughness. This i s analogous to the Nikuradse roughness

and E i s measured i n m o r f t . I t i s assumed i n the program

that a l l pipes have the same roughness. A conservative f igure

of a t least 0.001 m (0.003 f t ) i s suggested to account for

surface deteriorat ion w i th time due to erosion, corrosion or

deDos i ts .

IN, - For each pipe siz ing computation var ious storm durat ions

I R are investigated, rang ing from I U l to IU2 i n steps of I R ( a l l

i n seconds). The smallest storm durat ion IU1 i s set equal

to the over land flow time for an upper pipe of the previous

pipe design storm durat ion for subsequent pipes down a leg.

The number of storm durat ions investigated is specif ied by

I N and the increment in t r i a l storm durat ion is specified b y

I R . Thus IU2 = IU1 + IN";I I . The accuracy of the computations

i s affected b y the number of t r i a l storm durations. A value

Page 161: KINEMATIC HYDROL06Y AND MODELLING

150

of I N between 3 and 10 i s usua l ly sat isfactory. The upper

l im i t can be estimated beforehand from experience or by t r i a l

( i f a l l design storm durat ions tu rn out to be less than the

IU2 specif ied then the I N selected i s sat isfactory).

The computational time and cost i s affected by the time incre-

ment of computations I I (seconds). The maximum possible

value is dependent on the numerical s tab i l i t y of the compu-

tat ions. A value equal to the minimum value of

w i l l normal ly be sat isfactory (of the order of 60 to 300

seconds) .

Gravi tat ional acceleration (9.8 i n S I un i ts and 32.2 i n ft-sec

un i t s ) .

The pipe data are next read i n l i ne by l i ne for M pipes.

As the program stands, 98 ind iv idua l pipes are permitted,

and any number of legs subject to the maximum number of

pipes.

The pipe length i n m or f t , whichever un i ts are used. An

upper l im i t on ind iv idua l pipes of 200m is suggested for

computational accuracy and a lower l im i t of 10m for opt imizing

computer time.'

The slope of the p ipe i n m per m or f t per f t .

The surface area cont r ibu t ing runoff to the pipe i n m or f t

The proport ion of precipi tat ion which runs off (analogous

to the ' C ' i n the Rational formula).

The over land slope of the cont r ibu t ing area, towards the in le t

a t the head of the pipe.

EO( 1 ) The equivalent roughness of the over land area i n m or f t

depending on un i ts employed.

IB(I) The number of the pipe which is a branch into the head of

p ipe I .

For no branch, pu t I B ( I ) = 0

For a header pipe a t the top of a leg, pu t I B ( I ) = - 1 .

Only one branch pipe per in let i s permitted.

More must be accommodated by insert ing short dummy pipes

between.

The order i n which pipes are tabulated should be obtained

as fol lows:

Page 162: KINEMATIC HYDROL06Y AND MODELLING

151

Computer Program for Storm Network Pipe Sizing

L.OOO1 L.0002 L.0003 L.0004 5 L.0005 10 L.0006 L.0007 L.0008 L. 0009 L . O O 1 O L.OO1l L.0012 12 L.0013 L.0014 L.0015 13 ~ . 0 0 1 6 I 5 L.0017

L.0019 L .0520 1 .0021 L.0022 L.5023 L .5024 L.0025 20 ~ . 0 0 2 6 L.OU27

L.0029 L.0030 L.UJ31 2 3 L.0032 L.UJ33 L.0024 L.0533 L.3036 L.i)037 L.UO3J L.0039 L.0040 L.0041 L . 0 0 4 2 30 L.0063 L.JU44 L.0045 L . 0 0 4 0 L . J J 4 7 L.304d 32 L.0049 L.305S 3 5 L.J05l 40 L.>il52 45 L.dOb3 5u L . 3 0 5 4 L.3055 L.5056 100 L.3057 L.5058 1 1 0 L.0054 120 L.0060

L . O O I ~

~ . 5 0 2 a

L e d 0 6 1 L.SO62 L-SJt3 L.0064 201) L.0065 L.0066 L.0067 L.0068 L.0069 290 L.0070 300 L.0071 L.0072 350 L.0073 L.0074 60 L.0075 L.0076 400 L.5077 70 L.0078 L.0079 60 L.00eO S I O P L.0081 END

L.5001 STUdM SEWER C€SIGN L.0002 P I P E LENGTh C I A CRAOE DSFLC/S STORM S AREA ~ . 0 0 0 3 I 100. -576 .0020 - 2 4 4 1016. 20006. L . O O 0 ' 4 2 150. -514 -004C .155 Y11. 20000.

44(3./4. I

L.JJU> 3 200. - 6 4 3 -0040 .162 206d. 40000 . L.0306 4 100. - 4 1 5 . 0 0 2 0 - 1 0 2 772. 10000+ ~ . 0 0 0 7 5 100. .574 .0040 .342 20od. 40000. ~ . u 0 0 6 6 2 0 0 - .613 .0040 .u17 2 0 6 8 . 10000. L . 0 0 U ' i 7 2CO. -253 .0020 .o9b 2068. 4 0 0 0 0 . 1.. i) J 10 @ 100. -505 .0050 1.287 2068. 20000. L a O J 1 1 DATA @ .0751440..0010 2563 301) 60

Page 163: KINEMATIC HYDROL06Y AND MODELLING

152

After d rawing out a p lan of the catchment wi th each pipe, the

longest leg possible i s marked, s ta r t i ng from the ou t fa l l , then success-

i ve ly shorter legs on f i r s t the longest, then successively shorter pipes.

Now the pipes are numbered i n the reverse over, s ta r t i ng a t the top

of the shortest leg etc. Proceed down each leg w i th the numbering u n t i l

a junct ion i s reached. Never proceed past a branch which has not been

tabulated previously. I n th is way a l l pipes leading into a pipe w i l l

have had the i r diameters calculated before the next lower pipe i s

designed.

Sample Input

The data are i n metres and are taken from Fig. 8.2

8

100

150

200

100

100

200

200

100

.075

.002

.004

.004

.002

.004

.004

.002

.005

TRAPEZOIDAL CHANNELS

1440

20000

20000

40000

10000

40000

10000

,40000

20000

.001

.4

.4

.4

. 3

.4

.5

.4

.4

3

.005

.003

.003

.005

.003

.005

.002

.003

300

.01

. O l

. O l

.02

.Ol

.01

.01

.01

60 9.8

-1

-1

1

-1

-1

4

0

3

b

Fig. 8.3 Trapezoidal channel geometry

Page 164: KINEMATIC HYDROL06Y AND MODELLING

153

For trapezoidal channels the hydrau l i c equations become

A = Y ( b

P = b + y 1 J(1 + 1 / S 1 2 ) + i ( l + 1 /S2 ’ ) ) l

I n pa r t i cu la r for a vert ical sided rectangular channel of l imi ted width

b , employing the Manning equation.

A yb,

P = b + 2 y

+ y/S1 + Y/SI)

Q - ayb yb )23

(b+2y

= ~ i ( y b ) ~ ’ ~ / (b+2y IZ3

The ana lys is of flow i n channels must general ly be done numer-

i ca l l y . The channel i s d iv ided into reaches and a sui table time step

selected to simulate flow and depth var iat ions. The cont inui ty and

f r i c t ion equations are appl ied conjunctively to calculate increase i n water

depth and flow ra te respectively. The method can be employed for

catchment channel flow simulations. Many na tura l channels can be

approximated by a trapezoid, o r else a number of trapezoids. A channel

p lus flood plane can be represented by two trapezoids a t d i f ferent bed

levels, the flood plane being a t the top of the banks of the channel.

The roughness, and hydrau l i c rad ius , and consequently the velocity w i l l

d i f f e r from channel to overbank and this can be accounted for.

COMPAR I SON OF K I NEMAT I C AND T I ME-SH I FT ROUT I N G I N CONDU I TS

Whereas over land flow time lag may be predicted qu i te d i f fe ren t ly

using kinematic or time lag methods, i n the case of conduits, time lag

often provides a su f f i c ien t ly accurate assessment of flow. That is, owing

to the confined cross section of a conduit, flow i s more incl ined to

emerge at the same ra te that i t enters a conduit, and travel time

approximates react ion time su f f i c ien t ly well .

In stormwater drainage, runof f hydrographs from over land flow

consti tute the essential input to hyd rau l i c conduits; e.g. pipes, channels,

culverts etc. The over land flow hydrographs are attenuated fu r ther as

they t ravel through the conduits. I n a stormwater drainage network,

where conduits and manholes are in te r l inked to ca r ry water from di f ferent

subcatchments on to a major outlet, hydrograph attenuation through the

conduits i s very important. Hydrographs from conduits leading to the

same manhole have to be summated for designing hyd rau l i c structures

or conduits downstream or for studying the behaviour of an ex is t ing

network under certain conditions. T h e magni tude of the hydrograph peaks

Page 165: KINEMATIC HYDROL06Y AND MODELLING

154

as well as their re la t i ve time posit ions are important for the accurate

assessment of design flows.

Various methods exist for rou t ing runoff hydrographs through closed

conduits. The most commonly used are time sh i f t methods. A time sh i f t

method sh i f t s the en t i re hydrograph i n time without any storage consider-

at ions for attenuation. The time sh i f t or l ag time i s calculated by

d i v id ing the length of the conduit by the velocity of the water i n the

conduit. This velocity i s usual ly taken to be the velocity of water i n

the conduit when the conduit i s almost f u l l under steady condit ions.

Storage balance methods are also used for rout ing. They apply mass

balance equations across the conduit. Such equations are solved by ei ther

exp l i c i t or imp l ic i t schemes. Both time sh i f t and storage rou t ing methods

ignore non-uniform flow and dynamic effects i n the system. Other methods

for hydrograph rou t ing include rou t ing through conduits using the

kinemat i t equations or even the dynamic equations of flow.

The use of the kinemat ic equations for rou t ing requires comparat ively

large computational ef for t i n comparison w i t h time sh i f t as the equations

have to be solved at close g r i d po in ts along the conduit over short time

increments. Most exist ing drainage models use time shi f t methods and

since the solut ion of the kinematic equation i s tedious i t may i n some

cases be unwarranted.

Section Geometry and Equations for Conduits

Two section configurations are studied here, one a c i r cu la r section

and the other a trapezoid. Both sections are assumed to be p a r t l y f u l l

as dynamic effects of the system are not studied. For the pipe th i s

implies that the depth of flow i s always less than the pipe diameter

whi le for the trapezoid i t s sides are assumed to be h igh enough to al low

any depth of water.

For p a r t i a l l y f i l l e d closed conduits, i.e. where no lateral inf low

exists along the conduit, the kinematic cont inui ty equation is :

(8.11)

where q i s discharge ( m 3 / s ) , a i s cross sectional area of flow (m’ ) ,

x i s distance along the conduit from the in le t (m) and t i s time ( 5 ) .

I n kinematic theory discharge can be assumed to be a function of

flow depth as the f r i c t i on slope i s assumed to equal the bed slope. T h i s

enables the use of uniform flow equations expressed i n terms of bed slope

instead of f r i c t i on slope. Such equations are usua l ly described i n the

fol lowing form:

Page 166: KINEMATIC HYDROL06Y AND MODELLING

155

( a ) Pipe

I ( b ) Trapezoid

F ig . 8.4 Condui t Sections

(8.12) m-1

q = a a R

where c( and m a r e f r i c t i o n f low coef f ic ients depending, on the un i fo rm

f low equat ion used, R i s the h y d r a u l i c r a d i u s of the section, i.e. a /p

(m) a n d p i s the wetted per imeter of the section ( m ) .

0 = 1 5 112 a n d m = 5/3

where n = M a n n i n g ' s roughness coef f ic ient a n d S = bed slope.

(8.13) n

I n s e r t i n g the va lues of a a n d m f rom 8.13 in equat ion 8.12 y ie lds :

1 4 .5/3

p2-/'3 q = - s (8.14)

The geometry of the condu i t s i s desc r ibed b y equat ions 8.15 - 8.18

Page 167: KINEMATIC HYDROL06Y AND MODELLING

I56

(8.15)

A = b y + y2 tan (90 - 0

P = b + 2 y sec (90 - 0) Trapezoid

(8.16)

(8.17)

(8.18)

The equat ions 8.11 a n d 8.14 were reduced to a dimensionless form

b y Constant in ides (1983) w i t h the choice of s u i t a b l e va r iab les . The

dimensionless equat ions a r e then so lved f o r d i f f e r e n t condu i t sections

a n d i n p u t hyd rog raphs . The k inemat i c equat ions a r e solved in t h e i r

dimensionless form to f a c i l i t a t e genera l i za t i on of r e s u l t s in terms of

constant parameters tha t a r e func t i ons of the i n p u t parameters. The

use of the dimensionless equat ions reduces computat ional e f f o r t as the

number of cases to s tudy reduces g r e a t l y .

The v a r i a b l e s q, a, x and t a r e reduced to the dimensionless

v a r i a b l e s Q, A, X a n d T b y d i v i d i n g them b y a p p r o p r i a t e v a r i a b l e s w i t h

i den t i ca l u n i t s as fol lows:

For the p ipe,

Q = q/qm (8.19)

A = a/d2 (8.20)

P = p / d (8.21)

Y = y / d (8.22)

For the t rapezoid,

Q = q/qc (8.23)

A = a/b2 (8.24)

P = p/b (8.25)

Y = y /b (8.26)

a n d fo r both sections

x = x/L (8.27)

T = t / t (8.28) k

where q i s the maximum flow c a p a c i t y of the p i p e ( m 3 / s ) , 7 0 . 335285~h d 8 /3 m qc i s a d i scha rge v a r i a b l e , be ing a func t i on of f r i c t i o n coef f ic ients

0 , m a n d bottom w id th of t rapezoid, b (m’/s) i.e.

i s a t ime constant ( 5 ) a n d L i s the length of the condu i t (rn).

qc = 1 5 112 b 8 1 3

n ’ t k

To def ine the d i scha rge a n d time constants a p p r o p r i a t e l y the

dimensionless k inemat i c equat ions a r e ob ta ined b y s u b s t i t u t i n g the

dimensionless v a r i a b l e s in the c o n t i n u i t y equa t ion i.e. f o r the p ipe,

(8.29)

Page 168: KINEMATIC HYDROL06Y AND MODELLING

157

R e a r r a n g i n g y i e l d s :

(8.30)

Fu r the rmore b y d e f i n i n g the t ime cons tan t a s in e q u a t i o n 8.31

reduces e q u a t i o n 8.30 to the d imension less e q u a t i o n 8.33. S i m i l a r l y f o r

t he t r a p e z o i d the t ime cons tan t i s d e f i n e d in e q u a t i o n 8.32.

F o r the p i p e :

Ld2 t = -

qm

For the t rapezo id :

LbZ t = -

qc

(8.31)

(8.32)

where the d imens iona l c o n t i n u i t y equation i s :

aQ aA -

S i m i l a r l y , t he u n i f o r m f low e q u a t i o n 8.14 can be reduced to i t s d imension-

less form, i .e.

f o r the p i p e :

(8.33) - a x + - - aT

(8.34)

where the maximum c a r r y i n g c a p a c i t y of a p i p e c a n b e shown to b e

qm = 0.335282 Sf d8/3 (8.35)

S u b s t i t u t i n g in e q u a t i o n 8.34 a n d r e a r r a n g i n g y i e l d s :

Q = A5/3 - 1

0.335282 p2/3

F o r the t r a p e z o i d the u n i f o r m f l o w e q u a t i o n reduces

Q q c = - S z - 1 (Ab‘ )5 /3

(Pd )2 /3

D e f i n i n g q a s in e q u a t i o n 8.38 reduced e q u a t i o n C

(8.36)

to:

(8.37)

8.37 to the d imension-

less f l ow e q u a t i o n f o r the t r a p e z o i d g i v e n in e q u a t i o n 8.39:

‘ c - n - t ,t b8/3 (8.38)

Fo r the t r a p e z o i d : A 5/3

Q = - ,,2/3

(8.39)

E q u a t i o n s f o r t f o r b o t h sect ions c a n b e o b t a i n e d b y s u b s t i t u t i n g

e q u a t i o n 8.35 a n d 8.38 i n t o e q u a t i o n 8.31 a n d 8.32. S i m i l a r l y , f o r

o b t a i n i n g the d imension less a r e a a n d pe r ime te r v a r i a b l e s ( A a n d P )

e q u a t i o n s 8.20, 8.21 a n d 8.22 a r e s u b s t i t u t e d in e q u a t i o n s 8.15 to 8.18.

k

The r e s u l t i n g exp ress ions a r e summar ised below

Page 169: KINEMATIC HYDROL06Y AND MODELLING

158

Pipe 1 -1 1 4 2

A = - cos (1-2Y) - (- - Y ) . (‘f - Y 2 ) 1 / 2

- 1 P = cos (1-2Y)

L t =

( 8 . 4 0 )

( 8 . 4 1 )

( 8 . 4 2 )

Channel

A = Y + Y2 tan (90-0)

P = 1 + 2Y sec (90-0)

( 8 . 4 3 )

( 8 . 4 4 )

( 8 . 4 5 )

Two shapes of inf low hydrographs are routed through the conduits,

one a uniform and the other a t r i angu la r time d is t r ibu t ion . These two

time d is t r ibu t ions were chosen as they represent extreme cases, i.e. a

na tura l runoff hydrograph, from over land flow, would have a shape

between these two extremes depending on the r a i n f a l l and catchment

character i st i cs.

I n add i t ion to the shapes the hydrographs were assumed to have

a var iety of durat ions and intensit ies. Fig. 8.5 i l l us t ra tes the inf low

hydrographs i n the i r dimensionless form. I

Q I M ‘ I M

Q I M i s the maximum discharge factor or inf low factor and TD = td/tk,

where td i s durat ion.

Fig. 8.5 Different dimensionless inf low hydrographs

Page 170: KINEMATIC HYDROL06Y AND MODELLING

The dimensionless equation fo r speed of propagation i s

2. 4

2. 0

_ - dT C 1

PIPE

-

where C 1 = 0.335262 for the pipe

= 1.0 for the trapezoid C1

where for pipes:

3A TP = 2 ( Y - Y Z )

and for t rapezoi ds :

a A - ’ cos (90-0) + Y sin (90-0) 2P 2

159

( 8 . 4 6 )

( 8 . 4 7 )

( 8 . 4 8 )

Equation 8.46 i s a function of the depth coeff icient, Y. i t was solved

in terms of Y using a computer model.

DEPTH/DIhMETER

F ig . 8.6 Dimensionless propagation speed of a disturbance i n p a r t i a l l y f i l l e d pipes

Page 171: KINEMATIC HYDROL06Y AND MODELLING

160

0

C 0

(0

-t N

0

m

(0

9

N

d

... 4

4

4

4

cu 0

d

.LP/XP

F i g . 8.7 Dimensionless propagation speed of a d i s t u r b a n c e in trapezoids

Page 172: KINEMATIC HYDROL06Y AND MODELLING

T y p i c a l r e s u l t s a r e g i v e n i n F i g . 8.6 a n d 8.7 . I t c a n been seen f rom

F i g . 8.6 t he max imum d imens ion less p r o p a g a t i o n speed in a p i p e i s 1.63

a n d o c c u r s when the d e p t h o v e r d i a m e t e r r a t i o i s 0.62. F i g . 8.7 shows

t h a t f o r t he t r a p e z o i d t h e d imens ion less p r o p a g a t i o n speed inc reases w i t h

an i n c r e a s e in the d e p t h o v e r bo t tom w i d t h r a t i o . I t i s necessa ry to k n o w

f o r b o t h the p i p e and the t r a p e z o i d the max imum d e p t h o v e r d i a m e t e r and

d e p t h o v e r bo t tom w i d t h r a t i o s r e s p e c t i v e l y in o r d e r t o assess the max imum

p r o p a g a t i o n speed, ( d X / d T ) m , during a n y s i n g l e s i m u l a t i o n . I t s h o u l d b e

no ted t h a t f o r t h e p i p e a n y s i m u l a t i o n , where the d e p t h o v e r d i a m e t e r

r a t i o exceeds 0 .62 , w i l l h a v e a ( d X / d T ) of 1.63. m

The max imum d e p t h o f f l o w i n the c o n d u i t t o b e encoun te red d u r i n g

s i m u l a t i o n w i l l b e a f u n c t i o n o f t he max imum i n f l o w d i s c h a r g e a t t he

i n l e t , a s the h y d r o g r a p h w i l l a t t e n u a t e as i t t r a v e l s a w a y f r o m t h e

i n l e t . The max imum d imens ion less d e p t h o f f l o w in the c o n d u i t ( Y ) i s

r e l a t e d to the max imum d imens ion less i n f l o w d i s c h a r g e , o r i n f l o w f a c t o r

( Q ) , b y e q u a t i o n s 8.36 a n d 8.39 . I M

E q u a t i o n 8.46 y i e l d s max imum p r o p a g a t i o n speeds f o r d i f f e r e n t i n f l o w

f a c t o r s .

Computer S i mu I a t ion

A compu te r model was deve loped f o r s o l v i n g the d imens ion less k i n e -

m a t i c e q u a t i o n s f o r c l o s e d c o n d u i t s . The mode l r o u t e s d imens ion less i n f l o w

h y d r o g r a p h s t h r o u g h the c o n d u i t s t o p r o d u c e d imens ion less o u t f l o w h y d r o -

g r a p h s a t t he ou t let . The d imens ion less h y d r o g r a p h s were then s t u d i e d

to e v a l u a t e the e f f e c t s t h a t a sec t i on o f f i x e d geomet ry and l e n g t h h a s

in a t t e n t u a t ing i n f l o w h y d r o g r a p h s o f v a r y i n g d i s c h a r g e a n d d u r a t i o n .

F o r e v e r y i n f l o w f a c t o r and i n f l o w h y d r o g r a p h d i s t r i b u t i o n d i f f e r e n t

d imens ion less s to rm d u r a t i o n s were assumed. The d imens ion less s to rm

d u r a t i o n s w e r e assumed. The d imens ion less s to rm d u r a t i o n s a r e d e f i n e d

as the s to rm d u r a t i o n o v e r the t ime cons tan t r a t i o , i .e .

‘d t k

TD = - ( 8 . 4 9 )

V a l u e s o f TD v a r i e d f rom 0.2 t o 10 a c c o r d i n g to the i n f l o w t ime

d i s t r i b u t i o n and sec t i on t ype . The f o l l o w i n g o b s e r v a t i o n s a r e made :

a ) S i m u l a t i o n s i n d i c a t e d the l a g t ime o f t h e o u t f l o w r e l a t i v e t o t h e

i n f l o w h y d r o g r a p h decreases w i t h an i n c r e a s e o f i n f l o w h y d r o g r a p h

d u r a t i o n (for a c o n s t a n t i n f l o w f a c t o r ) . The reason f o r t h i s i s t h a t

l o n g e r d u r a t i o n i n f l o w s i m p l y h i g h e r i n f l o w vo lumes. H y d r o g r a p h s w i t h

l ower vo lumes t e n d t o s p r e a d more w i t h i n t h e c o n d u i t r e s u l t i n g in l ower

w a t e r dep ths w h i c h in t u r n r e s u l t i n l ower f l o w v e l o c i t i e s and p r o p a g a -

Page 173: KINEMATIC HYDROL06Y AND MODELLING

I62

t ion of disturbance speeds. This inev i tab ly increases the i r lag time.

The same argument explains the second observation, i.e.

b ) The ra t i o of peak at the out let over peak at the in let increases

with increasing storm durat ion ( fo r a constant inf low factor) o r i n other

words inf low hydrographs of smal ler storm durat ion undergo higher

discharge attenuation than hydrographs of longer duration. The reason

for th is i s the same as i n a ) , i.e. lower volumes spread more than

b igger volumes resu l t ing i n lower depths of flow and thus lower dis-

charges.

C ) The lag time for an inf low hydrograph of f i xed durat ion decreases

with higher inf low factors. The reason for t h i s i s ident ical to a ) as

higher inf low factors imply higher volumes of water.

d ) Peak flow attenuation i s h igher for small inf low factors ( fo r a

constant inf low dura t ion) than for h igh inf low factors, the reason being

the same as for observation b ) .

Further deductions from the resul ts can be made by representing

the pr intout resul ts i n the form of graphs. This i s done i n subsequent

sect ions.

C r i t e r i a for choosing between Time Shi f t and Kinematic Routing

One of the main objectives of t h i s study was to develop a method

for assessing whether time shi f t methods can be used without hav ing

to resort to rou t ing methods. T h e main assumption behind time sh i f t

methods i s the preservation of the hydrograph ordinates without any

attenuation. To accept time sh i f t methods, therefore, the hydrograph

attenuation that would happen in a real l i f e s i tua t ion must be small .

One must therefore decide what a re acceptable l im i ts of attenuation.

As hydrograph attenuation d i f fe rs throughout the hydrograph durat ion

one usual ly refers to peak attenuation. I n th i s study a peak attenua-

t ion of 10% i s taken to be the maximum peak attenuation that can be

ignored. This value, although a r b i t r a r i l y defined, i s based on the fact

that more accurate determination of runof f i s not j us t i f i ed due to the

corresponding inaccuracies i n input determination. Furthermore, in a

drainage system consist ing of var ious conduits in te r l inked i n a network,

to lerat ing a b igger peak attenuation can resu l t in a gross overestimation

of the outflow peak. This occurs since a small peak attenuation i s

propagated downstream through various conduits and doing that increases

i n magni tude.

Page 174: KINEMATIC HYDROL06Y AND MODELLING

163

Inflow hydrograph d u r i t i o n / t c

Fig . 8.8 Diagram ind ica t ing when time sh i f t rou t ing can be used w i th p a r t i a l l y f i l l e d pipes.

