+ All Categories
Home > Documents > Kinematics of Machinery Through HyperWorks - Springer978-94-007-1156-3/1.pdf · HISTORY OF...

Kinematics of Machinery Through HyperWorks - Springer978-94-007-1156-3/1.pdf · HISTORY OF...

Date post: 18-Jul-2018
Category:
Upload: buithien
View: 222 times
Download: 0 times
Share this document with a friend
12
Kinematics of Machinery Through HyperWorks
Transcript

Kinematics of Machinery Through HyperWorks

HISTORY OF MECHANISM AND MACHINE SCIENCE

Series Editor

Aims and Scope of the Series

This book series aims to establish a well defined forum for Monographs and Pro-ceedings on the History of Mechanism and Machine Science (MMS). The seriespublishes works that give an overview of the historical developments, from the earli-est times up to and including the recent past, of MMS in all its technical aspects.

This technical approach is an essential characteristic of the series. By discussingtechnical details and formulations and even reformulating those in terms of modernformalisms the possibility is created not only to track the historical technical devel-opments but also to use past experiences in technical teaching and research today.In order to do so, the emphasis must be on technical aspects rather than a purelyhistorical focus, although the latter has its place too.

Furthermore, the series will consider the republication of out-of-print older workswith English translation and comments.

The book series is intended to collect technical views on historical developments ofthe broad field of MMS in a unique frame that can be seen in its totality as an En-cyclopaedia of the History of MMS but with the additional purpose of archiving andteaching the History of MMS. Therefore the book series is intended not only for re-searchers of the History of Engineering but also for professionals and students whoare interested in obtaining a clear perspective of the past for their future technicalworks. The books will be written in general by engineers but not only for engineers.

about future publications within the series at:

LARM: Laboratory of Robotics and Mechatronics

Via Di Biasio 43, 03043 Cassino (Fr)Italy

For other titles published in this series, go to

Prospective authors and editors can contact the series editor, Professor M. Ceccarelli,

DiMSAT – University of Cassino

www.springer.com/series/7481

MARCO CECCARELLI

Volume 18

E-mail: [email protected]

Kinematics of MachineryThrough HyperWorks

J.S. Rao

of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without writtenNo part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by

permission from the Publisher, with the exception of any material supplied specifically for the purpose

ISSN 1875-3442 e-ISSN 1875-3426

Springer Dordrecht Heidelberg London New York

Altair EngineeringChief Science OfficerOuter Ring Road560103 [email protected]

ISBN 978-94-007-1155-6 e-ISBN 978-94-007-1156-3DOI 10.1007/978-94-007-1156-3

Every effort has been made to contact the copyright holders of the figures which have been reproducedfrom other sources. Anyone with a copyright claim who has not been properly credited is requested tocontact the publishers, so that due acknowledgements may be made in subsequent editions.

© Springer Science+Business Media B.V. 2011

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Cover design: SPi Publisher Services

J.S. Rao

Library of Congress Control Number: 2011922909

Additional material to this book can be downloaded from http://extras.springer.com

Dedicated to the memory of my parents

Jammi Chikka RaoJammi Ramanamma

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Beginnings of the Theory of Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Beginning of the Wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Archimedes (287–212 BC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Water Wheels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.4 Wind Mills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.5 Renaissance Engineers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.6 Industrial Revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.7 The Nature of This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Planar Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.1 Basic Kinematic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.2 Elementary Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.3 Grübler’s Criterion for Planar Mechanisms . . . . . . . . . . . . . . . . . . . . . 182.4 Four-Link Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.5 Kinematic Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.6 Additional Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Kinematic Analysis of Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.1 Velocities by the Centro Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.2 Relative Velocity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Rotation of a Rigid Link about a Fixed Axis . . . . . . . . . . . . . . 473.2.2 Relative Velocity Equation of Two Points on a Rigid

Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483.2.3 Relative Velocity Equation of Two Coincident Points