Fig. 8.9 Diagram ind ica t ing when time sh i f t rou t ing can b e used w i th trapezoids a t angle of side to horizontal of 30°

Page 175: KINEMATIC HYDROL06Y AND MODELLING

8

6 -

9

' U n i f o r m lnpui g/ /' K I nemal I c r u u t 1 n g R",t b e used T l r n e S t 1 1 f i ' , - 1 L N T E K M E U l A l t A R E A /routing ndy b e u s e d

/'

1 . 2

1 . 1

1 . o

0 . 9

I . ," 0 . 8 - E

0.7

0 . 6

0 . 5

\ \ P I P E

I 0

I 1 I 0 . 2 0,Q 0 . 5 0 . 8

inflow p e a k d > s c h a r g e / q m

0

164

Fig. 8.10 Diagram ind ica t ing when time sh i f t rou t ing can be used

w i th trapezoids at angle of side to horizontal of 90'

inflow p e a k d > s c h a r g e / q m

Fig. 8.11 Time lag for hydrographs routed through p a r t i a l l y f i l l e d pipes

Page 176: KINEMATIC HYDROL06Y AND MODELLING

165

Having decided on an acceptable peak attenuation to be neglected

i t i s assumed that kinematic rou t ing describes accurately rou t ing i n a

real l i f e s i tuat ion. The resul ts obtained by kinematic rou t ing are

employed to assess the condit ions under which time sh i f t methods are

acceptable, i.e. i n t h i s case the conditions under which the peak

attenuation i s lower than 10%. To do th i s the resul ts were used to

obtain a dimensionless inf low dura t ion for a 0.9 outflow to inf low peak

ra t i o for every type of section and inf low factor. The dimensionless

inf low dura t ion was obtained e i ther by I inear interpolat ion or whenever

thought necessary by p lo t t ing dimensionless durat ion against outflow to

inf low peak r a t i o and obtaining the dimensionless durat ion for a peak

ra t i o of 0.9, the peak ra t i o of 0.9 corresponding to a 10% peak

attenuation. The resul ts are summarised in Figs. 8.8 - 8.10.

Lag Time for Routing Hydrographs Using Time Shif t Methods

Using a s imi la r method to the above the dimensionless time lag of

hydrographs w i th a peak attenuation of 10% was obtained. The dimension-

less lag times are surnmarised i n Figs. 8.11 to 8.13 for pipes and

selected trapezoids.

A dotted l ine represents l ag times as obtained by time sh i f t methods

for comparison purposes.

Comparison of Methods for E v a l u a t i n g L a g Time

Two assumptions are cur ren t ly popular for ca lcu la t ing the time lag

of a hydrograph to be routed by time sh i f t methods. The time lag is

ei ther assumed to be the length of the conduit d iv ided by the velocity

of the water when the conduit i s d ischarging at f u l l capacity o r i t i s

assumed that the time lag i s the length of the conduit d iv ided by the

velocity of water i n the conduit corresponding to the maximum discharge

of the inf low hydrograph.

Method 1 (TLp = L / (qm/am) . ) The time constant ( t k ) for the pipe i s

given by equation 8.31. The dimensionless time lag i s thus

tLP - a rn - - dZ

rn

k t

where a /d2 i s the dimensionless flow area for a pipe discharging at

maximum capaci ty. Subst i tut ing for arn/dz

‘LP - = 0.7653

k t

(8.50)

Page 177: KINEMATIC HYDROL06Y AND MODELLING

166

This gives the dimensionless lag time for a pipe and plots i n Fig.

8.11 as a s t ra igh t l ine. As can be seen the l ag time calculated b y th i s

method over-estimates the true value for h igh inf low factor values (b igger

than 0.6) and grossly underestimates i t for low inf low factor values

( lower than 0 .25 ) . For intermediate inf low factor values th i s method

yields time lags which l i e between the range set up by the two di f ferent

input distr ibut ions.

Method 2 ( tLp = L/(qim/qm).) The fol lowing relat ionship holds for the

dimensionless time lag:

(8.51)

where A. i s the dimensionless flow area corresponding to the maximum

discharge of the inf low hydrograph ( 4 . 1 . I

i m Equation 8.51 was solved i n the fo l lowing way to express ( t / t )

i n terms of the inf low factor (qim/qm). The dimensionless water depth

( Y i ) corresponding to the flow depth A i i s solved knowing the inf low

factor and a Newton-Raphson i te ra t i ve scheme, using equation 8.36.

i s used to solve for A. and consequently for tLp/tk. The calcu-

lated values of tLp/tk are plotted i n Fig. 8.11 for comparison. I t can

be seen that t h i s present method yields time lags closely resembling the

resul ts obtained from kinemat ic theory using uniform input hydrographs.

Th is occurs as uniform input hydrographs (wh ich do not attenuate

s ign i f i can t ly - 10% on ly ) maintain an approximately constant depth

through the i r t ravel through the conduit, thus hav ing a speed of flow

simi lar to that calculated by the ex is t ing method. The fact that time

lag as developed by kinematic rou t ing i s s l i gh t l y less than that using

the present method i s because some attenuation (10%) occurs du r ing

rou t ing for producing the resul ts.

LP k

Y .

I

Time Lag for Trapezoids

Method ( 1 ) as out l ined above i s not app l i cab le for trapezoids i n

th i s study as they are assumed to be deep enough to accommodate

incoming hydrographs of any discharge. As the i r depth i s not restr icted

one cannot t a l k of maximum discharge through trapezoids. Method ( Z ) ,

however, can be. used to express the dimensionless lag time (tLp/tic) i n

terms of the inf low factor (4 . /qc ) to compare time lags w i th the present

method with the resul ts shown i n Figs. 8.12 and 8.13. im

The time constant t i s g iven by equation 8.32 for the trapezoid. k

Th is yields the dimensionsless time lag.

Page 178: KINEMATIC HYDROL06Y AND MODELLING

167

2.5

i . c

_' i .5

-

1 . 0

i

T i m e s h i f t m e t h o d

Unlforrn I n p u t

_I

0 7 4 6 8

Inflow p e a k d i r c h a r g e / q c

Fig. 8.12 Time lag for hydrographs routed through trapezoids wi th angle of side to horizontal of 30°

Page 179: KINEMATIC HYDROL06Y AND MODELLING

168

\

T R A P E Z O I D

A N G L E - 90'

\\ --------

Fig. 8.13

/ T r i a n g u l a r I n p u t

I I I 6

I n f l o w p e a k d > s c h a r g e / q ,

Time lag for hydrographs roubed through trapezoids w i th angle of side to horizontal of 90

Page 180: KINEMATIC HYDROL06Y AND MODELLING

LP Ai t ~- t k -0

169

(8.52)

This equation i s solved to y ie ld the r a t i o t / t for d i f ferent values

of the inf low factor. Note that the relat ionship w i l l d i f f e r for d i f ferent

angles for the trapezoid as the dimensionless flow area i s a funct ion

of the side angle. The resul ts a re plot ted in Figs. 8.12 and 8.13 together

wi th the kinematic rou t ing resul ts for comparison purposes. As can be

seen ( the dashed l ines) the time lags from the present method are s l i gh t l y

higher but closely resemble the ones from kinematic rou t ing using a

uniform input. Note that th is was also the case for the pipe. The reasons

for the i r resemblance are s imi la r to those for the pipe and are discussed

in the previous section.

Lp k

I t can be seen from Figs. 8.8 to 8.10 that the dimensionless inf low

durat ion i s much more c r i t i ca l than the dimensionless inf low peak

discharge for determining whether time sh i f t methods can be used. This

i s more apparent i n the case of trapezoids where the 10% peak attenua-

t ion curves appear almost vert ical for dimensionless inf low peak dis-

charge values greater than 2.0.

Furthermore, i t can be seen that the dimensionless infow durat ion

decreases with increasing inf low factor. This i s expected as inf low

hydrographs w i th a s imi la r inf low factor need b igger durat ions than

ones with a h igher inf low factor for both inf low hydrographs to have

s imi la r volumes. As was discussed ear l ie r , h igher inf low volumes w i l l

imply smal ler peak attenuation, other parameters being constant, one

exception to th i s observation being the pipe for inf low factors h igher

than 0.8. I t can be seen from Fig. 8.8 that as the inf low factor

approaches un i ty the dimensionless durat ion (causing a 10% peak

attenuation to the inf low hydrograph) increases.

This i s probably due to the fact that a pipe discharges more when

not f lowing fu l I as already discussed.

I t w i l l also be noted that for trapezoids and discharge inf low

factors of less than 2.0 the dimensionless inf low durat ion increases

sharply as the dimensionless discharge decreases. This i s probably due

to the fact that at low depths of flow side f r i c t i on effects cause a

stabi I i t y effect on the flow h igh l y at tenuat ing peak discharges. This

in tu rn implies higher inf low durat ions for maintaining a peak

attenuation of 10%.

For a constant inf low factor, the inf low dura t ion ( imp ly ing a 10%

peak attenuation of the routed hydrograph) i s b igger for the t r i angu la r

d is t r ibu t ion than for the uniform one. This i s to be expected as a

Page 181: KINEMATIC HYDROL06Y AND MODELLING

170

t r i angu la r d is t r ibu t ion has a lower inf low volume than a uniform one,

both d is t r ibu t ions hav ing the same dura t ion and inf low factors.

The t r i angu la r d is t r ibu t ion would therefore need a greater durat ion

( fo r a constant inflow factor) or a greater inf low factor ( fo r a constant

dura t ion) to y ie ld a s imi la r resu l t to the uniform d is t r ibu t ion . Note that

a constant volume w i l l not imply identical resu l ts between the two

distr ibut ions as the shape also p lays an important ro le i n the rou t ing ;

for examp I e:

From Fig. 8.8, for a pipe and an inf low factor of 0.6, the corres-

ponding dimensionless durations resu l t ing i n a 10% peak attenuation of

the inf low hydrograph, are found to be 0.18 for a uniform input d i s t r i -

but ion and 0.82 for a t r i angu la r d is t r ibu t ion . This implies that the

t r iangu lar d is t r ibu t ion has a b igger inf low volume than the uniform one

in the ra t i o o f :

This ra t i o ( t r i a n g u l a r to uniform volume) var ies depending on the

inf low factor and type of section bu t i s always found to be more than

un i t y . This implies fu r ther that a uniform time d is t r ibu t ion i s attenuated

less than a t r i angu la r one even i f both have the same volume when

routed through a closed conduit.

A fu r ther comparison of the effects the inf low d is t r ibu t ion has on

the resul ts i s shown i n Figs. 8.11 to 8.13. The uniform hydrograph takes

more time to t rave l along the conduit ( i t has a b igger lag time) than

the t r iangu lar one (both hydrographs attenuated at the i r peak by 10%).

The reason for t h i s i s that for a constant inf low factor and a constant

peak attenuation the t r iangu lar d is t r ibu t ion has a much b igger dura t ion

than the uniform one. Furthermore, i n the case of the t r i angu la r d i s t r i -

but ion, the peak discharge i n the outflow hydrograph corresponds to

the peak of the inf low hydrograph which l ies, i n time, in the middle

of i t s durat ion. I n the case of the uniform d is t r ibu t ion however, the

outflow hydrograph peak w i l l correspond to the inf low peak at a much

ea r l i e r stage of the d is t r ibu t ion , i.e. at the beginning of the inf low

hydrographs. Th is implies a la te r entry time ( i n the condui t ) for the

peak of the uniform d is t r ibu t ion resu l t ins i n a longer lag time.

The engineer faced with the problems of rou t ing a runof f hydrograph

through a pipe or a channel w i l l f i nd the resul ts presented here of

d i rect use. The runof f hydrograph could be the resul t of over land flow

or the outflow from another conduit. Figs. 8.8 to 8.10 can be used to

establ ish the necessity of rou t ing whi le Figs. 8.11 to 8.13 can be used

Page 182: KINEMATIC HYDROL06Y AND MODELLING

171

to c a l c u l a t e a l a g t ime f o r t he cases f o r w h i c h t ime s h i f t r o u t i n g i s

shown to b e adeaua te .

REFERENCES

Argaman , Y., Shami r , U. and S p i v a k , E. 1973. Des ign o f o p t i m a l sewerage systems, Proc . ASCE, ( 9 9 ) , EE5, Oct., p 703-716.

Ba rnes , A.H., 1967. Compar i son o f compu ted and o b s e r v e d f l o o d r o u t i n g in a c i r c u l a r c ross sec t ion . I n t l . H y d r o l . Sympos. Co lo rado S ta te U n i v . , F o r t C o l l i n s , p p 121-128.

Cons tan t i n ides , C.A., 1983. Compar i son o f k i n e m a t i c and t ime s h i f t r o u t i n g in c l o s e d c o n d u i t s . Repor t 3/1983. Water Systems Research Programme, U n i v e r s i t y o f t he W i t w a t e r s r a n d .

Green, I .R.A., 1984. WITWAT s t o r m w a t e r d r a i n a g e p r o g r a m . Wate r Systems Research Programme, Repor t 1/1984. U n i v e r s i t y o f t h e W i t w a t e r s r a n d . 67p

M a r t i n , C . and K i n g , D., 1981. A n a l y s i s o f s to rm sewers u n d e r s u r - c h a r g e . Proc . Conf. U r b a n S to rmwate r , I I I i no i s . pp 74-183.

M e r r i t t , L.B. and Bogan , R.H., 1973. Computer b a s e d o p t i m a l d e s i g n of sewer systems. Proc . ASCE, ( 9 9 ) , EE1, Feb. pp 35-53.

Stephenson, D., 1980. D i r e c t d e s i g n a l g o r i t h m f o r s to rm drain ne tworks . Proc . I n t . Conf. U r b a n Storm D r a i n a g e , U n i v . K e n t u c k y , L e x i n g t o n .

Stephenson, D., 1981. S to rmwate r H y d r o l o g y and D r a i n a g e , E l s e v i e r , 276 PP.

Yen, B.C. and Sevuk , A.S., 1975. Des ign o f s to rm sewer ne tworks . Proc . ASCE, 101, EE4, Aug. 535-553.

Page 183: KINEMATIC HYDROL06Y AND MODELLING

172

CHAPTER 9

URBAN CATCHMENT MANAGEMENT

EFFECTS OF URBAN I ZAT I ON

I n nature a semi-equil ibr ium exists between precipi tat ion, runoff

and in f i l t r a t i on into the ground. Over years the water table f luctuates

about a mean. I t recedes dur ing droughts when seepage into watercourse

exceeds replenishment rates, and r ises when i t ra ins . The depth of soi l

above the water tab le i s general ly not excessive or else vegetation dies,

the ground dr ies out and wind blows the soi l away. The amount of water

which r ises up i n the soi l under cap i l l a ry action or in vapour form i s

l imited by the depth of water table.

The construction of impermeable ba r r i e rs on the surface, such as

roads and bu i ld ings , reduces the ra te of ground water replenishment.

The water runs o f f easier and the l imited permeable area res t r i c ts i n f i l -

t rat ion. The groundwater level w i l l therefore drop and the zone above

the water tab le w i l l g radua l ly d r y out. Vegetation and the soi l charac-

ter ist ics w i l l change. I f we a re not to affect our environment adversely

we should attempt to re tu rn some of the stormwater we channel o f f our

urban area back to the ground. This can be accomplished by ensur ing

adequate permeable surfaces, and by direct ing stormwater into special ly

selected or constructed seepage areas. We w i I I then not only maintain

the regime but also minimize design flow rates downstream.

The deplet ion of groundwater w i l l also a l te r the relat ionship

between r a i n f a l l and runoff . After a d r y spel l more water w i l l be needed

to saturate the ground so that the i n i t i a l abstract ion may be greater

than before the development occurred. This i s offset to an extent by the

impermeable ground cover. The net effect i s to make a more extreme

hydrology i.e. a greater dif ference between floods and droughts than

before deve lopme n t .

Effect on Recurrence In te rva l

Urban Development affects the ra in fa l I pa t te rn and stat ist ics as

well as the runof f pattern. I t has been al leged that b lanket ing effects

due to solar shields affect evaporation and hence the resul tant p rec ip i -

tat ion. The blanket of smog, dust, fumes etc., may also affect the place

in which the clouds release the i r moisture, so the effect of urbanizat ion

on r a i n f a l l i s d i f f i c u l t to estimate and the stat ist ical propert ies of

Page 184: KINEMATIC HYDROL06Y AND MODELLING

173

r a i n f a l l records (e.g. the mean, coefficient of variance, frequency and

d is t r ibu t ion) w i l l be affected as well to some extent. Ra in fa l l i s reputed

to f a l l more on the leeward side of c i t ies due to the heat ing up of the

a i r over the c i t y and up to 15% more precipi tat ion has been a t t r ibu ted

to th is effect. (Huff and Changnon, 1972; Colyer, 1982). Apart from this,

the relat ionship between r a i n f a l l and runoff i s affected.

Some of the s impl ist ic methods of assessing runoff suppose that

the recurrence in te rva l of a calculated f lood i s the same as the recur-

rence in te rva l of the causi t ive r a i n f a l l for the design storm durat ion.

I t could be that t h i s assumption i s borne i n mind i n the choice of the

Rational coefficient. That i s the use of the ra t iona l method gives a

certain recurrence in te rva l of runoff (equal to that of the selected storm

in fac t ) but i t does not imply that the design storm i s the one which

w i l l produce that runoff . This i s a gross s impl i f icat ion and i t i s ra re l y

that the recurrence in te rva l of a storm and i t s resu l t ing f lood coincide.

This i s due to the predominating effect of abstract ion or losses. I t w i l l

be recal led that general ly the Rational coefficient C i s nearer 0 than

1 imply ing losses are greater than runoff . That i n tu rn means that

losses, which in tu rn a re mostly soi l moisture abstraction, affect runof f

more than r a i n f a l l . Hence the runof f and i t s re tu rn per iod should be

more related to soi l moisture conditions than to r a i n f a l l . A study by

Sutherland (1982) indicates l i t t l e correlat ion between ra in fa l I recurrence

in te rva l and the recurrence in te rva l of the f lood when assessed i n terms

of the peak flow rate. He proposed that antecedent moisture condit ions,

measured in terms of the total precipi tat ion i n preceding days, should

be a parameter i n runoff-duration-frequency relat ionships. His content ion

is that the p robab i l i t y of a certain runoff intensi ty i s more related to

the probab i l i t y of the soi l being a t a certain saturat ion than the r a i n f a l l

intensi ty.

How does urbanizat ion affect the argument? I n fact i t counters the

above ideas. The more the na tura l surface cover i s replaced by imper-

meable surfaces the more runof f becomes a direct response function to

r a i n f a l l . I n the l im i t for 100% runoff , soi l does not feature and the

recurrence in te rva l of runof f i s equal to that of the storm causing i t .

EXAMPLE :

CALCULATION OF PEAK RUNOFF FOR VARIOUS CONDITIONS

The effect of urbanizat ion on runoff can be i l l us t ra ted with the

fol lowing example. I n pa r t i cu la r i t w i l l be seen that the peak flows

Page 185: KINEMATIC HYDROL06Y AND MODELLING

174

increase ( a s w e l l as the volume of r u n o f f ) .

F i g . 9.1. The ef fect o f u r b a n i z a t i o n on r u n o f f

i ) V i r g i n C a t c h m e n t I

The s imp le r e c t a n g u l a r catchment dep ic ted in F i g . 9.2 w i l l be

s tud ied to i n d i c a t e the v a r i o u s e f fec ts of u r b a n development on the s torm

r u n o f f peak. The ef fects computed a r e reduced roughness, impermeable

cover a n d channe l i za t i on . A constant f requency, u n i f o r m r a i n f a l I i n t e n s i t y

d u r a r i o n r e l a t i o n s h i p as fo l lows i s used:

i (mm/h ) = a

(0.24+td)

where t d i s the storm d u r a t i o n in hours.

T h i s i s t y p i c a l o f a temperate a rea , a n d the v a l u e of ' a ' f o r t h i s r e g i o n

i s est imated to be 70 mm/h f o r storms w i t h a 20 y e a r recu r rence i n t e r v a l

o f exceedance.

The catchment i s assumed to h a v e a constant s lope o f 0.01 a n d

i n i t i a l l y the cove r i s grass. The rep resen ta t i ve M a n n i n g roughness f o r

o v e r l a n d f low i s est imated to be 0.1. The i n i t i a l a b s t r a c t i o n ( s u r f a c e

re ten t i on a n d mo is tu re d e f i c i t make up) i s 30 mm a n d subsequent mean

i n f i l t r a t i o n r a t e ov,er a storm, 10 mm/hr.

Thus c1 = J S /n = JO.01 /0.1 = 1.0

I n f i l t r a t i o n r a t i o F = f / a = 10/70 = 0.143

I n i t i a l loss r a t i o U = u /a = 30/70 = 0.429

Leng th fac to r in S I U n i t s LF = L/36aa2'3 = 2 0 0 0 / 3 6 x 1 ~ 7 0 ~ ~ = 3.27

Page 186: KINEMATIC HYDROL06Y AND MODELLING

175

C a s e 1 , 2 a n d 3

F ig . 9.2 Simple catchment a n a l y z e d

From F ig . 3.6 ( f o r U = 0.40) r e a d e q u i l i b r i u m te > 4h ( o f f the graph) b u t

the peak r u n o f f f ac to r f o r t h i s F i s QF = 0.23 wh ich corresponds to a

storm d u r a t i o n of t d = 2.2h. The peak r u n o f f r a t e i s

Qp = 0.23Baa5"/10

same storm d u r a t i o n i s

= 17.6m3/s A i =

so the r a t i o n a l coef f ic ient C = 2.74/17.6 = 0.16.

= 0.23x1000x1x70 5'3/105 = 2.74m3/s

The to ta l p r e c i p i t a t i o n r a t e o v e r the catchment of a rea A f o r the

70 x 1000 x 2000

(0.21++2.2)-*~ x 3600 x 1000

Note however tha t the f u l l catchment i s not c o n t r i b u t i n g a t the

time of peak r u n o f f f o r the des ign storm, so C does not o n l y represent

the reduc t i on in r u n o f f due to losses, i t also accounts f o r o n l y p a r t o f

the catchment c o n t r i b u t i n g . The r u n o f f f o r the f u l l catchment would be

less as the storm d u r a t i o n would be longer than 2.2 h so the i n t e n s i t y

would be less a n d the losses r e l a t i v e l y h ighe r .

i i ) Reduction in Infiltration

I f the i n f i l t r a t i o n a n d i n i t i a l abs t rac t i ons a r e reduced b y u r b a n i z -

a t ion, the peak r u n o f f increases. The cons t ruc t i on of b u i l d i n g s a n d roads

cou ld reduce i n f i l t r a t i o n r a t e to 7 mm/h a n d in i t ia l abs t rac t i on to 14

mm. For F = 7/70 = 0.1 a n d U = 14/70 = 0.20 (F ig . 3.5) then f o r LF

= 3.27 as f o r case ( i ) , the t ime to e q u i l i b r i u m i s o f f t he c h a r t b u t the

c r i t i c a l storm has a d u r a t i o n of 2.2 hou rs a n d the corresponding peak

f low i s

Page 187: KINEMATIC HYDROL06Y AND MODELLING

176

= 0.44 x 1000 x 1 .O x 70 / l o 5 = 5.24m3/s QP

The corresponding runof f coefficient C works out to be 0.30

C a s e 4

Fig. 9.3 Catchment wi th channel

i i i ) Effect of Reduced Roughness due to Paving

With the construction of roads, pavements and bu i l d ing the na tu ra l

retardat ion of the surface runof f i s el iminated and concentrat ion time

reduces. That is, the system response i s faster and as a resu l t shorter,

sharper showers a re the worst from the point of view of runoff peak.

For the sample catchment the effect ive Manning roughness could qu i te

easi ly be reduced to 0.03. Then a = 3.33 and LF = 0.98. The time to

equ i l ib r ium would therefore be 3h bu t the peak intensi ty storm has a

durat ion of 2.2h as before. I n th i s case extent of the storm over the

catchment i s greater however, and the peak runof f i s

Q = 0.23 x 1000 x 3.33 x 705’3/10 = 9.12m3/s

The corresponding increase i n C i s from 0.16 to 0.52 an appreciable

increase i f i t i s borne i n mind th i s i s only due to reduced roughness

and does not account for reduced in f i l t r a t i on . I t w i l l be noted that the

effect of reducing roughness i s even greater than decreasing i n f i I t rat ion

for t h i s case. The same effect i s magnif ied in the fo l lowing example.

P

i v ) Effect of Canalization

The effect of a stream down the centre of the catchment i s i l l us -

t rated in the fo l lowing example. The same surface roughness ( n = 0.1)

Page 188: KINEMATIC HYDROL06Y AND MODELLING

177

a n d p e r m e a b i l i t y ( f = 10 rnm/h, u = 30 mm) a s f o r case ( i ) a r e assumed.

The o v e r l a n d f l ow cross s lope i s t aken a s 0.04 a n d 0.01 f o r a 8 m w ide

channel down the catchment. The d imension less h y d r o g r a p h s in Chap te r

s i x a r e used a g a i n . 2L u.6 b a u.6

The stream catchment r a t i o G = (2 ) 2 ba s 2Lo

( 2 x 2000 o.6 8 x 2 o.6 = o.50 - 8 x 1 2 x 500

By t r i a l , guess storm d u r a t i o n r e s u l t i n g in peak r u n o f f of 1.5h, t hen

70 i = __ (o.24 1.5).m - 10 = 42.7-10 = 32.7 mm/h e

ted = t d - t

F = 10/32.7 = 0.31

= 1.5 - 30/42.7 = 0.80h

3/5

2860s = 0.80h L o ) l / m = 500

m-1 2 x ( 32.7/3600000 ) 2'3 tCO = i 011

TD = (5 /3) ted/ tco = (5/3)0.8/0.8 = 1.67

Therefore td = t

I n t e r p o l a t i n g F i g s . 6.10 a n d 6.11 the peak fac to r Q = 0.85

Peak f low Q

Ra t iona l coe f f i c i en t C = 15.4/(42.7x2/3.6) = 0.65

+ t = 0.8 + 30/42.7 = 1.50 h wh ich agrees w i t h guess ed u

= QAie = 0 . 8 5 ~ 2 ~ 1 0 6 x32.7/3.6x106 = 15.4m3/s

v ) Combined reduced roughness and reduced losses

I f roughness is reduced b y p a v i n g to 0.03 then a = 3.33 a n d L F

= 0.98 as f o r case ( i i i ) . The reduced loss fac to rs become F = 0.1 a n d

U = 0.2 as f o r case ( i i ) . From F i g . 3.5 t = 1.7 h a n d the co r respond ing

P F = 0.43.

Hence the peak f l ow Q = 0.43 x 1000 x 3.33 x 70 5 3 = 17.0m3/s. The

r a i n f a l l r a t e f o r a storm of t h i s d u r a t i o n i-s

70 x 1000 x 2000 (0.24 + 1 . 7 ) 0 8 9 x 36000 x 1000 = 21.6 m 3 / s so C = 0.79.

The r e l a t i v e ef fect of each v a r i a b l e on peak r u n o f f c a n be compared

w i t h the a i d of Tab le 9.1. The ef fect o f r e d u c i n g i n f i l t r a t i o n 30% a n d

i n i t i a l a b s t r a c t i o n 40% i s to doub le the peak r u n o f f . The c r i t i c a l s torm

d u r a t i o n was not a f fected b u t the e f fec t i ve a r e a c o n t r i b u t i n g increased

s l i g h t l y . The ef fect of r e d u c i n g su r face roughness i s even more

remarkab le however. Even m a i n t a i n i n g the same losses ( b o t h i n i t i a l a n d

a b s t r a c t i o n a n d i n f i l t r a t i o n ) a s f o r the n a t u r a l catchment the r u n o f f peak

Page 189: KINEMATIC HYDROL06Y AND MODELLING

178

increased by a factor of 4. The area cont r ibu t ing increased noteably

although the c r i t i c a l storm durat ion was not affected. Reducing roughness

even more would not necessarily increase runoff much as prac t ica l l y the

en t i re catchment contr ibutes for case ( i i i ) whereas the area cont r ibu t ing

i n case ( i ) was much less. Only for case ( v ) wi th reduced roughness

and losses i s the concentration time equal to the c r i t i c a l storm durat ion.

TABLE 9.1 Showing effect of d i f ferent surface conf igurat ions on peak runoff from a 2000m long by lOOOm wide catchment.

So = 0.01, i = 70 rnm/h/(0.24h + t ) 0.89

d

CASE n f mm/h u mm t h t d h i mm/h Q m'/s C __ - ~ - ~ _ _ ~ ~ ~ P

i ) V i rg in 0.1 10 30 5 2.2 36.7 2.74 0.16 catchment

i i ) Reduced 0.1 7 14 4 2.2 36.7 5.24 0.30 losses

i i i ) Reduced 0.03 10 30 3 2.2 36.7 9.12 0.52 roughness

i v ) Canaliz- 0.1 10 30 0.8 1.5 42.7 15.4 0.65 at ion (stream width 3m)

V ) Reduced 0.03 7 14 1.7 1.7 38.8 17.0 0.79 losses and roughness

The effect of canal izat ion is somewhat s imi la r to reducing roughness

- water velocit ies, and concentration rates, are faster. This i s due to

the greater depth i n channels ( Q = 6 Jsy"/n). Consequently a greater

area contr ibutes to the peak.

Not much sense can be made out of comparing the resu l t ing ra t iona l

coefficients ( r a t i o of peak runoff ra te to r a i n f a l l r a te times catchment

a rea ) . That i s because the time of concentration for each case is

di f ferent due to d i f f e r i ng roughness, r a i n f a l l r a te etc. I n any case i t

i s i r re levant when i t comes to c r i t i c a l storm durat ion which is shorter

than the time to equi l ibr ium.

Page 190: KINEMATIC HYDROL06Y AND MODELLING

179

DETENTION STORAGE

Although the kinemat ic equations as presented previously cannot

accommodate reservoir storage they may be rearranged to i I lustrate the

storage components in them. The St. Venant equations w h i c h include terms

for storage when water surface i s not pa ra l l e l to the bed, a re

aA - aa a t ax -- ( 9 . 1 1

( 9 . 2 )

The f i r s t equation i s the cont inu i ty equation and the second the

so-called dynamic equation. The f i r s t equation does not give the total

storage i n the reach, i t represents the ra te of change i n cross sectional

area of flow as a function of inf low and outflow. The second equation

contains more about the d is t r ibu t ion of storage. The last two terms

represent the wedge component of storage, which are absent in the

kinematic equations. The kinematic equations therefore treat storage as

a prism, wi th storage in blocks and no allowance for dif ference i n slope

between bed and water surface i s made. Since the second equation i s

replaced by a f r i c t i on equation and So = Sf i n the kinematic equations,

only the f i r s t equation i n the case of the kinematic equations can be

used to calculate storage changes.

The cont inui ty equation may be wr i t ten as

0-1 A z - A i - + - = o A x At (9 .3 )

where 0 i s outf low, I i s inf low over a reach of length A x , and A t and

A2 are the cross sectional areas before and a f te r A t respectively.

I f 0 = ( 0 + 0 2 ) / 2 and I = ( I , + 12) /2 and AAx is replaced by S, the

storage which i s a function of A l and Ao, which i n tu rn a re functions

of f lowrate, e.g. S = X I + ( l - X ) O , then equation (9 .3 ) becomes the one

frequently used for open channel rout ing,

1

0 2 = c , I I + c 2 1 2 + caO1 ( 9 . 4 )

where c I , c and cg are functions of A x and A t. The la t te r equation

i s referred to as Muskingum's equation used i n rou t ing floods along

channels. i f X = 0 the rou t ing equation corresponds to level pool o r

reservoir rout ing. The more general equation w i th X = 1/2 represents

a 4-point numerical solut ion of the cont inui ty equation as employed i n

kinemat i c models (Brakensiek, 1967).

Page 191: KINEMATIC HYDROL06Y AND MODELLING

180

CHANNEL STORAGE

Channel storage performs a s imi la r function to pond storage i n

re ta rd ing flow, and there are many analogies which can be drawn

between the two. Channel storage i s a function of f r i c t ion resistance

and channel shape and can be control led in var ious ways.

The form of f r i c t i on equation, as well as the f r i c t ion factor, affect

the reaction speed of a catchment and the volume stored on the catchment.

The excess r a i n stored on the catchment, whether in channels or on

planes, i s a form of detention storage, and as such, affects the con-

centrat ion time and consequently the peak ra te of runoff . Some f r i c t ion

formulae used i n stormwater drainage pract ice are l is ted below.

S . I . un i ts Engl ish un i ts

Darcy-Weisbach Q = (8/f)1bA(RSg)1fi Q = (8 / f ) lR A(RSg)'n

Chezy Q = 0.55CA(RS)'" Q = CA(RS)'/*

Manning Q = AR2/3S1/2/n Q = 1 .486AR 2'3S v2 / n

Str ickler Q = 7.7A(R/k) (RSg)V2Q = 7.7A(R/k)v6 (RSg)Ih

R i s the hyd rau l i c rad ius A/P where A i s the area of flow and P

9.5)

9.6)

9.7)

9.8)

the

wetted perimeter. R can be approximated by depth y for wide rectangular

channels. S i s the energy gradient, f i s the f r i c t ion factor and k i s

a l inear measure of roughness analogous to the Nikuradse roughness.

Both the roughness. coefficient CY and the exponent m o f R o r y i n

the general flow equation (9.11) affect the peak flow o f f a catchment.

This i s la rge ly due to the at tenuat ing effect of f r i c t ion resu l t ing i n a

larger time to equi l ibr ium. A r a i n f a l I excess intensi ty-durat ion relat ion-

ship i s required to evaluate the effect of each coefficient on peak runoff

ra te and maximum catchment storage. The fol lowing expression for excess

ra in fa l I intensi ty i s assumed:

(9.9)

I n th i s equation i t i s customary to express i and a in mm/h or inches

per hour and b and td in hours where td i s the storm durat ion assumed

equal to time of concentration tc for maximum peak runoff of a simple

ca tchrnent.

Start ing wi th the kinemat i c equation for cont inui ty

a v . 3 at ax = 'e (9.10)

Page 192: KINEMATIC HYDROL06Y AND MODELLING

181

and a general flow resistance equation

q = aym (9.11)

then i t may be shown that tc = (L /a iem- ' ) ' /m where q i s the runoff r a t e

per u n i t width of the catchment and y i s the

limb of the hydrograph i s given by the equation

q = CY ( i t ) m

1

1 2 ' 0 p . , , , , , , , . . , , , , ,

flow depth. The r i s i n g

(9.12)

m Fig. 9.4 Hydrograph shapes for di f ferent values of m in q = a y

and another expression may be der ived from the f a l l i n g limb (see Chapter

2 ) . I n Fig. 9.4 are plotted dimensionless hydrographs to i l l us t ra te the

effect of m on the shape, of the hydrograph. The graphs are rendered

dimensionless by p lo t t ing Q = q/ ieL against T = t / tc. m i s used as a

parameter. Thus m = 1/2 represents closed conduit or o r i f i ce f low, m

= 1 represents a deep vert ical sided channel, m = 3/2 represents a wide

rectangular channel according to Darcy or a rectangular weir, m = 5/3

represents a wide rectangular channel i f Manning's equation i s employed,

and rn = 5/2 represents a t r i a n g u l a r . w e i r . T h e graphs immediately

indicate the effect of m on catchment detention storage since the area

under the graph represents storage.

The smaller m, the greater storage. Thus provided storage i s

economical by th ro t t l i ng outflow one may increase storage and increase

concentration time thereby reducing discharge r a t e (which i s not immed-

iately apparent from these graphs as they are plot ted re la t i ve to excess

ra in fa l I in tens i ty ) . I n pract ice the concentration time increases the

greater the storage so that the lower intensi ty storms become the design

storms. Th is has a compound effect in reducing flow rates since total

volume of losses increases and i t i s possible that the en t i re catchment

w i l l not contr ibute at the peak flow time.

Page 193: KINEMATIC HYDROL06Y AND MODELLING

182

A general solut ion of peak flow and storage i n terms of intensi ty-

durat ion relat ionships i s der ived below. Solving (9.9) wi th td = tC for

maximum ra te of runoff per u n i t area and general iz ing by d i v i d i n g by

a.

1 -_ 1 L/a(a/3600000)m-1 I

I c + I P 3600 ( ie/a ) '- ' lm

(9.13)

m-1 The term L / u a is referred to as the length factor. The constants are

introduced for a i n mm/h, and time of concentration i n hour uni ts. The

maximum peak flow factor ie/a i s plot ted against length factor i n Fig.

9.5, since i t i s not easy to solve (9.13) d i rec t l y for i /a

i e /a and s/a

max

c=o. 9 b=0.25h 1 2

s * . . . I I I , * ] I n 1 I 1 I . . . jC rn- 1 L 1.i a 00

, / f )

I0

F ig . 9.5 Peak flow and storage versus length factor

An expression for the corresponding catchment storage is der ived

below. At equ i l ib r ium the flow per un i t width a t a distance x down the

catchment i s

Page 194: KINEMATIC HYDROL06Y AND MODELLING

183

q = i x e

= ay m

therefore y = ( i e x / a ) l I m

Integrat ing y w i th respect to x y ie lds the total volume on the catchment

o r in terms of the

m+l a

average depth of storage s = V / L

1 /m L 1/m , ( ) - - - a ( a/3600000) m-' 3600

(9.14)

where s i s i n mm, and i and a a re i n mm/h. s/a i s also plotted against

length factor i n Fig. 9.5. I t w i l l be obzerved that average storage depth

does not increase in proport ion to L/aam-'. I n fact the ra te of increase

reduces beyond L/aam-' = 50, and the ra te of reduction i n peak flow

ie/a also decreases beyond the f igure, ind ica t ing reducing advantage

in increasing channel length or roughness ( 01 = K 1 J ( S ) / n ) . Since total

channel cost i s a direct function of storage capaci ty i t would appear

to be an optimum at some intermediate value of L/aam-' i f there i s a

cost associated with peak discharge e.g. cu lver ts or f looding downstream

(see Fig.

minimum

c o s t $

Fig. 9.6

9.6).

Optimum catchment storage volume.

Note that i n f i l t r a t i o n a f te r the r a i n f a l l stops, i s neglected i n the

above analysis. Inclusion of that effect would lower the ie/a and s/a

l ines to the r i gh t , imply ing a la rger L/aam-' i s best. The model provides

an indicat ion of total storage i n the system. The location (and volume)

Page 195: KINEMATIC HYDROL06Y AND MODELLING

184

o f s t o r a g e c o u l d b e f u r t h e r o p t i m i z e d u s i n g d y n a m i c p r o g r a m m i n g methods

o r b y d e t a i l e d m o d e l l i n g . I t s h o u l d b e f o u n d g e n e r a l l y t h a t i t i s most

economical to p r o v i d e p o n d s t o r a g e ( m = 1 /2 ) a t t he o u t l e t , whereas

c h a n n e l o r ca tchmen t s t o r a g e ( m = 5/3) i s most economica l a t t h e h e a d

o f the system.

K I NEMATIC EQUAT I ONS FOR CLOSED CONDU I T SYSTEMS

I f the open c h a n n e l k i n e m a t i c e q u a t i o n s a r e a p p l i e d to c losed

c o n d u i t f l o w the p r o b l e m becomes a s t e a d y s t a t e f l o w one s i n c e f l o w

r a t e s become independen t o f c r o s s sec t i on . T h i s i s p r o v i d e d t h e c o n d u i t s

r e m a i n f u l I a n d t h e r e a r e no s t o r a g e ponds a t nodes j o i n i n g c o n d u i t s .

I f one p e r m i t s s t o r a g e v a r i a t i o n a t nodes o n e h a s the r e s e r v o i r - p i p e

s i t u a t i o n encoun te red in w a t e r s u p p l y w h i c h i s o f t e n a n a l y z e d e m p l o y i n g

pseudo-s teady f l o w equa t ions .

F i g . 9.7 I n p u t - o u t p u t node s t o r a g e

The c o n t i n u i t y e q u a t i o n becomes (see F i g . 9.7)

d h i (9.15) d t

(Q i+ , -Q i ) - qi + Ai- = O

where the r e s e r v o i r s u r f a c e a r e a A . r e p l a c e s B d x i n t h e open c h a n n e l

c o n t i n u i t y e q u a t i o n where B i s t h e ca tchmen t w i d t h . q i s the r e s e r v o i r

i n f l o w here . The d y n a m i c e q u a t i o n i s r e p l a c e d b y

Q. = aAm (9 .16a)

where A i s t he ( c o n s t a n t ) c o n d u i t c r o s s s e c t i o n a l a r e a . S ince the k i n e -

m a t i c e q u a t i o n s o m i t t he dependency of Q o n h e a d d i f f e r e n c e h, t h e l a t t e r

e q u a t i o n assumes the h e a d g r a d i e n t a l o n g t h e p i p e e q u a l s t h e p i p e

g r a d i e n t , i.e. f r e e - s u r f a c e j u s t f u l l f l o w . S ince A i s a c o n s t a n t i t i s

r e l a t i v e l y easy to r e p l a c e the l a s t e q u a t i o n b y one of the f o r m

Page 196: KINEMATIC HYDROL06Y AND MODELLING

185

Q . = 01 Ah.m (9.16b)

This equation is app l i cab le to free discharge from an or i f i ce o r over a

weir. One more app l icab le to condui t flow would be

Q = aA(hi- l -h i ) ( 9 . 1 6 ~ )

Any one of the above three equations could be appl icable in storm-

water drainage. For channel or over land flow (9.16a) appl ies, for

complete storage control (9.16b) appl ies and for closed conduit control

( 9 . 1 6 ~ ) i s appl icable. The la t te r form of equation has i n fact been

employed in water re t i cu la t ion pipe network analysis. I t can b e appl ied i n

storm drainage to closed systems (not of great interest i n stormwater

management pract ice) or to pipe-reservoir problems. Surface detention and

a r t i f i c i a l detention storage ponds can be handled i n an overa l l flow

balance employing the closed conduit kinematic method. I t should be

noted that the numerical instabi I i t y problems associated with solut ion of

the open channel kinematic equations are absent. Time steps can be much

la rger than for open channel kinemat ic model I ing. Storage f luctuat ions

may be computed i n steps and the effect of changes i n pond water levels

on flows i n conduits can be accounted for.

m

One possible appl icat ion of such a program i s to an inter-connected

pond system wi th reversible flows i n conduits. Overload from one pond

can be forced back to another pond. Such si tuat ions can read i l y a r ise

from spat ia l l y va r iab le storms and possibly for t rave l l i ng storms.

Off-channel storage can also be accounted for. Such ponds have

the advantage that water level var ia t ions are not as marked as the head

var iat ions in the d ra in pipes (which may in fact be surcharged). This

i s due to the revers ib le head loss between the main conduit and the pond.

3 3 1.4m /s

1. Om

Fig. 9.8 Conduit and storage storm d ra in network.

Page 197: KINEMATIC HYDROL06Y AND MODELLING

The s imp l i f ied layout in F ig . 9.8 was analyzed employing the

accompanying k inematic closed conduit continuous simulat ion program.

Input and output a re appended to i l l us t ra te the s imp l ic i t y i n th i s type of

anlysis. Flow reversal , pond level var ia t ions and the large attenuation i n

peak flow w i l l be observed due to the ponds (from 5.6m3/s down to

1.5m3/s). By ad jus t ing ind iv idua l pond areas and conduit sizes an

optimum design could be achieved for any design storm input. A

sensi t iv i ty ana lys is for a l te rna t ive storms such as di f ferent storm

durations or ones with spat ia l v a r i a b i l i t y would then be performed.

COMPUTER PROGRAM TO SIMULATE RESERVOIR LEVEL V A R I A T I O N S I N A PIPE

NETWORK

Closed conduit drainage networks can as explained above, be used to

ameliorate peak flows by d i rec t ing water into storage. Flow can be i n

ei ther direct ion and depends on the dif ference i n water levels a t the two

ends of the conduit, not on the conduit gradient as for open channels.

Apart from this, the pr inc ip les a re the same as for open channel kinematic

flow. That i s steady state condit ions (head loss/flow equations) are used

together wi th the cont inui ty equations. The accompanying computer program

wri t ten in HP 85 'BASIC' w i l l simulate the var ia t ions in water level i n

reservoirs in add i t ion to performing a network flow balance.

The program is based on the l i nea r node method (Stephenson, 1984)

network ana lys is wi th an add i t iona l var iab le , area of reservoir for each

' f i xed head' o r , i n th is case, ' reservoir type' node. I f the simulat ion

durat ion T 4 i n hours and time increment T5 are input , for example 24 and

1 , then the heads a t each node and water level i n each reservoir w i l l be

pr in ted out every hour. The actual network i terat ions each time in te rva l

af ter the f i r s t should be minimal since the network flows are balanced i n

the f i r s t i terat ion and only unbalanced due to reservoir level changes

which w i l l have to be corrected a t subsequent time intervals. Although

drawoffs a re time-fixed in the present program, they could be al tered a t

pauses i n the runn ing or inserted i n equation form.

The output, namely level var ia t ions , could be used to estimate

required reservoir depths (using t r i a l reservoir surface areas) and i n fact

to see at which reservoir locations the storage i s most required. Data

requirements a re s im i la r to the ana lys is program w i th the fo l lowing

addit ions.

Page 198: KINEMATIC HYDROL06Y AND MODELLING

187

I n the f i r s t da ta l ine a f te r the name, the simulat ion durat ion and

increment in hours i s added at the end of the l ine. I n the pipe data,

the f i r s t pipes should be from the var ious reservoirs wi th the surface

areas of the up-stream reservoirs i n square metres given at the end of

the pipe da ta lines. I n order to d isp lay the reservoir levels i n the

biggest reservoir i t i s necessary to have a supply pipe from a pseudo

f i xed head, very large, reservoir to represent a pumped supply feeding

into the actual biggest level reservoir i n the d is t r ibu t ion system.

The selection of 'upper ' and ' lower ' nodes for any pipe, numbered

1 and 2 i s somewhat a r b i t r a r y . I f the incorrect flow direct ion i s

assumed, a negative flow number w i l l appear i n the answers thus ind i -

ca t ing the flow direct ion i s from node 2 to node 1 as specified.

When da ta i s put in , the order of pipes i s to a l imi ted extent

a r b i t r a r y , but the 'node 1 ' of any pipe should have been defined as

a 'node 2 ' i n some previous pipe. Th is does not apply to the f i r s t p ipe

which w i l l o r ig ina te at a reservoir. The order of pipes enables da ta

on successive nodes, i .e. i n i t i a l estimates of heads and f lows, to proceed

down the system from previously defined nodes.

Node numbering i s also open to the user except the reservoir- type

nodes (w i th specif ied i n i t i a l water levels) should be numbered f i r s t ,

from 1 to J3.

There i s scopc for set t ing a l l Darcy f r i c t i on factors the same to

minimize data requirements, or to va ry each factor. Note i f o ld da ta

in f i les i s used those f r i c t ion factors, not the 'common' factor, i s used

even i f a common factor i s fed in. To p r i n t out ' o ld da ta ' i n f i l e , i t

i s necessary to go into revis ion mode ( 2 ) of p ipe data input. To get

out of revis ion mode, type 0 for p ipe number to be revised.

Par t of the da ta i s read interact ively on the keyboard. The f i r s t

l ines of data (name, durat ion, no. of nodes, reservoir data and pump

data) i s typed for each run. The pipe and node data can

or retr ieved from a f i l e or ammended i n a f i le .

The time increment between i terat ions for simulatiot

be small enough to avoid large var ia t ions i n water levels

between i terat ions. The reservoir surface area and flows

this.

Addit ional pipes can be added in ed i t ( 2 ) mode and

stored in the da ta f i le . Pipes can only be removed by

b e typed i n

mode must

n reservoirs

w i l l control

d i l l then be

l im i t i ng the

number of p ipes i n the i n i t i a l l ines to el iminate those not required a t

the end. The other way i s to put a very small diameter for a pipe to

be removed from the network. New nodes or reservoirs can be added by

re typ ing in data.

Page 199: KINEMATIC HYDROL06Y AND MODELLING

188

When reading i n i n i t i a l da ta however, no more than the number

of pipes i n the da ta f i l e should be specified, The number w i l l auto-

mat ical ly be increased when more data l ines are added.

The last specif icat ion of any drawoff i s retained i f a node happens

to be specif ied more than once in input. One should also make sure each

node i s specif ied (as a N2) at least once to define i t s drawoff.

Data Input

Each l ine may contain more than one u n i t of data separated b y

commas.

L ine 4

L ine 5

Lines 6 . . .

L ine 7

Lines 8.. .

L ine 9

L ine 10

L ine 1 1

Lines 12...

L ine 1 Name of network (and r u n no.)

L ine 2 Analysis ( 0 ) or simulat ion ( 1 ) - type 0 o r 1

L ine 3 Drawoff durat ion i n minutes, thus i f drawoff i s over

8 hours, type 480. Simulation durat ion mins. I f 24

hours, type 1440, Time increment DT, mins. Suggest

30 - 120.

Constant ( 0 ) or various ( 1 ) Darcy f ’ s - type 0 or 1

No. pipes,

No. nodes ( total inc lud ing reservoirs)

No. reservoir type nodes.

(one for each reservoir node i n successive order )

I n i t i a l water level, rn

Surface area of reservoir , mz

Old ( 0 ) or new ( 1 ) o r revised pipe data ( 2 ) ;

type 0 , l or 2.

(one for each pipe i n new pipe da ta)

Node 1 no.

Node 2 no.

Pipe length rn

Pipe inside d ia . , rn

Drawoff at node 2, m3/s

(Darcy f r i c t ion factor i f l i ne 4 i s 1 )

I f l ine 7 i s 2 , w i l l ask pipe no. for revision.

Pipe da ta for new pipes as for L ine 8 inc luding Darcy

f r i c t ion factor.

No. of pumps or pressure reducing valves (one per

p ipe ) .

Pipe no. i n which pump or PRV i s instal led, pumping

head or PRV head loss ( - ) in rn.

Page 200: KINEMATIC HYDROL06Y AND MODELLING

189

L i s t of Symbols in Program

1 = a n a l y s i s , 2 = s i m u l a t i o n

0 = c o n s t a n t f , 1 = v a r y i n g D a r c y f .

0 = o l d d a t a , 1 = new d a t a , 2 = r e v i s e o l d d a t a

0 = n o d a t a l i s t i n g r e q u i r e d , 1 = r e q u i r e d

h e a d Ios s/Q I Q 1 ZH f o r each SOR

C A F

p i p e d iamete r ( m )

o ld v a l u e o f H ( I )

D a r c y f r i c t i o n f a c t o r e.g. 0.012 l a r g e dia. c l e a n p i p e

0.03 s m a l l t u b e r c u l a t e d p i p e

common D a r c y f a c t o r

h e a d a t node o r j u n c t i o n I

node c o u n t e r

n u m b e r of nodes

u p p e r node number o f p i p e

lower node n u m b e r on p i p e

n u m b e r of r e s e r v o i r t y p e nodes

i te ra t i on

p i p e c o u n t e r

node c o u n t e r

p i p e c o u n t e r

number o f c o n n e c t i n g p i p e s

M 2 ( L , M l ( L ) ) p i p e n u m b e r c o n n e c t i n g

N$ a lphanc rmer i c name of system, up to 12 c h a r a c t e r s

NO max imum n u m b e r m a i n i t e r a t i o n s p e r m i t t e d e.g. 4: t 5

N1 max imum number SOR (success i ve o v e r - r e l a x a t ion o f

s imu l taneous e q u a t i o n s ) i t e r a t i o n s e.g. 4T t 10

N2 c o u n t e r f o r m a i n i t e r a t i o n s

N3 c o u n t e r f o r SOR i t e r a t i o n s

P n u m b e r of p i p e s

P1 numer o f p i p e s and P R V ' s ( 1 p e r p i p e max imum)

Q ( K ) f l ow in p i p e

Q1 d r a w o f f m3 / s

Q2( I ) d r a w o f f m3 /s

R ( k ) pump h e a d i n m, ( o r p r e s s u r e r e d u c i n g v a l v e h e a d in m

i f n e g a t i v e )

S g n2 / 8

Page 201: KINEMATIC HYDROL06Y AND MODELLING

190

S ( 2 ) I C K i j

s 3 CHj

S4( I CK i jH j

55 o l d Q ( K ) f o r a v e r a g i n g

T3 d r a w o f f d u r a t i o n , m i n s e .g . 8 h x 60 = 480

T4 s i m u l a t i o n d u r a t i o n , m i n s e.g. 24 x 60 = 1440

T 5 t ime inc remen t i n s i m u l a t i o n , m i n s e.g. 60

TO t o l e r a n c e on h e a d i n m e . g . 0.0001

T1 t o l e r a n c e on SOR in m e.g. 0.01

W-SOR f a c t o r e.g. 1.3 (1-2)

X ( K ) p i p e l e n g t h m

REFERENCES

B r a k e n s i e k , D . L . , 1967. K i n e m a t i c f l o o d r o u t i n g . T r a n s Am. SOC. A g r i c . E n g r s . lO(3) p 340-343.