Belonging to Two Rigid Bodies . . . . . . . . . . . . . . . . . . . . . . . . 543.3 Relative Acceleration Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Rotation of a Rigid Link about a Fixed Axis . . . . . . . . . . . . . . 593.3.2 Relative Acceleration of Two Points on a Rigid Body . . . . . . 60

vii

viii Contents

3.3.3 Relative Acceleration Equation of Two Coincident PointsBelonging to Two Rigid Bodies . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Acceleration Analysis of Reciprocating Engine Mechanism . . . . . . . 743.4.1 Klein’s Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743.4.2 Ritterhaus Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763.4.3 Bennet’s Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Analytical Determination of Velocity and Acceleration of thePiston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773.5.1 Harmonic Analysis for Velocity and Acceleration of the

Piston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793.6 Additional Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Straight Line Motion and Universal Coupling . . . . . . . . . . . . . . . . . . . . . 854.1 Condition for Exact Straight Line Motion . . . . . . . . . . . . . . . . . . . . . . 864.2 Exact Straight Line Motion Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.1 Paucellier Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874.2.2 Hart Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874.2.3 Scott–Russel Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Approximate Straight Line Motion Mechanisms . . . . . . . . . . . . . . . . . 894.3.1 Modified Scott–Russel (Grasshopper) Mechanism . . . . . . . . . 894.3.2 Watt Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904.3.3 Tchebicheff Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914.3.4 Robert Straight Line Mechanism . . . . . . . . . . . . . . . . . . . . . . . 934.3.5 Pantograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954.3.6 Beam Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954.3.7 Richards Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954.3.8 Crosby Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964.3.9 Dobbie–McInnes Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Steering Gear Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974.4.1 Davis Steering Gear Mechanism. . . . . . . . . . . . . . . . . . . . . . . . 974.4.2 Ackermann Steering Gear Mechanism . . . . . . . . . . . . . . . . . . . 101

4.5 Hooke’s (Cardan, Universal) Joint or [Universal Coupling] . . . . . . . . 1014.5.1 Double Hooke’s Joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054.7 Additional Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Cams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175.1 Types of Cams and Followers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175.2 Displacement Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1215.3 Disk Cam with Knife-Edge Follower . . . . . . . . . . . . . . . . . . . . . . . . . . 1405.4 Translating Roller Follower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1415.5 Translating Flat Follower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1515.6 Oscillating Flat Follower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1555.7 Cams of Specified Contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1575.8 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Contents ix

5.9 Additional Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6 Spur Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1876.1 Classification of Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1876.2 Types of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1926.3 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1946.4 Law of Gear Tooth Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1986.5 Involute as a Gear Tooth Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1996.6 Layout of an Involute Gear Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2016.7 Producing Gear Teeth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2056.8 Meshing Gears and Line of Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . 2076.9 Interference of Involute Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2076.10 Minimum Number of Teeth to Avoid Interference . . . . . . . . . . . . . . . . 2106.11 Contact Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2126.12 Cycloidal Tooth Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2156.13 Cycloidal and Involute Tooth Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 2186.14 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2186.15 Additional Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7 Helical, Spiral, Worm and Bevel Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . 2297.1 Involute Helicoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2297.2 Helical Gear Tooth Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2297.3 Contact of Helical Gear Teeth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2337.4 Helical Gear Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2357.5 Spiral [Crossed Helical] Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2357.6 Worm Gearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2367.7 Bevel Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2397.8 Formation of Bevel Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2407.9 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2427.10 Additional Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

8 Gear Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2498.1 Classification of Gear Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2498.2 Simple Gear Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2508.3 Compound Gear Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2518.4 Synthesis of Gear Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2528.5 Gear Train Applications to Machine Tools . . . . . . . . . . . . . . . . . . . . . . 2538.6 Epicyclic Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2578.7 Inversions of Epicyclic Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2588.8 Differential Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2618.9 Torque Distribution in Epicyclic Trains . . . . . . . . . . . . . . . . . . . . . . . . 2628.10 Example of an Epicyclic Train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2638.11 Coupled Epicyclic Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2648.12 Wilson Four-Speed Automobile Gear Box . . . . . . . . . . . . . . . . . . . . . . 267

x Contents

8.13 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2688.14 Additional Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Preface

The Theory of Machines was borne as a subject with the Industrial Revolution andthe birth of Reciprocating Steam Engine nearly 230 years ago. The reciprocatingsteam engine was the main work horse for just over hundred years during the 19thcentury and gradually lost its place in history by the turn of 20th century. It is thenthe turn of Internal Combustion Engines and Rotating Machinery.