Co lye r , P.J., 1982. The v a r i a t i o n o f r a i n f a l l o v e r an urban ca tchmen t . Proc. 2nd I n t I. Cong. U r b a n Storm D r a i n a g e . U n i v e r s i t y o f I I l i n o i s .

H u f f , F.A. and Changnon , S.A., 1972. CI i m a t o l o g i c a l assessment o f urban e f f e c t s o n p r e c i p i t a t i o n a t St. L o u i s . J. A p p l . Me teo ro logy , 1 1 , p 823-842.

Stephenson, D . , 1984. K i n e m a t i c a n a l y s i s o f d e t e n t i o n s to rage . Proc . S torm Water Management and Qua1 i t y u s e r s Group Mee t ing , USEPA, D e t r o i t .

Stephensdn, D . , 1984. P i p e f l o w A n a l y s i s , E l s e v i e r , Amsterdam, 204 p p . S u t h e r l a n d , F.R., 1983. An i m p r o v e d r a i n f a l I i n t e n s i t y d i s t r i b u t i o n f o r

h y d r o g r a p h s y n t h e s i s . Water Systems Research Programme, Repor t 1/1983, U n i v e r s i t y o f t he W i t w a t e r s r a n d .

Page 202: KINEMATIC HYDROL06Y AND MODELLING

191

Program Listing

16 ! NETSIFI KINEMHTJC~CONTIN SI MULN OF NETWORKS WITH STORAG E

26 ASSIGN# 1.~0 "DF~TNET* ! CREA TE"DATNE1 J 166988

,S2(56),S4(56>,F(56>

), R(96) J Ill (58) J M2<58,5)

38 DIN C(5b,,Q<?6~,H<5b).Q2(56)

46 DIM J1<5b), JE(56>,D(58), X(56

58 DISP "NAPlE OF NETYORK'; 66 INPUT NS 76 DISP "ANALYSIS OR SIPlULATION

( 112) " i 88 INPUT ~i 56 IF' A1=2 THEN 146

l 6 b T3=1 116 T4=1 126 T5=1 136 GOTO 166 146 DISP 'DRAWOFF DURATIONnin,SI

16b Q2<1>=6

M DURNm in, DTm in" i 158 INPUT T3,T4,T5

176 T3=T3$6b 186 T4=T4X60 196 T5=T5*6b 268 DISP 'VARYING fs<B/l)"; 216 INPUT A2 226 IF R2=8 THEN 2C;n . - . . - - - 238 DISP-~NPIPES, NODES, NRESS"; 246 INPUT P,J,J3 258 GOTO 286

276 INPUTUP, J, J3,Fl 286-DISP INITL WATER LEVELm,SUR

256 FOR L=l TO J3 386 DISP L; 316 INPUT H(L),A(L) 326 NEXT L

FACE AREA m2";

336 346 356

366 376 388 356

468 416 426 436 446

458

6=5.8 S=3.14155*2tG/S DISP "OLD OR NEW OR REVISE P IPEOATA(6/1/2) " i - INPUT A4 IF A4=1 THEN 436 f NElJ DATA FOR K=l TO P ! OLD DATA

,D(K>,Q2(JZ<K)>,Ftk) NEXT K IF H4=2 THEN 586 GOTO 746 IF H2=6 THEN 466 DISP "NODE1, NODE2,Lm,Dm,DRAW OFFEm3/s,DARCYf " j

GOTO 476

READ# 1,K J Jl(K),JP(K),XCK>

466 DISP " N ~ D E 1 , N O l l E 2 ~ L m , D m ~ D R A W

47B FOR K=l TO P ! P I P E Dt3TH 0 F 2 m3 / s '' ;

546 556

566 578 586 598 668 616 614 616 628

636

646

122 \ J C ( E r' I =O 1 PRINT# 1,K i JI(K>,JE(K>,X(K

NEXT K GOTO 748 FOR Kl=l TO 168 DISP "REVISE PIPE NO."; INPUT K IF K=b THEN 666 IF K<=P THEN 626 P=K DISP "NODEl.HODE2,Lm,Dn,DRA~ DFF~NIJ/s,DARCY~"~ INPUT Jl(K),J2(K),X(K),D(K>, Q2( J2(K) ), F < K ) PRINT# 1,K ;'Jl<K),JE(K>,X<K

),D<K),Q2<J2~K?),F(K>

),D(K),QZ(J2(K)),F<K> 653 NEXT F l 666 DISP DATALIST REQD (b/ 67b INPUT A 5 686 IF R5=! THEN 748 696 PRINT NODE1 N2 Xra Dm

/s f 788 FOR ~ = i TO P 718 PRINT USING 736 i Jl(K>

),X<K),D<K),Q2<J2<Kj>,F 728 NEXT K 7 7 c * V Y n r r nnr.n nnnn nnnnn n nnn

758 Q(K)=3.14159*D(K>*2/4 766 R<K)=6 776 C<K)=S*D(K>*S/F(KZ/X(K) ! I/

786 IF J2<K)<=J3 THEN 866 K

798 H ( J 2 ( K > ) = H ( J l < K ) ) - l / C < K ) * Q ( K

)"i

Qm3

J2(K K)

) *2 866 NEXT K 816 DISP "NO.PUtlPS/PRVs'i 826 INPUT P1 83b FOR P;=l TO P1 846 DISP PIPEN,+HEADm Nl-N2"iP2

856 866 876 886 896 ~~

566 918 926 938

INPUT K,R(K) NEXT P2 FOR L=l TO J M1 (L)=6 FOR H=l TO P IF Jl<M)=L THEN 526 IF JE<M)<>L THEN 546 Hl(L)=Ml(L>+l HE(L,Hl<L)>=H

946 NEXT M 956 NEXT L '166 W = l . 3 ! SOR FHCTOR 376 T6=.6B61 ! TOLERANCE n Y8B Tl=.Bl ! S O R TUL rn 996 NB=SQH<J)+5 ! ITNS PIPES lB6O Nl=SQR(Jj+lB ! ITNS SOR 1618 N2=6 1626 N3=6 1638 PRINT "PIPEtiET" I NZ i64B FOR T6=T5 TO T4 STEP T5 1056 I F Td<=T3 THEN la%@ 1068 FOE L=i Tit J 1678 122cL:i=@ 1888 NEXT L le98 FOR 1=1 Ti? t.rS

Page 203: KINEMATIC HYDROL06Y AND MODELLING

192

1110 1128 1138 1 1 4 0 1150

1168

1170 1188 1190 1280 1210 1220 1238 1 2 4 8 1250 1260 1270 1288

1298 1388

1310

1338

1348 1350 1360 1370 1388 1398 1 4 0 0 1 4 1 0

1320

1 4 2 8 1430 1 4 4 0 1 4 5 0 1468 1 4 7 0

1 4 8 8 1 4 5 0 1588 1510 ~~~~

1520 1530 1540 1550 1560 1 5 7 0 1580 1558 1680 1 6 1 0

1 6 2 8

1630 1 6 4 8

1658 1 6 6 B

1678 1688

NEXT K

S2(Jl<K))=S2<Jl(K))-C(K)/hB S t Q C K ) ) S 2 ( J 2 ( K ) ) = S 2 < J 2 < K ) > - C < K ) / A B S ( Q ( K ) ) NEXT K FOR K = l TO N1 C2=8 S3=0 N3=N3+1 I F J3+1>J THEN 1380 FOR L=J3+1 TO J S 4 <L)=0 FOR fl3=l TO M l ( L ) Fl=H2<L,M3)

FOR K = l TO P

/hB

/AB

NEXT M 3 OE=H<L>

NEXT L I F C2/S3<=T1 THEN 1390 NEXT K FOR K = l TO P ! NEW FLOtJS

NEXT K I F C3/P<=T0 THEN 1510 NEXT I FOR L=l TO ~3 ! RES LEVEL H ( L ) = H ( L ) - Q 2 < L ) * T S / H ( L ~ ~- FOR M 3 = 1 TO M l < L > M = M 2 < L , M 3 ) IF J l (M)<>L THEN 1578 H(L)=H(L) -Q(M>*T5/A(L) I F J2<M)<>L THEN 1590 H(L)=H(L)+Q(M)*T5/A<L) NEXT M 3 NEXT L PRINT USING "K,DDDDOD,X,K DDDD . O D " i "Ts=" , T6, " H i = " ( 1 )

.s

P R I N T "NODE1 NZ Xm Om 12 m 3 / s H2m ''

PRINT CLSING 1668 j J l ( K ? , J 2 i K ) , X ( K ) , D ( K > , Q ( K ) , H ~ J ~ ~ ~ ) ) NEXT k

FOR K=I T O r

IMAGE ODD. ~ D D O ~ O D D D D , O D . D D D , O D D . DDD, ODDDO. n STOP NEXT TE.

ASSIGN# 1 TO X END

Page 204: KINEMATIC HYDROL06Y AND MODELLING

193

l O O m

1 -

1000mx0.15

0.09

F i g . 9.9 P i p e n e t w o r k a n a l y z e d

8,3,768, .2, . 0 3

3,2,668, .2,8 N O . PUMPS/PRVs? 1 PIPEN,+HEADm Nl-t42 1 ? 1 > 1

9 'i

F'l PENET T E S T S I m 1 Tc=i.4.413O h1= 1138.813 tr0OEl t12 XDI Dm Grm3,s H?m

1 5 1E:OB .3WB .143 7 4 . 8 5 t. 868 .i06 .137€. 5c.l 5 8 550 ,258 .6i9 ee.3 d 7 1088 .15@ -.El14 5 4 . 3 8 7 S 8 8 ,288 -654 5 4 . 3 5 4 788 4 3 988 8 3 708 3 2 688

Ts=28888 H1= t4.IODEl N2 Xm

.156 . 818

.158 .018

.268 -.835

.288 - . B 5 5

Dm G r m 3 / s 10B.88

72.5 78.7 78.7 7 8 . 8

H2m 1 5 1808 73.1 5 6 888 49.8

8 958 E 5 . 1 2 7 1888 . l5G -.614 53.2 8 7 8Bb .2@8 . 8 5 4 5 3 . 2 5 4 708 - 1 5 8 .816 71 .4 4 3 988 .1SO .81b 69.2 8 3 788 . Z B B - .634 65.2 3 2 688 . 2 B U -.853 76.1

Ts=43286 H1= 188.88

.368 .146 . 2 8 Q .876 .ZSB .678

NODE1 t42 Xn Drn Q m S / s H2m 1 5 1588 .JBB - .810 5 B . 2 5 6 888 .280 .689 97.9 5 8 958 .258 .837 95.9 i 7 1088 .158 96.' Y 7 808 . 2 B 8 -.888 9 6 . 3 '. -

5 4 76P 4 3 98B 8 3 768 3 2 688

T s = 5 7 6 8 1 3 H 1 = H-lnDEl N2 X m

1 5 1888 5 6 860 5 8 958 rj 7 I8Sb 8 7 888 5 4 7QB 4 3 588 8 3 ;fit3 3 T'

.is(? , 1 5 0 -288 . 288 180.

Om

.288

.2513

.I58

.280

.150

.150

.2QB

. 2 0 0 ,

, 0 1 7 53 .9 817 8:3. 3 Ei46 88.3 ,863 78.4

U N I ~ / C H2m - . 817 95 .4

, 885 5 9 . 6 .,836 97.2

97.5 - .Be8 97.5

,816 95.3 .81G 50.6 .845 r e . @

88

, 8 6 1 S8.G

Page 205: KINEMATIC HYDROL06Y AND MODELLING

194

CHAPTER 10

K I NEMAT I C MODELL I NG

INTRODUCTION

Kinematic flow holds for those cases when a unique relat ionship

exists between the depth of flow and the volumetric f lowrate. Model

equations are der ived through simp1 i f icat ions to the fu l I equations

governing gradual ly-var ied, unsteady over land and open channel f low.

When appl ied to one-dimensional over land flow, i f the r a i n f a l l r a te i s

steady and the watershed geometry i s a regu la r geometry such as a

plane, ana ly t i ca l solutions can be obtained for the equivalent character-

i s t i c form of the governing equations. Otherwise, one must use numerical

solut ion techniques. Current ly, kinematic models best apply to h igh l y

impervious (u rban) and/or smal I watersheds. However, research i s on-

going in several countr ies to extend the app l i cab i l i t y to la rge and

mu1 t ip le land use watersheds.

The study of kinematic hydrology and modell ing must begin w i th

the der ivat ion of the f u l l equations governing over land and open channel

f low, followed with an examination of model s impl i f icat ions and when they

can be invoked, development of the character ist ic roots, and then proceed

with ana ly t i ca l and numerical solutions and example applications. I n

th is chapter, a discussion is given of general modell ing concepts and

def in i t ions to provide insights and understanding of the role of kinematic

model l i n g as one approach to hydrologic model I ing.

STORMWATER MODELL I NG

Kinematic model I i ng fa1 Is under the umbrel la of stormwater model I ing.

Stormwater i s defined as the direct watershed response to r a i n f a l l

(Overton and Meadows, 1976). I t i s the runoff which enters a d i tch ,

stream or storm sewer which does not have a s igni f icant base flow

component. This def in i t ion does not assume that a1 I stormwater reaches

an open channel by the over land flow route, although i n u rban areas

the direct response i s mostly through over land flow due to the h igh

degree of imperviousness. I n contrast, i n r u r a l watersheds, an over land

flow component may be nonexistant and direct storm response may be

only near the stream and occur as shallow subsurface flow.

As defined, stormwater i s associated with small up land or headwater

watersheds where base flow i s not a s ign i f i can t port ion of the total

Page 206: KINEMATIC HYDROL06Y AND MODELLING

195

streamflow du r ing periods of r a i n f a l I. Therefore, the emphasis of

stormwater modell ing i s on the storm hydrograph and not the streamflow

hy drograp h .

MATHEMAT I CAL MODELS

A mathematical model i s simply a quant i ta t i ve expression of a

process or phenomenon one i s observing, analyzing, o r predict ing. Since

no process can be completely observed, any mathematical expression of

a process w i l l involve some element of stochasticism, i.e. uncertainty.

Hence, any mathematical model formulated to represent a process or

phenomenon w i l l be conceptual to some extent and the r e l i a b i l i t y of the

model w i l l be based upon the extent to which i t can be or has been

ver i f ied. Model ver i f i ca t ion i s a function of the da ta ava i lab le to test

the model sc ien t i f i ca l l y and the resources ava i l ab le (time, manpower,

and money) to perform the tests. Since time, manpower, and money always

have f i n i t e l imi ts, decisions must be made as to the degree of complexity

the model i s to have, and the extensiveness of the ver i f i ca t ion tests that

are to be performed.

The i n i t i a l task of the modeler then i s to make decisions as to which

model to use or to bu i l d , how to ver i f y i t , and how to determine i t s

stat ist ical r e l i a b i l i t y in appl icat ion, e.g., feas ib i l i t y , p lann ing , design,

or management. This decision-making process I S in i t ia ted by c lear ly

formulating the objective of the modell ing endeavour and p lac ing i t i n

the context of ava i lable resources.

. .

I f the i n i t i a l model form does not achieve the intended objective,

then i t simply becomes a matter of rev is ing the model and repeating the

experimental ver i f icat ions u n t i l the project objective i s met. Hence,

mathematical modell ing is by i t s nature heur ist ic and i terat ive. The

choice of model revisions as well as the i n i t i a l model structure w i l l also

be heavi ly affected by the range of choice of modelling,concepts ava i l ab le

to the modeler, and by the s k i l l which the modeler has or can develop

i n app ly ing them.

Figure 10.1 i s a schemat i c representat ion of the model I ing process.

The modelling process i s not new but i s nothing more than a modern

expression of the classical scient i f ic thought processes involved i n the

design of an experiment. What i s new i s that today a very large number

of concepts can be evaluated e f f i c ien t ly i n a very small amount of time

at a re la t i ve ly small expense using computers and the body of ana ly t i ca l

techniques termed systems analysis.

Page 207: KINEMATIC HYDROL06Y AND MODELLING

CONCEPT OBJECTIVE- OF - OEFl NED HYDROLOGIC

PROCESSES

F i g . 10.1 T h e rnodeiling process

MODEL EXPERIMENTAL 08 JECTIVE VERl FlCATl ON - FORMULLTION .

, t FEEDBACK

L FEEDBACK

Page 208: KINEMATIC HYDROL06Y AND MODELLING

197

SYSTEM DEF I N I T I ON

Dooge (1976) h a s deve loped a good w o r k i n g d e f i n i t i o n of a sys tem

as b e i n g a n y s t r u c t u r e , dev i ce , scheme, o r p r o c e d u r e t h a t i n t e r r e l a t e s

a n i n p u t t o an o u t p u t in a g i v e n t ime re fe rence.

The k e y concep ts o f a sys tem a r e :

1 . A sys tem c o n s i s t s o f p a r t s connected toge the r in acco rdance w i t h

some s o r t o f p l a n , i.e. i t i s an o r d e r e d a r r a n g e m e n t .

2. A sys tem h a s a t ime f r a m e

3. A sys tem h a s a cause-e f fec t r e l a t i o n .

4. A sys tem h a s t h e m a i n f u n c t i o n t o i n t e r r e l a t e an i n p u t and o u t p u t ,

e.g., s to rm r a i n f a l l and s torm r u n o f f .

In the s t r i c t e s t d e f i n i t i o n , the systems a p p r o a c h i s a n o v e r a l l one

and does n o t conce rn i t s e l f w i t h d e t a i l s w h i c h may o r m a y n o t b e

i m p o r t a n t and w h i c h , in a n y case, m a y no t b e known. T h i s seeming ly

l i m i t s the sys tems a p p r o a c h to an a t tempt to ge t a r o u n d the comp lex

geomet ry and p h y s i c s of t he h y d r o l o g i c sys tem. I f we were s o l e l y

concerned w i t h p rob lems of i d e n t i f i c a t i o n ( d e f i n e d b y Doodge as the

r e c o g n i t i o n o f t he o v e r a l l n a t u r e of a s y s t e m ' s o p e r a t i o n , b u t n o t a n y

d e t a i l s o f t he n a t u r e o f t he sys tem i t s e l f ) , t h i s a t t i t u d e o f i g n o r i n g t h e

d e t a i l s o f t he sys tem w o u l d b e a r e a s o n a b l e one. However , when we a r e

g o i n g t o s i m u l a t e a h y d r o l o g i c sys tem and i t s response, the e lemen ts

of physicaz h y d r o l o g y become i m p o r t a n t . F o r i n s t a n c e , i f we bu i ld o r

use a model t h a t i s in c o n f l i c t w i t h the p h y s i c a l r e a l i t i e s , t h e n we c a n

h a r d l y expec t to o b t a i n good r e s u l t s f rom s u c h a mode l , o r e v e n t o b e

a b l e to c a l i b r a t e the model t o a c h i e v e good r e s u l t s . Thus , t he sys tems

a p p r o a c h t o s t o r m w a t e r m o d e l i n g mus t c o n s i d e r t h e a s s i m i l a t i o n of p rocess

mode ls i n t o an o v e r a l l r e p r e s e n t a t i o n o f t h e h y d r o l o g i c c y c l e , o r p o r t i o n s

thereo f . How we1 I the model components mus t r e p r e s e n t the d i f f e r e n t

p rocesses depends on the p u r p o s e f o r the model and how m u c h data a r e

a v a i l a b l e w i t h w h i c h to v e r i f y t he mode l .

I n c o n c l u s i o n , t he essence of sys tems a n a l y s i s a s a p p l i e d t o s to rm-

w a t e r modelling i s to i n t e r r e l a t e ra in fa l l ( i n p u t ) to s t o r m w a t e r ( o u t p u t )

w i t h a r e l i a b l e model in a c o m p u t a t i o n a l l y e f f i c i e n t manner .

Page 209: KINEMATIC HYDROL06Y AND MODELLING

TERM I NOLOGY AND DEF I N I T IONS

There has been an evolut ion of systems jargon, and i t i s important

to review the main pa r t s to better understand hydrologic modell ing.

A variable has no f i xed value (e.g., discharge) whereas a parameter

i s a constant whose value var ies wi th the circumstances of i t s appl icat ion

(e.g., Manning n-value).

The dist inct ion between Linear and nonlinear systems i s of paramount

importance i n understanding the mechanism of hydrological model I ing .

A l inear system i s defined mathematical ly by a l inear d i f fe ren t ia l

equation, the p r inc ip le of superposit ion appl ies and system response i s

only a function of the system i tse l f . An example of a l inear system

representation i s the u n i t hydrograph model. A nonl inear system i s

represented by a nonl inear d i f fe ren t ia l equation and system response

depends upon the system i tsel f and the input intensi ty. An example of

a nonl inear system representation i s kinematic over land flow. I t i s well

known that real world systems are h igh l y nonl inear, but l inear

representations have often been made because the system i s not under-

stood we1 I or because of the pressures exerted by resource constraints.

The s t a t e of a system i s defined as the values of the var iab les of

the system'at an instant i n time. Hence, i f we know exact ly where a l l

of the stormwater i s and i t s f lowrate i n a basin, then we know the state

of the system. The state of a stormwater system i s determined ei ther from

histor ical da ta or by assumption.

System memory i s the length of time i n the past over which the input

affects the present state. i f stormwater from a basin today i s affected

by the stormwater flow yesterday, the system (watershed) i s said to have

a f i n i t e memory. I f i t i s not affected at a l l , the system has no memory;

and, i f i t i s affected by storm flows since the beginning of the world,

the system i s said to have i n f i n i t e memory. Memory of surface water flow

systems i s mostly a function of antecedent moisture condit ions.

A time-invariant system i s one i n which the input-output re la t ion

i s not dependent upon the time a t which the input i s appl ied to the

system. To i I lustrate, u n i t hydrograph models represent the catchment

as a t ime- invar iant system because the same u n i t hydrograph (response

funct ion) i s maintained throughout the storm regardless of var ia t ions

in watershed conditions. Usual l y , time-variance i s considered among

storm events, seasons of the year, etc., and not w i th in i nd i v idua l

storms. Time-invariance indicates constant land use, ground cover, and

drainage system conf igurat ion and capaci ty, and ignores soi l moisture

var ia t ions and the effects of erosion.

Page 210: KINEMATIC HYDROL06Y AND MODELLING

199

A lwnped va r iab le or parameter system i s one in which the

var iat ions i n space ei ther do not exist o r have been ignored. Conversely,

a d i s t r i b u t e d parameter system recognizes spat ia l var iat ions. The input

i s said to be lumped i f r a i n f a l l into a system i s considered to be

spatial ly uniform. Lumped systems are represented by ord inary dif feren-

t ia l equations and d is t r ibu ted systems are represented by p a r t i a l d i f fe r -

ent ia l equations.

A system i s said to be s t o c h a s t i c i f for a given input there i s an

element of chance or probabi I i t y associated w i th obtaining a certain

output. A d e t e r m i n i s t i c system has no element of chance in i t , hence

for a given input a completely predictable output resul ts for g iven

i n i t i a l and/or boundary values. A pure ly random process has no deter-

minist ic component and output i s completely given to chance. A para-

metric or conceptual model does have an element of chance b u i l t into

i t since there alway w i l l be er ro rs i n ver i f y ing i t on real data. I t does

therefore have a stochastic component. A alack boz model relates input

to output by an a r b i t r a r y function, and has no inherent physical

signif icance.

Model Optimization i s the objective determination of the "best" values

for the model parameters using hydrologic data for the type of watersheds

and range of hydrologic condit ions for which the model has been

designed. This funct ion i s I imited to parametric stormwater models, and

i s appl ied in the regional izat ion process. To reg iona l i ze a model means

to develop a scient i f ic basis for p red ic t ing the model parameters on

ungauged watersheds from hydrologic and physiographic character ist ics

of that watershed. Regionalization can be accomplished only i f there are

enough benchmark watersheds w i th adequate periods of record that a

stat ist ical inference can be drawn, i.e., s ta t i s t i ca l l y s ign i f i can t

parameter predict ion equations can be developed.

Model cat ibra t ion bas ica l l y i s the f ine-tuning of model parameter

values to achieve the best f i t between observed and predicted runoff

hydrographs. T o ver i fy a model i s to compare model predict ions w i th

observed runof f values without adjust ing parameter values to confirm

the model i s doing a reasonable job in s imulat ing the t rue watershed

response to known input.

Two concepts that a re frequently confused (misused) are a n a l y s i s

and s i m u h t i o n . The confusion with ana lys is stems from what i t i s being

used to describe. As i t re lates to stormwater models, ana lys is i s the

procedure used to ca l i b ra te a model to the data. I t i s an attempt to

improve the state-of-the-art and i s fundamental l y a research and develop-

Page 211: KINEMATIC HYDROL06Y AND MODELLING

200

ment tool. Simulation, by contrast, u t i l i zes the resul ts of previous

analyses (and regional izat ion methods) to synthesize (p red ic t ) stormwater

runoff from ei ther design or real time r a i n f a l l on ungauged watersheds.

Simulations also can be performed at gauged watersheds to generate

runoff data for design events or events not contained in the ava i l ab le

record. Analysis i s often applied, for example, i n the context of studying

the probable performance of a storm sewer system du r ing design storm

events. We are prone to say that we have analyzed the system and

found that i t should work! Actual ly, what w e a re doing i s using

simulat ion resul ts to predict the probable performance character ist ics

of the storm sewer system.

MODELL I NG APPROACHES

There are two conceptual approaches that have been used i n develop-

ing stormwater models. An approach often employed i n urban p lann ing

has been termed deterministic modeling or system simulat ion. These models

have a theoretical structure based upon physical laws and measures of

i n i t i a l and boundary conditions. When conditions are adequately

specified, the output from such a model should be known with a h igh

degree of cer ta in ty . I n r e a l i t y , however, because of the complexity of

the stormwater flow process, the number of physical measures required

would make a complete model intractable. Simp1 i f icat ions and approx-

imations must therefore be made. Since there are always a number of

unknown model coeff icients and parameters that cannot be d i rec t l y o r

easi ly measured, i t i s required that the model b e ver i f ied. T h i s means

that the resu l ts from usable determinist ic models must b e ver i f ied by

being checked against real watershed data wherever such a model i s

to be appl ied.

The second conceptual stormwater modeling approach has been termed

parametric modell inq. I n th i s case, the models are somewhat less

r igorously developed and general ly simpler in approach. Model parameters

are not necessarily defined as measurable physical ent i t ies although they

are general ly ra t iona l . Parameters for these models a re determined b y

f i t t i n g the model to hydrologic da ta wi th an optimization technique.