Kinematics and Dynamics of Reciprocating and Rotating machinery is the fun-damental study to mechanical engineers before proceeding to stress design. Theseanalyses were done mainly by graphical methods for planar mechanisms as theygave good insight into the mechanism and repetitive history of velocities, accel-erations, static and dynamic forces, etc.

All machines are periodic in operation depending on thermodynamic cycles forexample one revolution in a two-stroke engine or two revolutions in a four-strokeengine. Besides thermodynamics as a fundamental mechanical engineering subject,Theory of Machines is the first subject a fresh entrant to mechanical engineeringstudies faces. The concepts of moving machine members over a period of thermo-dynamic cycle and the variation of displacements, velocities and accelerations formthe subject of Kinematics. Here we do not question what makes these machine mem-bers move but merely find the kinematics when there is a motion. When we ask thequestion of forces that make the motion, we are dealing kinetics; together we haveDynamics of Machinery. When we include the machinery aspects such as links,kinematic chains, mechanisms, etc., to form a given machine we have the subject ofTheory of Machines.

Usually this subject is introduced as a two-semester course, kinematics and ki-netics simultaneously with Thermodynamics or Heat Engines before the design ofmachine members begins. This book forms the material for first semester of Theoryof Machines.

As this subject is over 200 years old, there are several textbooks already available.The new books that appear from time to time take into account new techniquesavailable; the subject matter itself has not changed particularly for the entry level.What is the difference here then?

xi

xii Preface

This book attempts to bring in the machine live on to the screen and explain thetheory of machines concepts through animations and introduce how the problemsare solved in industry to get complete history in the shortest possible time ratherthan using graphical (or analytical) methods that are in vogue even today. Thus thestudent is introduced to the concepts through visual means and brings him closeto industrial applications by the end of the two semester program taking him wellequipped for design courses.

International Federation for the Promotion of Mechanism and Machine Science(IFToMM) has developed a standard nomenclature and notation on Mechanism andMachine Science and this book adopts these standards so that any communicationbetween scientists and teachers in classrooms across the world can be with the sameterminology causing no confusion.

This book adopts HyperWorks MotionSolve to perform the analysis and visual-izations, though the book is independent of the requirement of any software. Havingthis software helps in further studies and analysis. The avis in this book can be ac-cessed from extras.springer.com by using the ISBN; they are: Figs. 2.1, 2.3, 2.4, 2.5,2.6, 2.7, 2.8, 2.9, 2.10, 2.11b, 2.12a, 2.12b, 2.13, 2.20, 2.21, 2.22, 2.23, 2.24, 2.25,2.26, 2.27, 2.28, 2.29, 2.30, 2.31, 2.32, 2.33, 3.1, 3.2a, 3.2b, 3.2c, 3.5a, 3.13f, 3.20,3.28, 3.30, 3.38, 4.1, 4.2, 4.3, 4.4, 4.5,4.6, 4.8, 4.9, 4.10, 4.11, 4.12a, 4.12b, 4.12c,4.13, 4.14, 4.15,4.16, 4.18, 4.19a, 4.19b, 4.20, 4.22a, 4.22b, 4.22c, 5.1, 5.2, 5.3, 5.4,5.5a, 5.5b, 5.6a, 5.6b, 5.6c, 5.7, 5.17, 5.18a, 5.18b, 5.26, 5.29, 5.30, 5.31, 5.32-33,5.34-35, 6.1, 6.2a, 6.5a, 6.7b, 6.10, 6.18a, 6.18b, 6.23a, 6.23b, 6.23c, 6.24a, 6.24b,7.4c, 7.4d and 8.1.

The author acknowledges help given by various students and colleagues overfour decades. Of particular mention, I thank Professor J. Srinivas, Anil Sakhamuri,Uday M. Udapi and Sundar Nadimpalli. I am also thankful to Mr. Pavankumar andMr. Nelson Dias of Altair Engineering India.

Finally, I am ever so thankful to my beloved wife Indira for her understanding inmy work and cooperation.


Recommended