Application of parametr ic models to ungauged watersheds i s possible only

i f regional ized parameter predict ion equations a re ava i lab le and are

based on data from watersheds w i th in the same geographical area and

with simi la r geomorphic and land use character ist ics as the watershed

being considered. As w i th determinist ic models, user confidence stems

from ver i f i ca t ion studies using local data.

Page 212: KINEMATIC HYDROL06Y AND MODELLING

20 1

EXAMPLES OF PARAMETRIC AND DETERMINIST I C MODELS

An e x c e l l e n t e x a m p l e o f a p a r a m e t r i c s t o r m w a t e r model i s t h e TVA

S to rmwate r Model (Betson, e t a l . , 1980). The model i s an even t s i m u l a t i o n

model f o r m u l a t e d w i t h a v a r i a t i o n o f t he SCS c u r v e n u m b e r r u n o f f model

f o r d e t e r m i n i n g r a i n f a l l excess a n d a u n i t h y d r o g r a p h mode l . An even t

model s i m u l a t e s the r u n o f f f r o m a one- t ime r a i n f a l l e v e n t , whereas a

con t inuous mode l s i m u l a t e s a t ime s e r i e s o f d a i l y f l o w s a n d h y d r o g r a p h s .

The c u r v e n u m b e r model was m o d i f i e d somewhat to i n c l u d e a c o n s t a n t

a b s t r a c t i o n r a t e w h i c h a l l o w s f o r i n f i l t r a t i o n during l u l l s and a f t e r t h e

c e s s a t i o n o f r a i n f a l l b u t b e f o r e r u n o f f was ceased. T h i s i n t r o d u c e d a

new p a r a m e t e r , P H I , w h i c h i s a n a l o g o u s t o t h e s o i l s a t u r a t e d h y d r a u l i c

c o n d u c t i v i t y , b u t w h i c h i s d e t e r m i n e d s o l e l y t h r o u g h o p t i m i z a t i o n s t u d i e s .

The u n i t h y d r o g r a p h shape i s d e s c r i b e d w i t h two t r i a n g l e s , t h e so -ca l l ed

d o u b l e t r i a n g l e u n i t h y d r o g r a p h , and r e q u i r e s f o u r p a r a m e t e r s , t he p e a k

f l o w r a t e a n d t ime t o p e a k o f t he f i r s t t r i a n g l e , t he t ime b a s e f o r b o t h

h y d r o g r a p h s , a n d t h e t ime t o p e a k o f t he second t r i a n g l e . A f i f t h model

p a r a m e t e r , t he p e a k o r d i n a t e o f t he second t r i a n g l e , i s d e t e r m i n e d f r o m

the c o n s t r a i n t t h a t t he vo lume u n d e r the u n i t h y d r o g r a p h e q u a l one b a s i n

i n c h o r mm o f r u n o f f .

The TVA deve loped r e g i o n a l p r e d i c t i o n e q u a t i o n s f o r e a c h of t h e

model p a r a m e t e r s u s i n g d a t a f r o m o v e r 500 e v e n t s o n 38 r u r a l , u r b a n

and s u r f a c e m i n e d wa te rsheds in the Tennessee V a l l e y r e g i o n . U s i n g these

e q u a t i o n s , t h e model c a n b e a p p l i e d to o t h e r wa te rsheds w i t h i n t h e same

p h y s i o g r a p h i c r e g i o n s w i t h r e a s o n a b l e success, as demons t ra ted in

v e r i f i c a t i o n s t u d i e s b y Betson, e t a l . (1981) . However , t h i s model s h o u l d

no t b e used o u t s i d e the l i m i t s o f i t s r e g i o n a l i z a t i o n . T h i s was demon-

s t r a t e d b y Meadows, e t a l . (1983) in a s t u d y o f t h e a p p l i c a t i o n o f f o u r

u n i t h y d r o g r a p h mode ls to wa te rsheds in 14 p h y s i o g r a p h i c p r o v i n c e s

ac ross the U n i t e d States. The r e s u l t s w h i c h they o b t a i n e d f o r e a c h model

b a s i c a l l y were a c c e p t a b l e o n l y w i t h i n the r e g i o n s of t h e i r deve lopment .

Most d e t e r m i n i s t i c mode ls a r e f o r m u l a t e d w i t h t h e k i n e m a t i c r u n o f f

mode l , o f w h i c h t h e r e a r e s e v e r a l , i n c l u d i n g the EPA Storm Water

Management Model ( M e t c a l f and E d d y , e t a l . , 1971). t he USGS D i s t r i b u t e d

R a i n f a l l - R u n o f f R o u t i n g Mode l ( D a w d y , e t a l . , 1978), and WITWAT (Green,

1984), t o name a few. These mode ls d i f f e r , b u t e a c h i s f o r m u l a t e d w i t h

a 2 o r 3 p a r a m e t e r model f o r i n f i l t r a t i o n , and k i n e m a t i c o v e r l a n d and

c h a n n e l r o u t i n g . The i n f i l t r a t i o n mode l p a r a m e t e r s g e n e r a l l y c a n b e

es t ima ted f r o m s i t e measures o r a s t y p i c a l v a l u e s in tex tbooks and

pub1 i shed r e p o r t s . S i m i l a r l y , t he r o u t i n g p a r a m e t e r s , e.g. M a n n i n g ' s

n - v a l u e , c a n b e e s t i m a t e d f rom p u b l i s h e d sources . Thus , these mode ls

Page 213: KINEMATIC HYDROL06Y AND MODELLING

202

are appl icable to an ungauged si te because model parameters general ly

a re measurable or typical values a re known. Confidence i n model simu-

la t ion i s h igh , but should be confirmed through ver i f i ca t ion studies once

local data became avai lable.

The best of both worlds i s i l l us t ra ted by the USGS model. I t can

be appl ied d i rec t l y as a determinist ic model, o r i f local ca l ib ra t ion da ta

are ava i lab1 e, the soi I-moi sture accounting and i n f i I t rat ion parameters

can be optimized. The USGS terms th i s version of the model a parametric-

determinist ic runof f model (A1 ley, et a l . , 1980).

Engineers have designed drainage systems for decades using the

we1 I-known Rational Method, and have simulated watershed runoff w i th

u n i t hydrograph models, e.g. SCS cu rv i l i nea r u n i t hydrograph. Why i s

i t necessary, or even useful, to work wi th kinematic stormwater models

now? The answer to th i s question l ies in an examination of what kine-

matic models w i l l do for the engineer - and perhaps i t also l ies i n what

the other methods w i l l not do.

F i rs t , the ro le of models i n general should be acknowledged.

Engineering design of drainage systems and environmental impact assess-

ment of land use change requ i re informat ion about watershed response

to prescribed "design" events which most often are extreme events.

Since most small basins are not gauged for both r a i n f a l l and streamflow,

l i t t l e hydrologic data i s ava i l ab le to quant i f y the necessary response

characterist ics. Further, i f a watershed i s gauged, i t i s un l i ke l y that

a sui table "design" event, i s contained in the record unless the gauge

has been i n operation for many years. Even so, the data are for the

watershed response in i t s current land use condit ion and are not a t rue

measure of the watershed response fol lowing land use change. To proper ly

quant i fy the watershed response for "af ter" development conditions, the

record would have to be extended for several years to insure the probab-

i l i t y of an adequate number of acceptable events. But the land use

change must s t i l l be planned, the associated drainage system designed,

and impact statements prepared. W e do not have the l uxu ry of being

able to wai t for the data to be collected, so we must resort to predict ion

methods.

I t i s widely accepted that mathematical stormwater models are the

only ava i lab le means of making re l i ab le prGdictions of watershed response

to design events and of the effects of land use change on stormwater

runof f and qua l i t y . I t must be stated emphatical ly, however, that models

are not a subst i tute for f i e ld gathered da ta or knowledge of the

hydrologic/hydraul ic and water qua1 i t y processes on the p a r t of the user.

No model can p red i t how a na tura l system behaves as dependably as

Page 214: KINEMATIC HYDROL06Y AND MODELLING

direct measurements of the system i tsel f . The p r inc ipa l use of models

i s in situations where direct measurements a re ei ther impossible o r

impractical, such as the "af ter" development conditions. When a drainage

system is under design, for example, a model w i l l let the designer look

at many a l te rna t ive configurations. More important ly, the designer can

answer the "what i f " questions, and can do so w i th in a reasonable

framework of time and costs. Models also permit a more accurate ana lys is

of complex watershed and drainage systems. T h e advent of models has

changed the engineer from a cookbook a r t i s t who re l ied heav i l y on

judgement to a serious analyst and planner.

The selection of a model t yp i ca l l y i s a statement of user confidence,

which has been defined as "the bel ief in the r e l i a b i l i t y or c red ib i l i t y

of the resul ts and exists ei ther consciously or subconsciously i n the

minds of the model user or cl ientele" (ASCE, 1983). This bel ief i s der ived

from experiences i n the use, development, o r test ing of a model, from

user understanding of watershed hydrologic processes and model repre-

sentation of these processes, and from confidence in au thor i ty , e.g.,

textbooks, technical journals, and federal agency endorsement. Ul t imately,

confidence i s founded on ver i f i ca t ion studies at the watershed where the

simulations are required.

The keyword i s "rel iable". When using a model, one must remember

the model i s merely a mathematical expression of the t rue system and

cannot account for a l l the subtlet ies of the var ious phenomena (processes)

involved. Reliable resul ts are those on which the model user c a n foster

the bel ief that i f such an e'vent occurs, the probably runoff hydrograph

w i l l be very much l i ke the model predict ions.

So why use kinematic models? Perhaps the best answer i s that they

are determinist ic, d is t r ibu ted parameter models that can account for the

spat ia l watershed and ra in fa l I var ia t ions and the non l inear i ty of the

runoff process. I n other words, kinematic models a re a better model of

the true process. Because kinematic models a re based' on the physics

of the runoff process; the model structure i s ra t i ona l , the parameters

are measurable or a re ava i l ab le from publ ished studies and textbooks,

and the model can be appl ied w i th a minimum of ca l ib ra t ion data. (They

can be appl ied i n the absence of ca l ib ra t ion data; user confidence i s

supported by the extensive test ing and documentat ion of kinemat i t

models.) Though young i n evolut ion, there are now several models

ava i l ab le for computer use, even personal computer use. Thus, kinematic

models are as read i l y used as other models and have the advantages

offered by determinist ic models.

Page 215: KINEMATIC HYDROL06Y AND MODELLING

204

Fig . 10.2 Contour p lo t of topography

TWO - D I MENS I ONAL OVERLAND FLOW MODELL I NG

Topography and catchment surface character ist ics can not be proper ly

accounted for in one-dimensional models in a l l cases. The cone shaped

catchment i s a typical example. A l s o the effect of va ry ing surface

roughness, slope and losses i s often two-dimensional. Storm patterns

cannot be accounted for proper ly and the assumption of a rectangular

hyetograph over the en t i re catchment i s often dangerous. I t may be

necessary i n the case of complex catchments o r r a i n to resort to two-

dimensional model l ing.

Two-dirnensiona I k i nernat ic equations

One -dimensional equations can be extended into two dimensions as

fol lows:

Page 216: KINEMATIC HYDROL06Y AND MODELLING

205

F ig . 10.3 Topography in 3-Dimensions

The cont inui ty equation becomes

(10.1)

where q i s the flow i n the x direct ion ( m 2 / s ) and qz is the flow i n

the z direct ion ( m ’ / s ) .

A proof of t h i s equation can be found in Dronkers ( 1 9 6 4 ) . For two

dimensional flow two motion equations are required. I n kinematic theory

these are obtained by assuming

sox = sfx (10 .2)

soz = Sfz (10.3)

where S i s the bed slope in the x direction, So* is the bed slope i n

the z direction, S f x i s the f r i c t ion slope i n the x direction and 5 i s

the f r i c t ion slope in the z direction.

ox

fz

For the general form of headloss equation one can obtain

( 1 0 . 4 ) 1 m qx = 4 b,Y ) z

( 1 0 . 5 )

( 1 0 . 6 )

and a x = funct ion of 5

a z = funct ion of S ox

02

This idea for two dimensional flow was used b y Orlob (1972). I t

w i l l be noticed that q t i s a lways posi t ive whi le q and q can b e

Positive O r negative as ( a x ) 2 and are functions of s and Soz ox respective1 y.

Page 217: KINEMATIC HYDROL06Y AND MODELLING

Boundary conditions

There are two boundary condit ions that can be used on watersheds.

One can assume that the water depth at the boundary i s always zero

and that a l l the water enter ing the o r ig in leaves i t i n the form of a

discharge. This has been assumed in a l l ex is t ing theories. One must

then define

(10.7)

yk = 0.0 (10.8) I

so qk = i ~ x / 2 (10.9) I e

One could a l te rna t ive ly assume that the discharge at the o r ig in i s

control led by the depth of water at the o r ig in as assumed for the rest

of the points. For t h i s case we must then use the same equations as

wi th the other point's. The effect of using the two di f ferent boundary

conditions w i l l be shown later.

I ni t ia I conditions

After the f i r s t time step i t may be assumed that the water depth

at al I points, except at the o r ig in i n the case of the f i r s t boundary

condit ion, for the case of an i n i t i a l l y d ry catchment

(10.10)

The proposed equations may be solved at g r i d points over a p lane

provided runof f i s adequately described by the kinemat ic equations.

Where there are flow concentrations such as an in land depression, storage

w i l l not be accounted for except w i th a separate rout ine to account for

net volume stored. I f outflow eventual ly occurs when the depression i s

f i Iled, again a separate rout ine i s needed to detect th is.

The effect of channelization, for example r i l l s and furrows i n which

runoff collects, can be accounted f o r by reducing the effect ive dx o r

dy over which runoff occurs. Where channel side f r i c t ion i s app l i cab le

however condui t equations may be required.

The effect of spa t i a l l y va ry ing soi l types and cover can also affect

losses to a s ign i f i can t extent. l n f i I t rat ion, and possible re-emergence

of interface flow can be accounted for wi th a two-layer model wi th per-

meable interface. A sample of such a model i s discussed later.

F ig . 10.4 F l o w direct ions 0 from model

Page 218: KINEMATIC HYDROL06Y AND MODELLING

207

2000 00

.o +.P +.o .+.o. -0.0 +1eo.o+lso.o+~eo.o+rso.o+1so.o 1900 f

+reo.o+-a6.13+.0 +o.o +iae.e--1500

+ i i i . 7 +ieo.o +12s.s +ias.o+1213.9--1400

+71.8 -0.0 + l ~ E . E + l 7 l . E + ? * 8 . , 0 - - ~ 3 0 0

+70.6 4-7E.e -0.0 +155.4+1EO.E--1200

+?ie.8+107.6+7i.6 +o.o +?se.7--1 1 0 0

+i4i.e+iee.e+se.a +o.o +iss.4--1 OD0

a.e +47.7 +o.o +7e.e +7e.e +4.e +o.o +i4?.a+?4,e+s~.~ 70.0 f '

Page 219: KINEMATIC HYDROL06Y AND MODELLING

208

REFERENCES

A l l e y , W.M., D a w d y , D.R. and Schaake, J.C., J r . , 1980. P a r a m e t r i c - d e t e r m i n i s t i c urban wa te rshed mode l . J. H y d r . D i v . ASCE, Vol . 106, No. HY5, pp. 679-690.

ASCE, 1983. Q u a n t i f i c a t i o n o f land use c h a n g e e f f e c t s u p o n h y d r o l o g y , b y the Task Commit tee on Q u a n t i f y i n g Land Use Change E f f e c t s , R.P. Betson, Chmn., p r e s e n t e d a t t h e J u l y 20-22, 1983. ASCE I r r i g a t i o n and D r a i n a g e D i v i s i o n S p e c i a l t y Conference, h e l d a t Jackson, Wyoming.

Betson, R.P., Ba les , J . and P r a t t , H.E., 1980. Users Gu ide t o TVA- HYSIM, A h y d r o l o g i c p r o g r a m f o r q u a n t i f y i n g l a n d u s e c h a n g e e f fec ts . EPA-600/7-80-048, Tennessee Va l ley A u t h o r i t y , Wate r Systems Development B r a n c h , N o r r i s , Tennessee.

Betson, R.P., Ba les , J. and Deane, C.H., 1981. Me thodo log ies f o r assess- ing s u r f a c e m i n i n g impac ts . Repor t No. WR28-1-550-108, Tennessee V a l l e y A u t h o r i t y , Wate r Systems Development B r a n c h , N o r r i s , Tennessee.

Dawdy , D.R., Schaake , J.C., J r . and A l l e y , W.M., 1978. U s e r ' s g u i d e f o r d i s t r i b u t e d r o u t i n g r a i n f a l I - r u n o f f model. U.S. Geo log ica l S u r v e y Water Resources I n v e s t i g a t i o n s 78-90.

DJoge, J.C.I., 1973. L i n e a r t h e o r y o f h y d r o l o g i c systems. U.S. Dept. o f A g r i c u l t u r e , A g r i c u l t u r a l Research Serv i ce , Tech. Bu l I . No. 1468.

D r o n k e r s , J . J . , 1964. T i d a l compu ta t i ons in r i v e r s and c o a s t a l w a t e r s . N o r t h H o l l a n d P u b l i s h i n g Co., Amsterdram.

Green, I .R.A., 1984. WITWAT s t o r m w a t e r d r a i n a g e p r o g r a m - T h e o r y , A p p l i c a t i o n s and U s e r ' s M a n u a l . Repor t No. 1/1984, Water Systems Research Programme, Dept. o f C i v i I E n g i n e e r i n g , U n i v e r s i t y o f t h e W i t w a t e r s r a n d , Johannesburg , South A f r i c a .

Meadows, M.E., Howard , K.M. and Ches tnu t , A.L. , 1983. Development o f mode ls f o r s i m u l a t i n g s t o r m w a t e r r u n o f f f rom s u r f a c e c o a l m i n e d l a n d s : U n i t h y d r o g r a p h models. Repor t No. G5115213, Vol . 1 , U.S. Dept. o f t h e I n t e r i o r , O f f i c e o f S u r f a c e M i n i n g , D i v i s i o n of Research , Wash ing ton , D.C.

O r l o b , G.T., 1972. Ma themat i ca l m o d e l l i n g o f e s t u a r i a l systems. I n t e r n a - t i o n a l Sympos ium on ma themat i ca l m o d e l i n g techn iques in w a t e r resources systems, E d i t o r As i t K . B i swas . P roceed ings Volume 1 .

M e t c a l f and E d d y , Inc.,. U n i v e r s i t y o f F l o r i d a , and Water Resources Eng ineers , 1971. Storm w a t e r management model. U.S. E n v i r o n m e n t a l P r o t e c t i o n Agency , Wash ing ton , D.C.

Over ton , D.E. and Meadows, M.E., 1976. S to rmwate r M o d e l i n g , Academic P ress , New Y o r k , N.Y.

F i g . 10.5 Water d e p t h v a r i a t i o n a t t = 8 m i n o v e r t h e ca tchmen t

Page 220: KINEMATIC HYDROL06Y AND MODELLING

209

CHAPTER 1 1

APPL I CAT IONS OF K I NEMAT I C MODELL I NG

APPROACHES

T h i s c h a p t e r c o n t a i n s examp les o f k i n e m a t i c s t o r m w a t e r s i m u l a t i o n

mode ls and t h e i r a p p l i c a t i o n to r u r a l and urban wa te rsheds . These

mode ls were se lec ted f rom t h e r a n g e o f a v a i l a b l e mode ls because t h e y

a r e s i m p l e in concept a n d s t r u c t u r e , h a v e been tes ted e x t e n s i v e l y , and

a r e r e p r e s e n t a t i v e o f the a p p r o a c h e s t a k e n in d e v e l o p i n g k i n e m a t i c

wa te rshed models. F o r these reasons , t hey s h o u l d h e l p the r e a d e r t o more

f u l l y u n d e r s t a n d k i n e m a t i c mode ls and t h e i r a p p l i c a t i o n s .

The r e a d e r i s r e m i n d e d t h a t w i t h a n y w a t e r s h e d mode l , a p p r o x -

i m a t i o n s a n d s i m p l i f i c a t i o n s a r e made. P r e v i o u s l y , we h a v e seen t h a t

k i n e m a t i c mode ls a r e s i m p l i f i c a t i o n s t o the d y n a m i c w a v e mode ls ; and

t h a t t h e i r s o l u t i o n , whe the r a n a l y t i c a l o r n u m e r i c a l , r e q u i r e s a p p r o x -

i m a t i o n s to the w a t e r s h e d geomet ry , d r a i n a g e l a y o u t , r a i n f a l I p a t t e r n ,

e tc . The examp les in t h i s c h a p t e r i l l u s t r a t e d i f f e r e n t a p p r o a c h e s t o

m a k i n g these a p p r o x i m a t ions,

A MODEL FOR URBAN WATERSHEDS

A model t h a t h a s been s u c c e s s f u l l y a p p l i e d t o urban wa te rsheds i s

t he U.S. Geo log ica l S u r v e y mode l , DR3M ( D a w d y , e t a l . , 1978). T h i s mode l

combines the soi I m o i s t u r e a c c o u n t i n g and r a i n f a l I excess components

o f the model deve loped b y Dawdy and o t h e r s (1972) w i t h the k i n e m a t i c

w a v e r o u t i n g components o f t he mode l deve loped b y LeC le rc a n d Schaake

(1973) . I n p u t to the model i n c l u d e s d a i l y r a i n f a l l , s to rm r a i n f a l l , d a i l y

pan e v a p o r a t i o n and a p h y s i c a l d e f i n i t i o n o f t he d r a i n a g e b a s i n

d i s c r e t i z e d i n t o a s m a n y as 50 segments, i n c l u d i n g o v e r l a n d f l o w ,

c h a n n e l and r e s e r v o i r segments. D u r i n g s to rm d a y s , t h e model g e n e r a t e s

a s i m u l a t e d d i s c h a r g e h y d r o g r a p h b a s e d o n i n p u t d a t a f rom a s m a n y

a s t h r e e r a i n gauges . The model c o n s i s t s o f two m a i n se ts o f components :

p a r a m e t r i c r a i n f a l I excess and d e t e r m i n i s t i c r u n o f f r o u t i n g components.

Parametric Rainfal I Excess Components

The p a r a m e t r i c r a i n f a l I excess components a r e a so i l m o i s t u r e

a c c o u n t i n g component , an infi I t r a t i on component, an i m p e r v i o u s a r e a

r a i n f a l I excess component, and an o p t i m i z a t i o n component. A s u b s t a n t i a l

Page 221: KINEMATIC HYDROL06Y AND MODELLING

210

pa r t of the ra in fa

developed by Dawdy

ca l ib ra t ion to estab

I excess components was adopted from a model

et a l . (1972). This component i s used du r ing model

ish opt irnal parameter values for s i te i n f i I t rat ion

and soi I moisture storage functions.

Soil Moisture Accounting

The soi l moisture accounting component determines the effect of ante-

cedent condit ions on i n f i l t r a t i on . Soil moisture i s modelled as a two

layered system, one representing the antecedent base moisture storage

(EMS), and the other, the upper wetted p a r t caused by i n f i l t r a t i on into

a saturated moisture storage (SMS).

Dur ing r a i n f a l l days, moisture i s added to SMS based on the Ph i l i p

i n f i l t r a t i on equation (Ph i l ip , 1954). On other days, a specif ied proport ion

of da i l y r a i n f a l l ( R R ) i n f i l t r a tes into the soi l . I r r i ga t i on ( fo r example,

lawn water ing) can be included in the d a i l y water balance. This i s

achieved through user supplied i r r i ga t i on rates for each month. I f a

da i l y p rec ip i ta t ion i s less than the da i l y i r r i ga t i on rate, the d a i l y

precipi tat ion i s set equal to the i r r i ga t i on rate.

Evapotranspirat ion takes place from SMS, based on a v a i l a b i l i t y ,

otherwise from BMS, wi th the r a t e determined from pan evaporation mul t i -

p l ied by a pan coefficient ( E V C ) . Moisture i n SMS dra ins into BMS wi th

a control l ing parameter (DRN) determining the rate. Storage i n BMS has

a maximum value (BMSN) equivalent to the f i e ld capaci ty moisture storage

of an act ive zone. Zero storage in BMS i s assumed to correspond to

w i l t i ng point condit ions i n the act ive soi l zone. When storage i n BMS

exceeds BMSN, the excess i s sp i l led to deeper storage. These s p i l l s could

be the bas is for rou t ing interf low and baseflow components, i f desired.

However, t h i s opt ion i s not included in the present version of the model.

A schematic flow char t of the soi l moisture accounting component i s shown

i n F igure 1 1 . 1 .

Infiltration Component

I n f i l t r a t i on i s computed with the Ph i l i p equation (Ph i l i p , 1954),

which i s merely a var ia t ion to the Green and Ampt equation. One form

of the Green and Ampt equation i s

( 1 1 . 1 )

where F i s the accumulated i n f i l t r a t i on depth, K i s the effect ive

Page 222: KINEMATIC HYDROL06Y AND MODELLING

21 1

, DRAINAGE BMS

t

I EVAPO- I TRANSPI RATION

USE BMS WITH RGF

TO COMPUTE TO.-

PS 1

RAINFALL I N PUT

COMPUTE: IN FILTRATION

1

SPILL TO: DEEPER STORAGE

F i g . 1 1 . 1 Schemat ic of DR3M s o i l m o i s t u r e a c c o u n t i n g component

Page 223: KINEMATIC HYDROL06Y AND MODELLING

21 2

hydrau l i c conduct iv i ty, H i s the depth of water ponded on the soi l

surface, P i s the wett ing f ront section, and Z i s the depth to the wett ing

f ront. Using the relat ionship

F z = - 0 - 0.

S I

(11.2)

in which B S i s the volumetric soi l moisture content at saturat ion and

0 . i s the i n i t i a l (unsaturated) moisture content, Eq. 11.1 i s transformed

into the Phi I ip equation.

1 H + P(3s-0 i )

F dF - = K [ l + dt

(11.3)

Since the wett ing front suction i s general ly several orders of magnitude

greater than the depth of ponded water, the H term may be ignored.

The mnemonic ident i f ie rs used to designate the resu l t ing i n f i l t r a t i on are

FR = KSAT ( 1 + z) SMS (11.4)

in which FR=dF/dt, KSAT=K, PS=P(@ - @ . ) , and SMS=F. S I

The wett ing front suction i s not constant, but var ies wi th the soi l

moisture condit ion. The effect ive value of PS i s assumed to va ry l inear ly

between a w i l t i ng point and f i e ld capaci ty, and i s computed with the

relat ionship

PS = P S P ~ R G F - (RGF - 1 b$$ (11.5)

in which BMS i s the i n i t i a l moisture storage i n the soi l column; BMSN

i s the moisture storage i n the soi l column at f i e ld capaci ty; PSP i s the

effective value of PS at f i e ld capaci ty; and RGF i s the ra t i o of PS a t

w i l t i ng point to that at f i e ld capaci ty. This relat ionship i s shown i n

Figure 11.2.

Point potential i n f i l t r a t i on (FR) computed by the Ph i l i p equation

i s converted to effect ive i n f i l t r a t i on over the basin using the scheme

of Crawford and Linsley (1966). Let t ing SR represent the supply ra te

of ra in fa l I for i n f i l t r a t i on and OR represent the r a t e of generation of

ra in fa l I excess, the equations are

OR = -’ i f SR < FR (11.6a) SR . 2F R

( 1 1 .6b) FR . 2

OR = SR - -; If SR > FR

A schematic of these relat ionships is shown i n F igure 11.3. The r a i n f a l l

excess rate, OR, i s represented by the area between the dashed SR l i ne

and the l inear i n f i l t r a t i on capaci ty curve. The parameters for soi l

moisture accounting and in f i l t r a t i on are enumerated i n the fo l lowing:

Page 224: KINEMATIC HYDROL06Y AND MODELLING

21 3

F i g . 11.2

LL 0 w 3 B w > 5 w LL LL w

RGF X PS P

PS P WILTING FIELD POINT CAPACITY

(BMS= BMSN 1 (BMS = 0 1

SOIL- MOISTURE CONTENT

R e l a t i o n s h i p d e t e r m i n i n g e f f e c t i v e v a l u e o f so i l -mo is tu re p o t e n t i a l (PS)

w,

z - a a

t I I 1

/tF v, RAINFALL

INFILTRATION

0 25 50 75 100

'R

PERCENTAGE OF AREA WITH INFILTRATION CAPACITY EQUAL TO OR LESS THAN INDICATED VALUE

F i g . 11.3 R e l a t i o n s h i p d e t e r m i n i n g r a i n f a l l excess (OR) a s f u n c t i o n o f maximum i n f i l t r a t i o n c a p a c i t y (FR) a n d s u p p l y r a t e o f r a i n f a l l ( S R )

Page 225: KINEMATIC HYDROL06Y AND MODELLING

214

1 . Soil Moisture Accounting. The parameters consist of : ( a ) DRN -

A constant drainage ra te for red is t r ibu t ion of soi l moisture between SMS

and BMS, i n inches per day; ( b ) EVC - A pan coeff icient for convert ing

measured pan evaporation to potential evapotranspirat ion; ( c ) RR - The

average proport ion of da i l y r a i n f a l l that i n f i l t r a tes into the soi l for

the per iod of simulat ion excluding storm days; and ( d ) BMSN - Soil

moisture storage a t f i e ld capaci ty, in inches.

2. I n f i l t r a t i on . The parameters consist o f : ( a ) KSAT - The hyd rau l i c

conduct iv i ty at na tu ra l saturat ion, i n inches per hour; ( b ) RGF - Ratio

of suction at the wett ing front for soi l moisture at w i l t i ng point to that

at f i e ld capaci ty.

Impervious Area Ra in fa l I Excess Component

Two types of impervious surfaces are considered by the model. The

f i r s t type, effect ive impervious surfaces, a re those impervious areas that

are d i rec t l y connected to the channel drainage system. Roofs that d ra in

onto driveways, streets and paved pa rk ing lots that d ra in onto streets

are examples of effect ive impervious surfaces. The second type, non-

effect ive ihpervious surfaces, a re those impervious areas that d ra in to

pervious areas. An example of a noneffective impervious area i s a roof

that drains onto a lawn.

The only abstract ion from r a i n f a l l on effect ive impervious areas i s

impervious retention. Thi's retention, which i s user specified, must be

f i l l e d before runof f from effect ive impervious areas can occur. Evapo-

ra t i on occurs from impervious retention du r ing periods of no r a i n f a l I .

Rain f a l l i n g on noneffective impervious areas i s assumed to runoff

onto the surrounding pervious area. The model assumes th i s occurs

instantaneously and that the volume of runof f i s uni formly d is t r ibu ted

over the cont r ibu t ing pervious area. This volume i s added to the r a i n

fa1 l ing on the pervious areas p r i o r to computation of pervious area

ra in fa l I excess.

Optimization Component

An option i s jncluded i n the model to ca l i b ra te the soi l moisture

and i n f i I t ra t ion parameters for drainage basins hav ing measured r a i n f a l I

runoff data. The method of determining optimum parameter values i s

based on an opt imizat ion technique devised by Rosenbrock (1960).

Page 226: KINEMATIC HYDROL06Y AND MODELLING

21 5

Impervious area i s not included as a parameter to be optimized,

but i s a parameter to which simulated runof f volumes are very sensit ive.

Therefore, values of imperviousness should be determined accurately

before using the optimization option. I f i n i t i a l estimates of imperviousness

are grossly in e r ro r , resu l t ing volumes and peaks w i l l be grossly i n

error. I n that case, estimates of imperviousness must be adjusted by

the modeler. This adjustment may include rev is ing estimates of the

effective and noneffective impervious areas, perhaps by t r i a l and er ro r .

Determini st i c Runoff Routing Components

After determining "opt imum" parameter values and computing the

time series of r a i n f a l l excess, control i n the model i s t ransferred to the

runoff rou t ing component. The mathemat ical representation of an urban

basin requires discret izat ion of the total drainage area into a set of

segments. There a re three basic types of segments defined for the model:

channel segments, over land flow segments and reservoir segments. There

i s wide f l e x i b i l i t y to the approach one can take i n d i v id ing a basin

into segments for runof f computations. Guide1 ines for basin segmentation

are presented by Al ley and Veenhuis (1979) and Dawdy, et a l . , (1978).

Channel and Over land Flow Segments

A channel segment i s permitted to receive upstream inf low from as

many as three other segments, inc lud ing other channel segments and

reservoir segments. I t also may receive la te ra l inf low from over land flow

segments. The over land flow segments receive uni formly d is t r ibu ted la te ra l

inf low from r a i n f a l I excess. A schemat ic i l l us t ra t i ng the relat ionships

between channel and over land flow segments i s shown in Figure 11.4 - 5.

Kinematic wave theory i s appl ied i n the . r a i n f a l l runof f model to

both over land flow anci channel rout ing. The necessary equations to be

solved for each channel and over land flow segment a re

aa aA - ax + at = q ;

b Q = aA

(11.7)

(11.8)

in which the terms a re as previously defined.

F in i te dif ference approximations are used to solve Eqs. 11.7 and

11.8. To avoid the convergence and s tab i l i t y problems that can occur

wi th pa r t i cu la r numerical g r i d spacings ( i .e. the re la t i ve sizes of A t

and Ax ) , two f i n i t e dif ference methods of solut ion are used to solve for

Page 227: KINEMATIC HYDROL06Y AND MODELLING

216

JOVERIAND FLOW[ [oEFNDi I

PHYSICAL CHARACTERISTICS OF COMPONENTS IN THE SCHEMATIC REPRESENTATION

F ig . 11.5 Discret izat ion of u r b a n catchment in to segments

Page 228: KINEMATIC HYDROL06Y AND MODELLING

21 7

Q and A a t t he u n k n o w n gr id p o i n t s . The chosen s o l u t i o n p r o c e d u r e i s

made in t h e model p r o g r a m and depends u p o n the r a t i o , G , o f t h e

k i n e m a t i c w a v e speed to Ax/At.

(11 .9)

in w h i c h Q3 i s t he d i s c h a r g e a t node p o i n t 3 in the f i n i t e d i f f e r e n c e

g r i d as shown i n F i g u r e 11.6. I f 0 i s g r e a t e r t h a n o r e q u a l t o u n i t y ,

t he e q u a t i o n s u s e d a r e

T h i s i n v o l v e s o n l y mesh p o i n t s 1 , 2 and 4. I f 0 i s l ess t h a n u n i t y , t h e

e q u a t i o n s used a r e

At A 4 = A + q t + - 3 Ax ('1 - '3)

(11 .12)

( 1 1 .13) b 4

Q4 = aA

Ax a n d At v a l u e s a r e chosen to e n s u r e a b o u t 10 nonzero o r d i n a t e s

u n d e r the r i s i n g l i m b o f a n e q u i l i b r i u m h y d r o g r a p h and to keep

computa t i o n a l e r r o r s w i t h i n a c c e p t a b l e bounds . The U.S.G.S. recommends

t h a t A t b e se lec ted as

1 (11.14) At = 0.1 ( t

where t and tec a r e the k i n e m a t i c o v e r l a n d a n d c h a n n e l t imes of

e q u i l i b r i u m , r e s p e c t i v e l y . C o m p u t a t i o n a l e r r o r s h o u l d b e m i n i m i z e d i f

Ax and At a r e se lec ted so t h a t t h e c h a r a c t e r i s t i c p a s s i n g t h r o u g h p o i n t

1 a l s o passes t h r o u g h p o i n t 4. A c c o r d i n g l y , i t i s recommended t h a t u x

eo +

eo

b e se lec ted a s

At (11 .15a) a x = - LO

e o

( 1 1 .15b) L c a t Ax = - C

ec

fo r t he o v e r l a n d and c h a n n e l segments, r e s p e c t i v e l y . When Eqs. 11.14

and 11.15 r e s u l t in n o n - i n t e g e r v a l u e s , t he u s e r mus t r o u n d to t h e

neares t i n t e g e r .

Reservoir Segments

P r o v i s i o n i s made in the model f o r r e s e r v o i r r o u t i n g b a s e d o n t h e

c o n t i n u i t y e q u a t i o n . E i t h e r o f two r o u t i n g methods c a n b e used. One

method i s l i n e a r s t o r a g e r o u t i n g

Page 229: KINEMATIC HYDROL06Y AND MODELLING

21 8

Fig . 11.6 Four point f i n i t e dif ference g r i d

5 = co (11 .16)

i n which S i s the storage; Q i s the outf low; and C i s a constant.

Al ternat ively, the modif ied Puls rou t ing method can be used

-+ o2 = I ) + l 2 + - - At A t

( 1 1 .17)

in which I i s the inf low to the reservoir and the subscr ipts 1 and 2

refer to the beginning and end of the time in te rva l , A t , respectively.

The modif ied Pu ls method u t i l i zes a tab le of storage outflow values as

supplied by the user.

There are many ways of accounting for storage with the kinematic

method, a l l of which are, due to the l imi tat ion of the kinematic method,

approximations. That is, due to the fact that the dynamic equation omits

acceleration and deceleration of the water i n time and space, wedge

storage is omitted. Storage can only be included as channel type storage

(see Chapter 9) i f the discharge relat ionship can be described i n terms

of a kinematic type of discharge - depth equation.

Page 230: KINEMATIC HYDROL06Y AND MODELLING

T h e cont inui ty equation in the kinematic equations can however

be used to account for the l ag effect of storage i n one of two ways.

Inf low to a reach can be spread over the f u l l surface area of the reach

as demonstrated i n the example la te r i n th is chapter, o r the stream (o r

over land f low) surface area can be replaced b y a storage area at the

junctions of reaches with conduit reaches as indicated i n the program

i n Chapter 8.

Example Application

The model was appl ied to the Sand Creek T r ibu ta ry watershed near

Denver, Colorado. Th is drainage basin i s a 183 acre area of predom-

inant ly s ingle fami ly resident ia l land use w i th some mul t i fami ly land

use, a church, a recreational center, a f i r e stat ion, and two small parks.

The basin has some storm sewers in i t s upper end but re l ies mostly on

street gutters and concrete l ined open ditches for flow conveyance.

Detailed records of ra in fa l I and streamflow a re collected at 5 minute

intervals. A stage discharge re la t ion was developed using flow p r o f i l e

analysis and discharge measurements made du r ing storm runoff .

Two sample runs are discussed. The f i r s t r u n was an optimization

r u n to ca l i b ra te the model on an antecedent per iod of record. In the

second run, the soi I moisture accounting and i n f i l t ra t ion parameters were

set to the i r f i n a l values from the f i r s t r u n and ten storm events were

simulated.

Before any simulat ions were performed, the watershed was delineated

into sub-basins (over land flow segments) and a drainage network

(channel segments). A schematic showing how the watershed was

approximated with the over land and channel segments i s given i n

Figure 11.7.

The ra t iona le behind the basin segmentation i s as follows: s ta r t i ng

at the basin outfal I, i t was f i r s t noted that the major drainage system

of the basin consisted of concrete l ined ditches which were located i n

the positions marked by channel segments CH20, CH21 and CH22. In

analyzing the reach of concrete l ined d i tch comprised of CH20 and CH21,

i t was noted that a street, which drained 14 acres of land Q(F03, inter-

sected th i s reach. Therefore, t h i s reach of concrete l ined d i tch was sub-

d iv ided into channel segments CH20 and CH21, and the intersecting street

was designated as channel segment CH23. Overland flow segments QIFOl,

Page 231: KINEMATIC HYDROL06Y AND MODELLING

220

,c)Fo2. ---- CH23 CHANNEL SEGMENT JTOl JUNCTION AND NUMBER - GENERAL DIRECTION OF OVERLAND FLOW

OVERLAND FLOW SEGMENT AND NUMBER

F i g . 11.7 Schematic representat ion of Sand Creek t r i b u t a r y watershed

Page 232: KINEMATIC HYDROL06Y AND MODELLING

22 1

OFO2, OF03, OF04 and OF09 were then delineated based on th i s channel

segmentation. I t should be noted that over land flow segment F04 does

not have balanced lengths of over land flow to CH21. To fu r ther subdiv ide

th i s over land flow segment would also requ i re that segments CH21 and

OF09 be fu r ther subdivided.

The unallocated concrete l ined d i tch was then assigned as channel

segment CH22. Overland flow segments OF06 and OF05 were then delineated.

To avoid the need to subdiv ide channel segment CH20 which would requ i re

subd iv id ing over land flow segments OF01 and OF02, channel segment CH25

was used to bypass channel segment CH20. A junct ion segment, JTOl,

was required to sum the flow from the two channel segments at the outlet

of the basin. F ina l l y , the remaining pa r t of the basin was drained by

a street which was assigned as channel segment CH24.

Once the basin was segmented, the sub-basin boundaries w e r e f i e ld

checked and representative channel cross sections determined. Channel

slopes were determined from the drainage maps, and over land flow slopes

were estimated from the U.S. Geological Survey topographic map for the

area and the street corner elevations shown on the City of Denver

drainage maps. Sub-basin areas w e r e planimetered and lengths of over-

land flow were computed by d i v id ing the area of each sub-basin, i n

square feet, by the length, in feet of the channel segment into which

i t contr ibutes lateral inf low.

TABLE 11.1 Model Simulation Results for Sand Creek Tr ibu tary Watershed

Runoff Runoff Volume Peak Flow Event Number

i n c f s . .

Date in inches Measured Simulated Measured Simulated

1

2 3 4 5 6 7 8 9

10

7-7 2-73 7-1 9-73 7-22-73 7-24-73 7-30-73 8-07-73 9-1 1-73 9-1 1-73 7-22-74 7-30-74

0.08

0.16 0.055 0.33 0.063 0.70 0.073 0.23 0.20 0.53

0.08 0.19 0.052 0.28 0.082 0.76 0.14 0.16 0.32 0.47

32 68 22

104 32

2 36 48

143 98

251

23 74 14 97 28

2 80 58 68

117 2 16

Page 233: KINEMATIC HYDROL06Y AND MODELLING

222

The per iod of record to be simulated was July 12, 1973 to July, 30,

1974. To establ ish i n i t i a l moisture condit ions for the beginning data,

an optimization r u n was conducted for the per iod May 1 , 1973 to July

12, 1973. Using input values for r a i n f a l l d a i l y pan evaporation and

recorded runoff the model was "cal ibrated" b y determining optimal values

for the i n f i l t r a t i on and soil moisture accounting parameters. A second

r u n was then conducted to simulate watershed runoff (hydrographs) du r ing

the specified simulat ion period. Results are shown i n Table 1 1 . 1 .

A MODEL FOR RURAL WATERSHEDS

The model described for u rban stormwater simulat ion could be appl ied

easi ly to r u r a l watersheds. I n th is section, however, let us examine

another model which has been appl ied only to r u r a l watersheds, and

which uses f i n i t e elements to solve the kinematic equation instead of

f i n i t e di f ferencing. The fol lowing model was developed for r u r a l water-

sheds i n ag r i cu l tu ra l land use, but i t has been suggested i t also can

be appl ied to surface mining disturbed watersheds.

A f i n i t e element storm hydrograph model (FESHM) has been developed

at V i rg i7 ia Polytechnic Ins t i tu te and State Universi ty as p a r t of a

program to develop a d is t r ibu ted parameter model to simulate flow on

ungauged watersheds (Ross, et a l . , 1978 and 1982). Spatial v a r i a b i l i t y

was a requirement because a long range goal i s to be able to simulate

not only runoff from mixed land use watersheds, but also waterborne

pol lutants. Thus, FESHM was developed to integrate spat ia l and temporal

var iat ions in c l imatic and watershed character ist ics.

The model consists of two major components: a p rec ip i ta t ion excess

generator and a f lood rou t ing algor i thm which routes the excess along

over land flow elements and down the stream channel elements.

Precipitation Excess

The calculat ion of r a i n f a l I excess depends on the spat ia l d is t r ibu t ion

of two watershed character ist ics, land use and soi l mapping uni ts. A

map of land use patterns i s superimposed on the watershed s i te map,

def in ing soi ls to create a hydrologic response u n i t (HRU) map. Each area

with a unique land use and soi l mapping combination i s referred to as

an HRU. A given ra in fa l I on the watershed w i l l resul t i n a di f ferent

amount of p rec ip i ta t ion excess from each HRU.

Page 234: KINEMATIC HYDROL06Y AND MODELLING

223

1 I2

The amount of p r e c i p i t a t i o n excess i s d e t e r m i n e d u s i n g Hol t a n ’ s

i n f i l t r a t i o n e q u a t i o n ( H o l t a n , 1961). T h i s i n f i l t r a t i o n model h a s been

a p p l i e d to a w i d e r a n g e of d a t a b y S h a n h o l t z and L i l l a r d (1970) and

H o l t a n , e t a l . , (1975) w i t h r e a s o n a b l e success. I t was i n c l u d e d in FESHM

p r i m a r i l y because the d a t a necessa ry to d e f i n e model p a r a m e t e r s c l o s e l y

p a r a l l e l t h e concep ts f o r d i v i d i n g a d r a i n a g e a r e a i n t o HRUs.

, = o

Flow Routing

The second p a r t o f FESHM r o u t e s p r e c i p i t a t i o n excess t o t h e o u t l e t

o f t he wa te rshed . To a c c o m p l i s h t h i s , t h e w a t e r s h e d i s d i v i d e d i n t o

o v e r l a n d and s t reamf low e lemen ts a s shown in F i g u r e 11.8. The n u m b e r

o f e lements to b e used depends o n the h y d r a u l i c and h y d r o l o g i c he tero-

g e n e i t y o f t he wa te rshed . The HRUs t h a t o c c u r in each o v e r l a n d f l o w

element a r e c a t a l o g u e d , and the r a i n f a l l excess f rom e a c h HRU i s

w e i g h t e d b y i t s f r a c t i o n a l a r e a in t h e e lement . T h i s r a i n f a l l excess

i s t h e n r o u t e d t h r o u g h o v e r l a n d f l o w e lements u s i n g a f i n i t e e lement

a p p r o x i m a t i on o f t h e k i n e m a t i c w a v e mode l .

U s i n g t h e G a l e r k i n t e c h n i q u e ( L a p i d u s and P i n d e r , 1982) and l i n e a r

v a r i a t i o n of p a r a m e t e r s w i t h i n an e lement , t h e e lement e q u a t i o n becomes

(11.18)

where s c r i p t “ell i s t he e lement l e n g t h , e q u i v a l e n t to t h e t l o w l e n g t h

ac ross e a c h e lement . The t ime d i f f e r e n t i a l o f a r e a i s r e p l a c e d b y a

s i m p l e f i n i t e d i f f e r e n c e a p p r o x i m a t i o n . Thus

2A - A ( t + A t ) - A ( t ) a: At

- _

The f i n a l e lement e q u a t i o n i s

(11.19)

(11.20)

Page 235: KINEMATIC HYDROL06Y AND MODELLING

224

Model Application

FESHM has been tested o n watersheds in seven s tates c o v e r i n g a

wide r a n g e of l a n d use, topography a n d c l i m a t i c cond i t i ons . D r a i n a g e

areas r a n g e d from approx ima te l y 2 acres to 193 s q u a r e mi les. The s i ze

F i g . 1 1 .8 Watershed map showing o v e r l a n d a n d channel f i n i t e elements

Page 236: KINEMATIC HYDROL06Y AND MODELLING

225

o f the w a t e r s h e d did n o t l i m i t i t s a p p l i c a t i o n ; t h e a c c u r a c y o f s i m u l a t i o n s ,

however , most l i k e l y was a f u n c t i o n o f t h e q u a l i t y and r e s o l u t i o n o f t h e

a v a i l a b l e d a t a .

The model was a p p l i e d to s i x wa te rsheds in V i r g i n i a , ranging in s i z e

f r o m 183 to 1,058 a c r e s ( 1 a c r e = 0.4047 h e c t a r e s ) . S i x t e e n s t o r m e v e n t s o n

these wa te rsheds w e r e s imu l a t e d and t h e s i m u l a t e d h y d r o g r a p h s compared

w i t h the obse rved . These r u n s were made w i t h o u t a n y e f f o r t s to c a l i b r a t e

the mode l , and t h e r e f o r e a r e t y p i c a l o f t h e m o d e l ' s p e r f o r m a n c e o n

u n g a u g e d wa te rsheds . The r e s u l t s a r e summar i zed in T a b l e 11.2. T h e mean

e r r o r in the p r e d i c t e d s to rm vo lume was 4.4 p e r c e n t , w i t h a s t a n d a r d

d e v i a t i o n o f 49.9 percen t . The mean e r r o r in the p r e d i c t e d p e a k d i s c h a r g e

was 22.6 p e r c e n t , w i t h a s t a n d a r d d e v i a t i o n of 50.1 percen t . The l a r g e

s t a n d a r d d e v i a t i o n i s d u e l a r g e l y to the i n c l u s i o n o f some v e r y s m a l l

( vo lume) s to rms. The model t ends to s i m u l a t e bes t those s to rms w i t h a

r e t u r n p e r i o d o f 20 y e a r s o r g r e a t e r .

An e x a m p l e o f t he s i m u l a t i o n r e s u l t s o f a s to rm even t on P o w e l l ' s

Creek i s shown i n F i g u r e 11.9. The HRU map i s g i v e n i n F i g u r e 11.10, and

the s u b d i v i s i o n of the w a t e r s h e d i n t o e i g h t f i n i t e e lements i s shown in

F i g u r e 1 1 . 1 1 . For t h i s s to rm, the e r r o r in p e a k d i s c h a r g e was 3.4 p e r c e n t ,

and the e r r o r in s to rm vo lume was 2.1 percen t . A s e n s i t i v i t y a n a l y s i s o f

e lement s i z e i n d i c a t e d l i t t l e improvement to u s i n g s m a l l e r e lements .

TABLE 11.2 Compar i son o f . R u n o f f Volume and Peak F low f o r

S i m u l a t e d and Recorded F l o w s in V i r g i n i a Watersheds

(Ross, 1978)

S t o r m Runof f Vo lume ( i n ) Peak F low ( c f s) Watershed Even t Recorded S i m u l a t e d Recorded S i m u l a t e d

Powe l l s Creek 10/10/59 0.73 0.46 109.88 114.34 5/31/62 0.92 1.34 241.10 359.71 7/11/65 2.06 2.38 419.82 775.13

6/12/58 0.44 0.46 83.29 78.32 6/24/58 0.43 0.44 91.26 94.44 9/19/60 0.73 0.47 45.74 59.95

Pony M o u n t a i n B r a n c h

Rocky Run B r a n c h

C r a b Creek

B r u s h Creek

Ches tnu t B r a n c h

7/23/70 1.44 1 .13 327.80 544.32 O/ 5/72 5.79 3.26 609.77 551 .OO

8 /21/66 0.19 0.26 179.20 231.16 0/24/71 0.57 0.30 180.54 137.59 6/16/76 0.49 0.31 205.58 148.34

7 /22 /59 0.44 1 .08 791.47 1,741.56 9/30/59 1.14 0.86 924.70 434.69 5/28/73 0.27 0.43 296.38 623.58

8/23/67 0.67 0.63 416.08 595.84 8 / 4 /74 0.43 0.49 339.65 448.43

Page 237: KINEMATIC HYDROL06Y AND MODELLING

226

4 50

400

3 50

300

250 v) LL 0

200 <3

I

a a 0 150 v, 0

100

50

0

POWELLS CREEK WATERSHED 71 I 1/65 STORM EVENT

-SIMULATED HYDROGRAPH X- RECORDED HYDROGRAPH

3.4% PEAK ERROR 2. I '7" VOL. ERROR

I I

1.0 2.0 3.0 4.0

TIME, HRS

F i g . 11.9 Compar i son of s i m u l a t e d and r e c o r d e d h y d r o g r a p h s Powe l l s Creek wa te rshed , V i r g i n i a

Page 238: KINEMATIC HYDROL06Y AND MODELLING

53

F i g . 11.10 HRU m a p of Powe l l s Creek wa te rshed

227

Page 239: KINEMATIC HYDROL06Y AND MODELLING

228

POWELCS CREEK HALIFAX COUNTY,VA

WATERSHED BOUNDARY

CHANNEL ELEMENT

OVERLAND FLOW ELEMENT NP

SCALE IN FEET

Fig . 1 1 . 1 1 F i n i t e element map f o r Powells Creek watershed

Page 240: KINEMATIC HYDROL06Y AND MODELLING

229

OVERLAND FLOW AND STREAMFLOW PROGRAM

The simpl ic i ty wi th which a computer program can be assembled from

the basic kinematic equations i s demonstrated here. The program wr i t ten

in BASIC for an HP85 micro computer i s appended. I t I S a s impl ist ic

program incorporat ing over land flow and channel flow in series. Con-

secut ive channels can feed into designated downstream channels, enabl ing

branches to be included.

The channels a re assumed for s impl ic i ty to be rectangular i n cross

section wi th f lood planes on ei ther side (F ig . 11 .12 ) , which i n fact can

form the overland flow planes. Flow planes are assumed to be rectangular

and of uniform slope and roughness.

An assembly of planes and channels of the type envisaged i s

i l l us t ra ted i n Fig. 11.13.

The model was developed to study the effect of bank storage on f lood

rout ing. The f lood planes act as dead storage - flow on them i s assumed

lateral - from or to the channel where the longi tudinal flow occurs.

Channel depressions can a l x , be included - by widening the stream bed.

Flow i s obviously assumed to be kinematic - that i s backwater effects

and unsteady flow are neglected.

Overland flow of sub-catchments i s calculated using the kinematic

equations for rectangular planes. Inf low i s the net r a i n f a l l and outflow

i s assumed over the f u l l width B of the plane. Flow r a t e i s calculated

from an equation of the form: ,

Q = 0 “ y ( 1 1.21 ) m

where c1 = s Ifl/n

S = slope in direct ion of flow

n = Manning roughness coefficient

m = 5/3

Inf low to channel reaches can be from both sub-catchments and

upstream channels, but not r a i n , as the width i s assumed neg l ig ib le ,

as well as losses along the channel.

A l l storage i n channels and over land i s assumed to be pr ism storage

i.e. no wedge storage or dif ference between bed slope and water surface

slope i s permitted. This i s i n accordance with the kinematic s impl i f icat ion

but provided distance in te rva ls are l imited, i t i s not inaccurate. Flow

of f the sub-catchments i s also assumed to be a function of the average

depth at the outlet end, so i f the var ia t ion i n depth i s l i ke l y to be

signi f icant a cascade of planes or planes leading into wide channels

representing planes may be preferable.

Page 241: KINEMATIC HYDROL06Y AND MODELLING

230

The kinematic equations a re ab le to accommodate storage by re-

wr i t ing as follows the cont inui ty equation

LBdy = d t (A ie + Qi - Q o ) (11 .23)

where A i s the area of the sub-catchment w i th excess r a i n f a l l r a t e i e

and Qi - Q i s the upstream inf low minus downstream outflow which i n

tu rn are functions of the water depth y and LB i s the surface length

times width of the channel p lus f lood planes (based on the water depth

at the previous time in te rva l as a simple exp l i c i t solut ion i s used). I n

fact the term A i e f a l l s away for the channel storage computations and

LB i s equal to A for over land flow computations.

Since the simulat ion i s not s t r i c t l y a f i n i t e dif ference solut ion to

the d i f fe ren t ia l cont inui ty equation bu t merely a flow balance at successive

nodes or junctions the speed of propagation of disturbances i s not s t r i c t l y

corrrect. Thus some numerical d i f fusion i s bound to occur unless a l l

reach lengths are proport ional to dx/dt , the wave speed. The advantages

of a va r iab le reach length, however, appear to outweigh the disadvant-

ages. That i s da ta can be fed in in na tura l (unequal) channel lengths,

and time in te rva ls can be extended above what i s normal ly required for

kinematic sirnul at ion. I

Fig. 11.12 Channel section

Page 242: KINEMATIC HYDROL06Y AND MODELLING

23 1

Subcatchment w i t h ove r land f l ow

lLC1 Flood p lane

7 Storage b a s i n \\\

Channel \\\y Q4

Fig . 11.13 Possible layout of sub-catchments and channels for kinematic flood Dlane model

Data input

The basic program requests interact ively the fo l lowing data. The

da ta for each l ine i s typed i n consecutively w i th commas separating the

numbers.

F i r s t Input L ine

Simul at ion durat ion, minutes

In te rva l between success;ve flow calculat ions, minutes

In te rva l between tabulat ion of flows and depths for each channel, minutes.

Second Input L ine

Preceding week’s r a i n f a l l i n mm

Channel no. at which a hydrograph i s required

Estimate of maximum flow i n channel (m’/s) for hydrograph plot a x i s

scal ing.

Th i rd Series of Input (each Time in te rva l )

Rainfal I intensi ty i n mm/h (assumed uni formly d is t r ibu ted)

Data Lines at end of program (stored as a f i l e to save input each r u n ) .

Downstream channel no. into which the sub-catchment discharges

Sub-catchment surface area, mZ

Page 243: KINEMATIC HYDROL06Y AND MODELLING

232

O v e r l a n d and streamf low p r o g r a m I i s t i n g

5 P R I N T 16 P R I N T "OVERLAND b CHANNEL K I

NEMfT IC FLOW SIRULATION CHT S I R

F(38) ,U<38 , ,N(38 ) ,0 (30 ) ,X (36 ),2(38>,B138,,V(JB,,R(30)

36 D I M G < J B ) , E ( 3 9 ) , H ( J B ) , U ( 3 8 ) ,

46 D I S P S IMULATIONt , INTERUAL.T

5 6 INPUT ,, T 1, T2 , T 4 52 D I S P PPECEEDING WK KHINmra,H

28 DIN J ( 3 6 , , H ( 3 8 > , L ( 3 8 ) , S < 3 8 ) ,

Q<38,:Y<38,,P<36,6, ,C(38,6)

H B U L H T J O N t ( a l 1 m i n s > " ;

YDROGPH CHANL no, PMAXrn3/'s"; 53 I N P U T R5,K5,(;11 55 P R I N T 68 P R I N T 'CHANL Qm3s DEPTHm" 78 Il=B . - -~ 88 A l = 6 85 R=5 /3 98 FOR 1=1 TO 56

1 8 6 READ J ( I ) , A ( I > , L ( I ) , S [ I , , R 3 ,

161 I F I > 1 THEN 185 105 I F J ( I > = 8 THEN 2 8 6 116 S ( I ) = S < I > " . 5 / R 3 126 Y ( I ) = 8 1 3 6 Q ( I i = 8 146 H l = A l + A < I > 158 I l = I 1 + 1 168 NEXT I 20B K 1 = @

F t I j

2 4 5 Kl=Kl+l 2 5 8 I F O<K>=B THEN 280 2 7 8 NEXT K 286 FOR K = l TO K 1 282 I F N ( K > O K 5 THEN 298 284 K5=k 298 K2=B - - . . . - - 380 FOR 1=1 TO I 1 318 I F J < I > < > N ( K > THEN 356 326 K 2 = K 2 + 1 338 P ? K , K Z ? = I JSO NEXT I 368 P(K ,K2+1>=0 365 K4=6 376 FOR K3=1 TO K 1 388 I F O ( K 3 ) < i N ( k J THEN 4 1 8 396 K4=K4+1 4 8 8 C(K,K4)=K3 4 1 8 NEXT K 3

426 C ( K > K 4 + 1 > = 6 436 NEXT K 45@ GCLEAR 468 SCALE - T 2 , T l * - ( Q 1 / 2 0 ) , Q l 4 x 1 XAXIS e , m , e , ~ i 486 Y w I s 8, 160 ,8 ,~1 496 MOVE T2,-((;11/?6> 588 LABEL ' T h o u r s

515 Q l = I N T < Q l ) 516 MOVE - T 2 > Q l t . 9

528 LABEL 'Q!3/s- " h V A L S ( Q l > & ' I

546 FOR T 6 = 6 TO T1-T4 STEP T 4 545 FOR T5=T2 TO T 4 STEP T 2 5 4 8 T=T6+T5 558 D I S P 'RHINms/h" 555 INPUT R ( 1 ) 578 FOR 1=1 TO I 1 5 7 2 R ( I ) = R ( l ) 575 U(I>=F<I)*(l+<il686/(R5+16~~

~ . 5 - 1 ) * 2 . 7 1 8 ~ < - ( . 8 8 1 * T S 6 8 1 ) ) 586 Y(I>=(R(I)-U(I)>/3686806%T2%

6 8 + Y ( I ) - P C I ) / A ( I ) * T 2 * 6 6 596 I F Y<I)>B THEN 628 686 Q<I)=6

N CHFINL L V A L S ( K 5 )

616 GOT0 6 3 6 626 Q(I)=S(I)*YCl)*~tH(I~~L~I~ 636 NEXT I 6 4 6 FOR K = l TO K 1 656 Ql=-U(KJ 666 FOR K2=1 TO 6

680 Q l = Q l + Q ( P ( K , K 2 ) , 698 NEXT KZ

716 I F i < K , K 4 > = 8 THEN 7 4 8 726 81 =Ql+Ld< C'K, k 4 > > 738 NEXT K4 748 B l = B ( K > 742 I F H ( K ? < = E ( K / THEN 7 5 6 7 4 4 B l = B l + ( H t K ) - E < K ) ) * G ( K ) 756 H ( K , = H ( K ) + Q l S T 2 * 6 @ / X ( K ' , B 1 752 I F H ( K ) ) 8 THEN 766 7 5 4 H < K > = 81 766 NEXT K 778 FOR K = l TO K 1 788 U(K>=Z(K>*H<K>*#*BtK) 782 I F H < I O < = E ( K ) THEM 888

578 I F P < K t K 2 ) = 6 THEN 768

788 FOR ~ 4 = i T O tj

785 U ( K ) = U ( h , + V ( h ) * t t K ) * C H t k , - E c K ) ) * C M + 1 )/2AFl

795 IMAGE JD,DDDD m,nm DUD B 0 B NEXT K 862 Q2=6 883 FOR 1=1 TO I 1 884 Q Z = Q Z + H ( I > * ( P ( I ) - F ~ I , , , 3 6 g 8 8

88 805 NEXT I Se7 MOVE T,uz 868 PLOT T,Q2 818 MOVE T,W(K5)

Page 244: KINEMATIC HYDROL06Y AND MODELLING

233

828 PLOT T , W < K 5 ) 825 NEXT T 5 838 PRINT "TIRE m i n s " , ~ 831 FOR K = l TO K 1 832 PRINT USING 795 i N(k>,U(K>,

H < K > 833 NEXT K 834 NEXT T 6 - 835 COPY 846 END l e l b . DATA 1.6b8bbbbb,166bb,.62,.

1,5

1,s

1,5

1,s

1826 DATA 2 ~ 6 8 0 0 6 6 0 6 ~ 1 6 8 8 8 , . 6 2 ~ .

l b 3 0 DATA 3 , 6 6 8 6 8 b b 6 ~ 1 8 8 b b , . 6 1 ~ .

1848 DATA 4,68Bbbbbb,lbBb8,.61,.

1658 DATA 5,6bb6b6b6~1b88b,.b1,.

, l 6 b

, l b b 1118 DATA 2,4,1b@bb, .bZ, .b5,1b,2

1120 DATA 3,5,1bbb6, .b2, .b5,1b,2

1136 DATA 4,5,2b86b, .62, .85,16,2 I 160

I 168 1148 UHTA 5 ~ 8 ~ 2 b 0 6 8 , .61, .84,15,1

> 28b

S I MULA T I ON ? , I NTERV AL ., T AEUL A T I i t N t (all m i n s , ? 360 I 3u I68 PRECEEDING WK RAINmm,HYDROGPH CH ANL no,QMAXm3/c? 1b0,5, l @ 8 8 K!AINmm,'n .? 38 i'i I Nmm /h

34 PHI Nmm/ h

38 R A 1 Nmm h

38 PAIkmm, t i

36 PA I Nmm,'h

I

I

,

OUEHLANEl &. CHANNEL KINEMATIC F L OW SII'IULHTION CATSIPI

CHANL Qn3s DEPTHm T I M E m i n s 66

1 3.53 .28T 2 7 . 8 b ,462 3 5 . 8 1 .354 4 2 .95 .25? 5 2 .58 ,201

1 2 5 . 1 2 931 2 58.92 1.427 3 32.95 1.P% 4 33 .54 1.188 5 21.21 .716

1 76.63 1.819 2 164.12 2 .186 3 74.53 1 . 7 m 4 173.12 2 .965 5 143.32 2.235

T I H E mins 128

TIPlE m i n s 186

T I N E m i n s 1 76 .79 2 72.81 3 56.89 4 2 1 i . 3 3 5 346. li

1 6 1 . 8 3 2 54.62 3 44 38 2 178.29

2 9 5 . 2 2

I 46.93

T I N E m inz

T IME m i n s

1 . 8 2 1 1.764 1.5b8 3 . 3 9 9 3.794

1 . ddb = '- .- 1 .484 1 .318 3.818 3 .477

34 RA 1 Nmm 1 h

Page 245: KINEMATIC HYDROL06Y AND MODELLING

234

Overland flow distance, m.

Average slope over the sub-catchment in the direct ion of flow towards

the channel, m/m

Manning roughnesses of the sub-catchment (note roughness for f i r s t

catchment i s also used for a1 I f lood planes)

Steady uI timate i n f i l t r a t ion loss in mm/h

The end of the sub-catchment da ta i s iden t i f ied by typ ing i n a l ine of

s ix zeros separated by commas.

Data Lines; Channel reaches;

Channel number

Downstream channel number

Length of channel, m

Slope m/m

Man n i n g roughness

Bed width

Channel depth, m

Flood plane width per m depth

The last channel must be the lowest (downstream) channel which

is ident i f ied by i t s downstream channel no. ( the second item of data

in the l ine) being zero.

The program commences p r i n t i n g a table of channel nos, flow rates

in m 3 / s and water depths i n m, at each successive time in te rva l . A plot

of the hydrograph at the designated node appears on the screen

simul taneously and th i s hydrograph i s subsequently plotted on paper.

I n f i l t r a t i on and Seepage

I n the previous example, excess r a i n f a l l was routed overland. That

i s the user has to insert an i n f i l t r a t i on r a t e for each sub-catchment

in the data. I n fact losses include an i n i t i a l abstract ion and then a

time decreasing i n f i I t rat ion. The Horton (1933) equation suggests an

exponential l y decreasing loss, whereas the Green-Ampt (191 1 ) equation

indicates a less r a p i d decrease i n absorption. The la t te r equation i s

based on a s impl ist ic model of soil pores and the decrease in i n f i l t r a t i o n

i s based on saturat ion of the soi l pores. Ei ther of these equations could

be programmed read i l y and the indices made functions of preceding

r a i n f a l l or moisture conditions.

A port ion of the i n f i l t r a t i on reaches the water table. The water

below th i s level flows la te ra l l y under a hyd rau l i c gradient. The deeper

the groundwater the higher the flow rate, which can however be exceed-

Page 246: KINEMATIC HYDROL06Y AND MODELLING

i ng l y slow and may not contr ibute to the hydrograph due to a storm

except as a f a i r l y steady basic f low. Where the water table i s h igh

however, or i f there i s a perched water tab le or h igh rock level, inter-

face flow may occur dur ing or soon af ter a storm. That i s seepage

emerges on the surface or into streams short ly a f te r a storm commences

and th i s must therefore be included in the model. Ground water flow

can be model led using the kinematic equations too.

REAL-T I M E MODELL I NG

A model such as that described above was employed on a real-t ime

bas is to predict inf lows into a reservoir feeding a hydro-electr ic stat ion

(Stephenson, 1986). Rainfal I s igna ls from t ipping-bucket gauges d i s t r i -

buted over the 5000 square ki lometre catchment were telernetered to a

central processing u n i t l i nked to two micro computers. One computer

processed the data, f i l ed i t on f loppy discs and at the same time gave

a visual d isp lay and pr in tou t of r a i n f a l l over the last hour, and

summaries of totals for preceding week etc. The other computer had the

catchment model which predicted flow ra te into a reservoir. Both storm

runof f on a short term bas is and low flows over a longer time span were

predicted enabl ing the reservoir to be operated to optimize hydro-power

generat ion.

The hardware and da ta gather ing system were thus low cost bu t

compatible wi th the accuracy which could be expected. The computer

program, based on the kinernat i c equations and 15 sub-catchments was

also at a level matching the da ta and accuracy which could be expected.

The program i s also ab le to p red ic t ahead the flows based on al ter-

na t ive assumed r a i n f a l l rates. The system lag was 12 to 24 hours, which

was general ly suf f ic ient to operate gates, but not for conservation of

water over the d r y season.

Page 247: KINEMATIC HYDROL06Y AND MODELLING

236

REFERENCES

Al ley, W.M. a n d Veenhuis, J.E., 1979. Determination of b a s i n character- i s t i cs for an urban d i s t r i b u t e d rou t ing , r a i n f a l I - runof f model, in Proceedings, Stormwater Management Model (SWMM) Users Group Meeting,

Crawford, N.H. a n d L ins ley , R.K., 1966. D i g i t a l s imu la t ion in hydro logy : Stanford Watershed Model I V . Technical Report 39, C i v i l Eng ineer ing Department, Stanford Un ivers i ty , Cal i fo rn ia .

Dawdy, D.R., L i c h t y , R.W. a n d Bergman, J.M., 1972. A r a i n f a l l runof f s imulat ion model fo r est imat ion of f lood peaks fo r smal l d r a i n a g e bas ins. U.S. Geological Survey Professional Paper 506-8.

Dawdy, D.R., Schaake, J.C., Jr . a n d A l ley , W.M., 1978. User 's gu ide f o r d i s t r i b u t e d r o u t i n g r a i n f a l I runof f model. U.S. Geological Survey-Water Resources Inves t iga t ions 78-90.

Green, W.H. a n d Ampt, G.A., 1911. Studies of so i l phys ics, I , Flow of a i r a n d water through soi ls. J. Agr ic . Science, 4 ( 1 ) , p 1-24.

Hol ton, H.N., 1961. A concept fo r i n f i l t r a t i o n estimates in watershed engineer ing. U.S. Dept. of Agr icu l tu re , A g r i c u l t u r e Research Service, ARS-4 1 -45, Wash i n g ton, D . C . U.S. Dept. of Agr icu l tu re , A g r i c u l t u r a l Research Service, Technical B u l l e t i n No. 1518, Washington, D.C.

Horton, R.E., 1933. The r o l e of i n f i l t r a t i o n in the hydro log ica l cycle. Trans. Am. Geophys. Union., Hydro logy papers, p 446-460.

Lap idus , L. a n d Pinder , G.F., 1982. Numerical so lu t ion of p a r t i a l d i f f e r e n t i a l equat ions i n science a n d engineer ing. John Wiley a n d Sons, New York, N.Y.

LeClerc, G. a n d Schaake, J.C., J r . , 1973. Methodology f o r assessing the po ten t ia l impact of u rban development on u r b a n runof f a n d the r e l a t i v e ef f ic iency of r u n o f f cont ro l a l te rna t ives . Ralph M. Parsons Labora tory Report No. 167, Massachusetts I n s t i t u t e of Technology, Cambridge, Mass.

P h i l i p , J.R., 1954. An i n f i l t r a t i o n equat ion w i t h phys ica l s ign i f icance. Proceedings of the Soil Science Society of America, Vol. 77, pp . 153-157.

Rosenbrock, H.H., 1960. An automatic method of f i n d i n g the greatest o r least va lue of a funct ion. Computer Journal, Vol. 3, p p . 175-184.

Ross, B.B., et a l . 1978. A model f o r e v a l u a t i n g the effect of l a n d uses on f lood flows. B u l l e t i n 85, V i r g i n i a Water Resources Research Center, V i r g i n i a Poly technic I n s t i t u t e a n d State Un ivers i ty , B lacksburg , V i r g i n i a .

Ross, B.B., et al. 1982. Model f o r s imu la t ing r u n o f f a n d erosion in ungauged watersheds. Bul le t in 130, V i r g i n i a Water Resources Research Center, V i r g i n i a Poly technic I n s t i t u t e a n d State U n i v e r s i t y , B lacksburg , V i r g i ni a.

Shanholtz, V.O. a n d L i l l a r d , J.H., 1970. A s o i l water model f o r two contrast ing t i l l a g e systems. B u l l e t i n 38, V i r g i n i a Water Resources Research Center, V i r g i n i a Poly technic I n s t i t u t e a n d State U n i v e r s i t y , B lacksburg, V i r g i n i a .

Stephenson, D., 1986. Real-time k inemat ic catchment model fo r h y d r o operat ion. Proc. ASCE Energy Journa I .

pp . 1-27.

Holton, H.N. et a l . 1975. USDAHL-74 Revised model of watershed hydro logy .

Page 248: KINEMATIC HYDROL06Y AND MODELLING

237

CHAPTER 12

GROUNDWATER FLOW

GENERAL COMMENTS

Although the major i ty of the book analyses surface runoff the same

theory i s app l i cab le to sub-surface flow. That i s kinematic ana lys is can

be used to study a major i ty of groundwater flow problems that re la te

to catchment y ie ld and response to storms.

The largest problem i s re la t ing the contr ibut ion to groundwater flow

to in f i l t ra t ion . Although prac t ica l l y a l I lateral flow underground occurs

in the zone beneath the water table, a l l water permeating i n from the

surface does not reach the water table. Some i s held by cap i l l a ry forces

onto soi l par t i c les in the semi saturated zone.

There are also i n some si tuat ions bar r ie rs to flow under the surface.

Ei ther obstacles i n the path of the flow stop lateral flow, (Har r , 1977)

or horizontal impermeable layers create perched water tables which

resul ts in more than one lateral flow path underground (Weyman, 1970).

The water table can i n some instances emerge on the surface, ei ther for

the rest of the flow path down to a stream, o r to disappear again when

a more porous aqu i fe r i s reached. The ana lys is below i s therefore

somewhat simp1 is t i c but demonstrates the pr inc ip les of kinemat ic hydrology

can be used to estimate groundwater flows. The accuracy of the ana lys is

i s more l i ke ly to be l imi ted by lack of da ta on the aqui fer than the

ana ly t i ca l method. The mechanism of groundwater contr ibut ion on slopes

was explained by Dunne (1978). Further ana lys is of the ro le of sub-

surface flow i s given by Freeze (1972).

FLOW I N POROUS M E D I A

Whereas fo r over land flow the Manning equation was found most

appl icable for est imating flow-depth relat ionships, flow through ground

i s general ly laminar.

I n the flow equation

(12.1) m

q = “ Y

for laminar over land flow

CY = gs/3v (12.2)

and m = 3 where V i s the kinematic viscosity of the f l u id , g i s g rav i t y

and S i s the energy gradient, and for tu rbu len t and over land flow

Page 249: KINEMATIC HYDROL06Y AND MODELLING

238

a = S "/N for the Mann ing equa t ion

a n d 01 = CS " for the Chezy equa t ion

(12.2b)

(12.2c)

For f low th rough porous media the head loss i s genera l l y l a m i n a r b u t

the genera l equa t ion i s

S = av

where b i s 1 for l a m i n a r f low, i nc reas ing th rough 1.85 fo r coarse

p a r t i c l e s (Ahmed a n d Sunada, 1969) to 2 fo r t u rbu len t f low th rough l a r g e

rocks (Stephenson, 1979). A genera l express ion i s

S = KvZ /gdn2 (12.4)

where K = Klev/vd + Kz (12.5)

here e i s the po ros i t y , v the apparen t ve loc i t y q/h a n d d a rep resen ta t i ve

g r a i n size. For most a q u i f e r s Kz i s n e g l i g i b l e so

S = K1vv/ged2 (12.6)

general l y an equa t ion of the fo l l ow ing form i s used

S = v / k (12.7)

where k i s the permeabi I i ty ,

(12.3) b

then q = kSh (12.8)

so = kS a n d m = 1 (12.9)

I t i s assumed the scale of the system i s such tha t su r face tension

forces can be neglected. A l though these may be s i g n i f i c a n t above the

water t a b l e the l a t e r a l f low in t h i s r e g i o n i s u s u a l l y n e g l i g i b l e .

F i g . 12.1 De f in i t i on sketch fo r f low over a s lop ing p lane .

Page 250: KINEMATIC HYDROL06Y AND MODELLING

239

Fig. 12.2 Steady groundwater flow over a s loping plane into a stream

DIFFERENTIAL EQUATIONS I N POROUS MEDIA

Since flow velocit ies in porous media a re as a r u l e very small , the

depth of saturated aqui fer can be large to discharge the flow. The

slope of the water table may therefore d i f f e r from the slope of the

impermeable bed and the kinematic dynamic equation may requ i re

modif icat ion. The di f fusion equation i s thus often used. I n Fig. 12.1

the aqui fer i s assumed to over lay an impermeable plane. The only outside

contr ibut ion i s assumed to be the i n f i l t r a t i on from above, i (m/s). The

r a t e w i l l be assumed constant i n the ana lys is below. Varying aqui fer

t ransmissiv i ty and allowance for p a r t i a l saturat ion i s made later. Owing

to the slow velocities, omission of the dynamic terms i s even more

jus t i f ied than for over land flow.

The cont inui ty equation becomes

- a g + e g = i ax

The dynamic equation becomes ah

q = k ( S h - h -1 ax

This i s termed the Dupuit-Forchheimer equation. The f i r s t term on

the r i gh t hand side gives the Darcy equation and the second term i s

the correction for water surface gradient, as i n the di f fusion equation.

( 1 2.10)

El iminat ion of q from the cont inui ty and di f fusion equation y ie lds

( 1 2 . 1 1 ) k a t ax

Page 251: KINEMATIC HYDROL06Y AND MODELLING

240

Henderson and Wooding (1964) s o l v e d t h i s e q u a t i o n f o r c e r t a i n cases

to show the d e p t h o f emergence i s i n f l u e n c e d b y the downs t ream con-

d i t i o n s (see F i g . 12.2).

ANALYSIS OF SUBSURFACE FLOW

Freeze (1972) i n d i c a t e d t h a t s u b s u r f a c e f l o w c o u l d o n l y g e n e r a t e

storrnf low i .e. a r e l a t i v e l y s h o r t t ime to p e a k h y d r o g r a p h in cases w h e r e

the s o i l i s v e r y permeab le . Where the s lope i s v e r y steep however , Beven

(1981) i n d i c a t e s i n t e r f l o w ( f l o w u n d e r a n d o v e r s u r f a c e s u c c e s s i v e l y ) c o u l d

o c c u r w h i c h w o u l d a c c e l e r a t e the c o n c e n t r a t i on process .

Beven (1981) e x t e n d e d Henderson and Wood ing ' s (1964) a n a l y s i s f o r

k i n e m a t i c s u b s u r f a c e f l o w u s i n g a d imens ion less fo rm o f t h e e x t e n d e d

Dupu i t -Forchhe imer e q u a t i o n s :

where

x = X / L

H = 2h /L t a n 0

T = k s i n 0 t /2eL

A = 4 i cos 0 /k s i n 2 0 - 4 i / kS

O m i t t i n g the d i f f u s i o n te rm

1.0 -

H

9.5 -

I 0 0.5 1 . 0

X

(12.12)

(12.13)

(12.14)

(1 2.15)

(12.16)

(12.17)

Fig. 12.3 A c o m p a r i s o n o f s t e a d y s t a t e w a t e r t a b l e p r o f i l e s p r e d i c t e d b y t h e ex tended Dupu i t -Fo rchhe imer ( b r o k e n l i n e s ) and k i n e m a t i c wave ( s o l i d l i n e s ) e q u a t i o n s f o r d i f f e r e n t v a l u e s of X . ( K . Beven, Water Resources Research , 17, 1422, 1981, C o p y r i g h t Amer i can Geophys ica l U n i o n ) .

Page 252: KINEMATIC HYDROL06Y AND MODELLING

24 1

resul ts in the kinematic equation which may be integrated to g ive the

r i s i n g hydrograph at x = L

H = A T ( T < Tc = 0.5) (12.18)

A comparison of th is solut ion wi th numerical solutions of the

extended Dupuit-Forchheimer equation was made by Beven (1981) who

used an imp l ic i t f i n i t e difference method and i te ra t i ve relaxat ion solution.

The resul ts are given i n Fig. 12.3 and 12.4. They indicate the kinematic

equation holds reasonably for A < 1 .

Fig. 12.4 Rising hydrographs predicted by the extended Dupuit-Forchheimer (broken l ines) and kinematic wave (so l i d l ine) equations for di f ferent values. of X . ( K . Beven, Water Resources Research, 17, 1423, 1981, Copyright American Geophysical Union).

FLOW I N UNSATURATED ZONE

Beven (1982) extended h i s ana lys is of the saturated zone to al low

for vert ical flow i n the unsaturated zone above the water table. He also

accounted for var ia t ions i n porosity and hyd rau l i c conduct iv i ty w i th

depth.

Start ing from Campbell's (1974) model the hyd rau l i c conduct iv i ty

i s based on the equations

k = K ( O ) = S 2B+3

K S

(12.19)

( 12.20)

w h e r e k i s the re la t i ve hyd rau l i c conduct iv i ty, K ( 0 ) i s hyd rau l i c

conduct iv i ty at moisture content 0 , subscript s refers to saturat ion

conditions, S i s re la t i ve saturat ion, $ i s c a p i l l a r y tension, qb i s tension

Page 253: KINEMATIC HYDROL06Y AND MODELLING

242

a t a i r e n t r y a n d B is a pore size parameter, which var ies from about

4 for sands to 1 1 for c lays. I t i s assumed tha t

K5 = K, ( D - Z)" = K,hn

= :k ( D - 2 ) = _hm

(12.21

( 12.22)

where Z i s depth below s o i l sur face perpend icu la r to the slope, D i s

the constant depth of s o i l , K,, 0 :!, n a n d m a r e constants ( n " 2 m ) .

S tar t ing a t t = o w i t h constant i n i t i a l c a p i l l a r y tension

*o a n d h = 0,

Darcy 's law fo r unsatura ted f low i s

( 12.23)

- - K ( O ) ?!!! + K ( O ) cos $ (12.24) qz - az

where q i s the volume f low perpend icu la r to the slope a n d $ i s the

slope ang le to the hor izon ta l .

Assuming water due to i n f i l t r a t i o n moves down w i t h a n in te r face

p a r a l l e l to the slope, a t a r a t e

dz = I - dt O w ( Z ) -dz , t=O

where Ow(z) i s the water content a t which K(C,z )cos$ = i

Then "(2) = , (K,kcos 1 $ 1/(2B+3) (D-Z)m-n/(2B+3)

b = a (D-Z)b = a h

0 ( i ) 1 / ( 2 ~ + 3 ) = n 7 ': Kd.cosa . 2B +3 where a =

( 12.25)

(12.26

(12.27

(12.28

The above equat ions a p p l y u n t i l the wetted f ron t reaches a po in t a t

which i = KS(z)cos$

Below th is depth hw = (i/K,cos$) 1 /n (12.29)

dz = I ( 12.30) - dt O S ( Z ) - o(z , t=o)

I n t e g r a t i n g the two equations fo r z g ives the time tUZ a t which the

wet t ing f ron t reaches the bottom of the pro f i le .

tUZ = 7 {t+b ( D - hw l+m w 1 +m l+b) + 0. (h l+m 0 " ) l /BDl+m ) } (12.31) 1 a l'+b

FLOW IN NON-HOMOGENEOUS SATURATED ZONE

I f i t can be assumed the water tab le i s p a r a l l e l to the impermeable

bed, the h y d r a u l i c g rad ien t i s s i n @ a n d n+l

h K*s in@ h 9, = 1 K s ( h ) s i n $ d z =

0 n+l ( 12.32)

Page 254: KINEMATIC HYDROL06Y AND MODELLING

243

The k inemat ic wave equat ion thus becomes

" & + i (12.33) e ( h ) = -K,: s i n $I h

where t > t . I f i n p u t continues u n t i l t > t the steady s tate

ah ax

uz U Z

unsaturated p r o f i l e has poros i ty e ( h ) = 0 (h) - O w ( h ) ( S

= O ; h I h w (

= O,hm-ahb ; h > hw (

Subs t i tu t ing i n t o the prev ious equat ion g ives

ah - ,K': s i n $ hW ah I

b b ) - + a t O+hm-ah ' m

a t 0, h -ah

2.34)

2.35)

2.36)

2.37)

I n t e g r a t i n g the charac ter is t i c equat ion y ie lds

t = t

When the charac ter is t i c from the top of the catchment reaches the out le t ,

a steady s tate i s estab l ished a n d

(12.38) + % (hl+m - hw 1 +m ) - Itb a (h l + b - hw'+b) 1 uz I l+m

( 12.39)

a n d the time of concentrat ion i s

(12.40)

A so lut ion f o r the f a l l i n g l imb of the h y d r o g r a p h i s a lso poss ib le

i f i t can be assumed a d r y i n g f r o n t descends u n i f o r m l y once r a i n f a l l

stops.

Af ter sur face i n f i l t r a t i o n ceases the d r y i n g f r o n t continues to f a l l

a t a r a t e

(12.41)

The wetted p r o f i l e i s g iven b y

(12.42) 1 ) 1/(2B+3) (D-Z) m-n/(2B+3) ' W = 'a ( K.:cos $,

a n d when d r y i n g

0 ( z ) = O * h m (-!A ) 1 /B

I n t e g r a t i n g the two equat ions y i e l d s the time a f t e r cessation of r a i n u n t i l

the d r y i n g f r o n t reaches the water tab le

( 12.43) d qd

where z = o a t t = t

F ig . 12.5 depic ts the e q u i l i b r i u m hydrographs fo r d i f fe ren t r a i n f a l l ra tes.

Page 255: KINEMATIC HYDROL06Y AND MODELLING

244

Time , hours

F i g . 12.5 E q u i l i b r i u m h y d r o g r a p h s r e s u l t i n g f rom r a i n f a l l s o f d i f f e r e n t i n t e n s i t i e s a n d d u r a t i o n . Model pa ramete rs a r e as in T a b l e 12.1 w i t h L = 10 m. A i s 0.002 m/h r f o r 30 h o u r s ; B 0.001 m/h r f o r 50e hours : C 0.0006 m/h r f o r 70 h o u r s a n d D 0.0002 m/h r f o r 120 hours. (K . Beven, Water Resources Research, 18, 1631, 1982, C o p y r i g h t Amer ican Geophysica l U n i o n ) .

TABLE 12.1 Model pa ramete rs w i t h v a l u e s used in examp le c a l c u l a t i o n s

~~

Parameter Symbol Va I u e

S o i l dep th

E f fec t i ve s lope l e n g t h

H y d r a u l i c c o n d u c t i v i t y pa ramete r

H y d r a u l i c c o n d u c t i v i t y pa ramete r

Po ros i t y parameter

Po ros i t y pa ramete r

Soi l mo is tu re c h a r a c t e r i s t i c

Soi l mo is tu re c h a r a c t e r i s t i c pa ramete r

pa ramete r

I n i t i a I moi s t u r e tens i on

D r y i n g mo is tu re tens ion

Slope a n g l e

D

L

K

e

0

e.

m

'b

0

$ 0

'd @

0.6m

10.0, 14.0111

2.0057 m/h r

2.73

0.8035

1.135

10.0 cm

5.0 cm

500.0 cm

300.0 cm

15O

Page 256: KINEMATIC HYDROL06Y AND MODELLING

245

REFERENCES

Ahmed, N. and Sunada , D.K., 1969. N o n l i n e a r f l o w in p o r o u s med ia . Proc . ASCE, J. H y d r . D i v . HY6, Nov. p p 1847-1857.

Beven, K. 1981. K i n e m a t i c s u b s u r f a c e s to rmf low . Water Resources Research 1 7 ( 5 ) , p p 1419-1424.

Beven, K. 1982. O n s u b s u r f a c e s to rmf low : P r e d i c t i o n s w i t h s i m p l e k i n e m a t i c t h e o r y f o r s a t u r a t e d and u n s a t u r a t e d f l ows . Water Resources Research , 1 8 ( 6 ) , pp 1627-1633.

Campbe l l , G.S. 1974. A s i m p l e me thod f o r d e t e r m i n i n g u n s a t u r a t e d c o n d u c t i v i t y f rom m o i s t u r e r e t e n t i o n d a t a . So i l Sc i . , 117, pp 311-314.

Dunne, T. 1978. F i e l d s t u d i e s o f h i l l s l o p e f l o w processes. I n H i l l s l o p e H y d r o l o g y , Ed. M.J. K i r b y , John Wi ley , N.Y.

Freeze, R.A. 1972. Ro le o f s u b s u r f a c e f l o w in g e n e r a t i n g s u r f a c e r u n o f f , 2, Ups t ream source a r e a . Water Resour . Res. 8, p p 1272-1283.

H a r r , R.D. 1977. Water f l u x in s o i l a n d s u b s o i l on a steep f o r r e s t e d s lope, J. H y d r o l . 33, p p 37-58.

Henderson, F.M. a n d Wooding, R.A. 1964. O v e r l a n d f l o w and g r o u n d w a t e r f l o w f rom a s t e a d y r a i n f a l l o f f i n i t e d u r a t i o n . J. Geophys. Research , 69 ( 8 ) , pp 1531-1540.

Stephenson, D. 1979. Rock f i I1 i n H y d r a u l i c E n g i n e e r i n g , E l s e v i e r , 215 p. Weyman, D.R. 1970. T h r o u g h f l o w on h i l l s l o p e s and i t s r e l a t i o n to t h e

s t ream h y d r o g r a p h . B u l l . I n t . Assoc. Sci. H y d r o l . 15 ( 2 ) , pp 25-33.

Page 257: KINEMATIC HYDROL06Y AND MODELLING

246

AUTHOR INDEX

Abbot t , M.B. 94, 97 Ahmed, N. 238 A l l e y , W.M. 201, 215 Arnein, M. 92 Arnpt, G.A. 235 Argaman , Y. 148

Ba les , J. 200 Barnes , A.H. 148 B e l l , F.C. 130 Bergman, J.M. 209 Betson, R.P. 70, 200 Beven, K. 23, 237, 240, 241 B l a n d f o r d , G.E. 41 Bogan, R.H. 148 Borah , D.K. 2 B r a k e n s i e k , D.L . 2, 134, 152 B r u t s a e r t , W. 62 B u r n e y , J.R. 136

Campbe l l , G.S. 241 C a r t e , A.E. 132 Changnon, S.A. 133, 146 Chestnu t , A.R. 200 Chu, H.H. 137 C o l y e r , P.J. 146 C o n s t a n t i n i d e s , C.A. 2, 103,

C o u r a n t , R. 10, 100 C r a n f o r d , N.H. 214 C r o l e y , T.E. 2 Cunge, J.A. 77, 102

107, 154

D a w d y , D.R. 201, 209 Dean, C.H. 200 D ixon , M.J. 133 Dooge, J.C. 1 , 77, 197 Dronkers , J.J. 204 Dunne, T. 5 , 23, 237

Eag leson, P.S. 1 , 131

F a n g , C.S. 92 Freeze, R.A. 237 F r i e d e r i c h s , K.O. 10, 100

G a l l a t i , M. 2 G b u r e k , W.J. 72 Greco, F. 1 Green, I .R.A. 153, 200

Green, W.H. 235 Gup ta , V .L . 132

Haan , C . T . 22 H a r r , R . D . 237 Henderson, F .M. 2, 33, 78, 240 Ho l ton , H.N. 224 Hor ton , R.E. 1 , 1 1 , 235 Howard , K.M. 200 Huf f , F.A. 130, 137, 146 H u g g i n s , L.F. 136 H u n t , B. 10

I saacson , E. 90 I w a g a k i , Y. 1 I z z a r d , C.F. 40

James, W. 130

K e i f e r , C.J. 131 Keu legan , G.H. 1 K i b l e r , D.F. 1 , 114 K i n g , D. 148 K i r k b y , M.J. 21 Kouwen, N. 11

L a n g b e i n , W.B. 79 L a p i d u s , L. 224 L a x , P.D. 101 Leach , H.R. 1 L e C le rc , G. 209 Leopo ld , M.B. 70 L e w y , H. 10, 100 L i , R.M. 1 1 , 78 L i c h t y , R.W. 209 L i g g e t , J.A. 2, 29, 195 L i g h t h i l l , F.R.S. 1 L i g h t h i l l , M.J. 59, 165 L i l lard, J.H. 224 L i n s l e y , R.K. 214 L loyd -Dav ies , D . E . 6

Mader , G.N. 131 Maddock , 1. 68 Mahmood, K . 90 Maione, U. 2 M a r t i n , C. 148 Massau , J. 1 Meadows, M.E. 41, 70, 90, 200 M e r r i t , L .B . 148

Page 258: KINEMATIC HYDROL06Y AND MODELLING

247

M i d g l e y , D.C. 130 M o r r i s , E.M. 2, 29, 62 Morton, K.W. 97

Op ten Noort , T.H. 43 Or lob , G.T. 204 Over ton, D.W. 1 1 , 40, 72, 90,

114, 194

P a n a t t a n i , L. 1 P h i l i p , J.R. 210 P i n d e r , G.F . 224 Ponce, V.M. 78 P r a s a p , S . N . 2 P r a t t , H.E. 200

Richt rnyer , R.D. 97 Rodr igues, 1 . 1 . 133 Rosenbrock, H.H. 214 Ross, B.B. 223 Rossrni l ler , R .L . 6 Rovey, E.W. 2

S a i n t Venant 27 Schaake, J.C. 2, 201, 209 Scheckenberger , R. 130 Seddon, J.A. 67 Sevuk, A.S . 146 Shanhol tz , V.O. 224 Sirnons, D.B. 11, 78 S i n g h , V.P. 1 , 114 Skaggs , R.W. 2 S t a l l , J.B. 70 Stephenson, D. 2, 43, 107, 129

145, 159, 238 Smi th, R.E. 2 Stoker, J.J. 90, 100 S t r e l k o f f , T. 104 S u t h e r l a n d , F.R. 146 Sunada, D.K. 238

Troesch, B.A. 90

Watk ins , L.H. 7 Wayrnire, E. 132 Weeter, D.W. 70 Weyrnan, D.R. 237 Whitharn, G.B. 1 , 59, 65 Wi lson, C.B. 133 Wooding, R.A. 2, 33, 59, 64,

Woolhiser, D.A. 2, 29, 59, 95,

Wy l i e , E.B. 10, 102

118

114, 136

Yang, C .T . 70 Yen, B.C. 146 Yev jev i ch , V. 77, 190

Valdes, J.B. 133 Van V l i e t , R . 1 Van Wyk, W. 130 Veenhuis , J.E. 215 Verwey, A . 94 V i e i r a , J . H . D . 64 Von Neuman, J. 98

Page 259: KINEMATIC HYDROL06Y AND MODELLING

248

INDEX

A b s t r a c t i o n , 15, 49, 57, 139,

A c c u r a c y , 29, 85, 96 Advec t i on , 28 Amer ican, 1 An tecedent m o i s t u r e c o n d i t i o n , 6 ,

15, 57 A p p l i c a t i o n s , 209 A p p r o x i m a t i o n , 12, 29, 59 A q u i f e r , 238 A r e a l d i s t r i b u t i o n , 140 A r e a l r e d u c t i o n , 49 Assumpt ions , 23, 58 A t t e n u a t i o n , 27

175, 237

B a c k w a t e r , 27 Ba lance , 4 B i r m i n g h a m f o r m u l a , 5 B l a c k b o x , 199 B l a n k e t i n g , 172 B o u n d a r y c o n d i t i o n s , 88, 206

C a l c u l a t o r , 5 C a l i b r a t i o n , 199 C a n a l i z a t i o n , 56, 176 C a p i l l a r y , 237 Cascades o f p l a n e s , 2 Catchment , 2, 49, 176, 205 Catchment -s t ream, 115 Channe l , 24, 56, 68, 115, 145, 215 Channe l s t o r a g e , 180 C h a r a c t e r i s t i c s , 31, 81, 89 Chezy , 38, 65, 72, 180 C l a s s i c a l methods, 4 C losed c o n d u i t s , 184 Co lebrook Whi te , 38 Computer , 1 , 5, 82, 108 Computer p r o g r a m , 147, 186, 229 Concen t ra t i on , 3, 6, 7, 49, 65,

C o n d i t i o n , 60 Conduct i v i t y , C o n t i n u i t y , 24 C o n t r i b u t i o n , 23 Con t ro l vo lume, 24 Conserva t i on , 24, 25 C o n v e r g i n g ca tchmen t , 114 Co-ord ina te , 24 Cor rec t i on , 1 1 C o u r a n t c r i t e r i o n , 1 1 , 92, 100 Cover, 15, 109

135, 147, 178

241

Cres t subs idence , 67 C r i t i c a l , 98 C r i t i c a l d u r a t i o n , 178 Cross sec t i on , 24, 179

D a r c y , 37, 180, 187 D e f i n i t i o n , 3, 198 Des ign , 105, Des ign s to rm, 130 De ten t ion s t o r a g e , 2, 179 D e t e r m i n i s t i c , 201, 215 D iamete r , 146 D i f f e rence q u o t i e n t s , 84 D i f f e r e n t i a l , 1 , 5, 85, 97 D i f f u s i o n , 28, 69, 78, 240 D imens ion less h y d r o g r a p h s , 105 D imens ion less v a r i a b l e s , 105 D imens ion less e q u a t i o n s , 105 D i r e c t i o n , 25, 204 D i s c h a r g e , 69 D i s c r e t i z a t i o n , 85 D i s p e r s i o n , 27, 68 D i s s i p a t i v e , 101 D i s t r i b u t i o n , 130, 133, 140 D r a i n , 146, 221 D u a l system, 146 D u r a t i o n , 6, 35, 46, 105, 139, 173 Dynamic , 1 , 27 D y n a m i c s to rm, 2, 130

E n e r g y , 37 E n g i n e e r , 105 E q u a t i o n s o f mot ion , 23 E q u i l i b r i u m , 32, 50 E r r o r , 40, 97 E v a p o r a t i o n , 1 , 209 Excess ra in , 108, 209 E x p l i c i t s o l u t i o n , 92

F a l l i n g l i m b , 45, 243 F i n i t e d i f f e r e n c e , 1 , 81, 94 F i n i t e e lement , 222 F lood , 27, 77 F o u r i e r , 98 FORTRAN, 148 F r e q u e n c y , 6, 173 F r i c t i o n , 26, 27, 37, 180 F roude , 62

Page 260: KINEMATIC HYDROL06Y AND MODELLING

249

Geometry, 68, 154 Govern ing equat ions, 61 Gradient , 6 Graph ica l , 1, 106 Groundwater, 13, 172, 237

H is to ry , 1 Hyd rau l i cs , 5, 25, 68, 145 H y d r a u l i c r a d i u s , 37, 73 Hydrodynamic, 9 H y d r o g r a p h , 40, 43, 45, 63, 71,

Hydro log i s t , 6, 132 Hydro logy , 1 , 4 Hyetograph, 49, 132

76, 105, 129, 138, 181, 231

I I I ino is , 137 Impermeable, 28, 172 Imperv ious, 2, 214 I m p l i c i t , 90, 136 I n f i l t r a t i o n , 3, 13, 19, 47, 48,

57, 109, 177, 210, 234, 242 I n i t i a l abs t rac t i on , 4 I n i t i a l cond i t i on , 206 I n t e n s i t y , 6, 8, 31, 48, 174, 231 I n t e n s i t y - d u r a t i o n , 4, 48, 147,

I n te rcep t ion , 57 Isochronal , 105 I t e r a t i v e , 90

180

Job con t ro l l anguage , 5

Kinematic, 1 , 27, 28, 59, 60, 65,

K inemat ic f l ow number, 62, 69 Kinemat ic waves, 66

78, 87, 108, 145, 179, 194, 209

L a g t ime, 4 L a m i n a r , 37, 237 L a n d use, 198 L a t e r a l i n f l ow , 24, 221 Lax-Wendroff , 94 Leap- f rog, 94 L i n e a r , 5, 10, 186, 198 Long catchment, 49 Looped r a t i n g c u r v e , 74 Losses, 13, 57, 139, 177, 240

Mann ing , 38, 44, 65, 111, 134,

Matri;, 87 145 180

Memory, 198 Mesoscale, 132 Method of so lu t i on , 81 M iss i ss ipp i R i v e r , 22, 67 Model, 77, 194, 224 Momentum, 9, 25, 59 Mot ion, 25 Mov ing storm, 142 Muskingum, 76, 179

N a v i e r Stokes, 9 Networks, 147, 186 Newton Raphson, 49, 84, 93 N iku radse , 37, 149, 180 Nodes, 186 Non-convergence, 2, 81 Non r e c t a n g u l a r sect ions, 145 Non u n i f o r m f l ow , 4 Numer ica l d i f f u s i o n , 96, 97 Numer ica l scheme, 87 Numer ica l so lu t ions, 2, 81

Obstruct ions, 12 One-dimensional , 1 , 23, 95, 103,

Optimum, 183, 214 Order of magn i tude , 28 Osci I l a t i o n , 102 O v e r l a n d f l ow , 1 , 43, 115, 229

108, 194

Paramet r i c , 191, 209 P a r a s i t i c wave, 101 P a r t f u l l p ipes , 105 Pav ing , 176 Peak f low, 43, 173, 176 Permeab i l i t y , 12, 172, 238 Perv ious , 2, 9, 237 P i p e s , . 105, 146, 186 P lane , 1 , 32, 43, 114, 135 Poros i t y , 1 , 237 Posi t ion, 31, 34 Powel I s Creek, 225 P r a c t i t i o n e r , 12 P r e c i p i t a t i o n , 3, 1 1 , 15, 131,

172, 222 Pressure, 25 Profi le., 35, 239

Management, 172 Radar , 131

Page 261: KINEMATIC HYDROL06Y AND MODELLING

250

R a i n f a l l , 33, 65, 108, 131, 172,

R a i n f a l l i n t e n s i t y , 48 R a i n f a l l impact , 39 Ra t iona l coef f ic ients , 175 Ra t iona l method, 1, 4, 50, 105,

R a t i n g , 68, 74, 93, Real-time, 235 Receding h y d r o g r a p h , 33 Recurrence i n t e r v a l , 6, 172, Relaxat ion, 93, 241 Reservoirs, 10, 179, 185 Retent ion, 57, 214 Re ta rda t i on , 172 Reynolds number, 37 Rout ing, 180, 223 R i s i n g h y d r o g r a p h s , 30, 45 R ive r , 224 Roughness, 37, 176 Runoff , 1 , 23, 43, 49, 56, 59,

R u r a l watershed, 222

209

131, 172

107, 141,

Sa in t Venant, 9, 95, 179 Sand Creek, 220 Sa tu ra t i on , 57, 242 Section, 26 Seepage, 13, 237 Shock waves, 2 Simulat ion, 40, 161, 200, 231 Slope, 24, 68 S lop ing p lane , 110 S o i l , 15 Soi l Conservat ion Service, 1 , 6 So i l mois ture, 210 Soi l phys i cs , 15 Solut ion, 102, 136 S p a t i a l d i s t r i b u t i o n , 134 S t a b i l i t y , 81, 96 S t a n d a r d methods, 5 Stochast ic, 199 Storage, 179 Storm, 131, 147 Storm ce l l , 130 Stormwater, 106, 147, 194, 209 Streamflow, 23, 221, 229 S t r i c k l e r , 37, 180 Sub-surface, 3, 240 Surface, 2 Sur face water , 3 Symbols, 107 Synopt ic, 132 System, 197

T a y l o r ser ies, 77 Tennessee V a l l ey , 201 Terminology, 198 Time a rea , 1 Time dependent, 57, 131 Time of concentrat ion, 3 Time to e q u i l i b r i u m , 3 Time s h i f t , 153, 165, 176 T rapezo ida l channe l , 152, 166 T r a v e l l i n g storm, 142 T r a v e l t ime, 4 T r i a n g u l a r storm, 137 T runca t ion , 97 T u r b u l e n t , 37, 237 Two-dimensional , 191

Un i t s , 51 Uni form f l ow , 1 U n i t h y d r o g r a p h , 7, 105 Un i ted States, 6 Unsaturated, 240 U r b a n d r a i n a g e , 2 U r b a n watershed, 209 Urban iza t i on , 209

Vegetat ion, 12, 57, 172 V e r i f i c a t i o n , 199 V i r g i n catchment, 174 Viscos i ty , 237 Volume, 106 V-shaped catchment , 115

Water hammer, 11 Watershed, 65, 200, 209, 222 Water sur face, 23, 68 Wave, 2, 4, 68, 78 Waves, k i n e m a t i c 66 Wave speed, 67 Weak so lu t i on , 101 Weighted ave rage , 101 Wetted per imeter , 26, 37 Wet t ing f r o n t , 17 Wind, 133


Recommended